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Abstract: Carbon dioxide (CO2) emissions from the livestock industry are expected to increase. A
response strategy for CO2 emission regulations is required for pig production as this industry com-
prises a large proportion of the livestock industry and it is projected that per capita pork consumption
will rise. A CO2 emission response strategy can be established by accurately measuring the CO2

concentrations in pig facilities. Here, we compared and evaluated the performance of three different
machine learning (ML) models (ElasticNet, random forest regression (RFR), and support vector
regression (SVR)) designed to predict CO2 concentration and internal air temperature (Ti) values in
the pig house used to regulate a heating, ventilation, and air conditioning (HVAC) control system. For
each ML model, the hyperparameter was optimised and the predictive accuracy was evaluated. The
order of predictive accuracy for the ML models was ElasticNet < SVR < RFR. Hence, random forest
regression provided superior prediction performance. Based on the test dataset, for Ti prediction
by RFR, R2 ≥ 0.848 and the root mean square error (RMSE) and mean absolute error (MAE) were
0.235 ◦C and 0.160 ◦C, respectively, whilst for CO2 concentration prediction by RFR, R2 ≥ 0.885 and
the RMSE and MAE were 64.39 ppm and ≤ 46.17 ppm, respectively.

Keywords: air temperature; carbon dioxide; machine learning; pig house; regression model

1. Introduction

Concern about global warming and climate change is increasing worldwide as the
concentrations of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane
(CH4) continue to rise in the atmosphere. GHGs in general and CO2 in particular are the
main causes of climate change [1–4]. Studies on carbon neutrality and the transition from
fossil fuels to renewable energy sources are ongoing [5]. Nevertheless, the Energy Infor-
mation Administration (EIA) predicted that global energy-usage-related CO2 emissions
will steadily increase through to 2050 (EIA, 2021). Both OECD (Organisation for Economic
Co-operation and Development) and non-OECD countries are expected to increase carbon
emissions. In non-OECD and OECD member nations, carbon emissions are expected to
increase by 35% and 5%, respectively, relative to 2020 levels [6].

The Republic of Korea is an OECD member with a mandate to reduce GHG emissions.
As of 2019, they had reached 701.37 million tons CO2-eq. The GHG emissions from
energy, industrial process, and agriculture were 611.5, 51.99, and 20.96 million tons of
CO2-eq, respectively [7]. Though the agriculture sector was responsible for only 2.9% of
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the total GHG emissions, the livestock sector alone accounted for nearly half the total
agricultural emissions (8.6 million tons CO2-eq). Agricultural CO2 emissions are expected
to rise in response to increases in livestock product consumption and the number of
rearing heads of cattle and pigs. Thus, it was proposed that CO2 emissions from the
livestock sector should be mitigated through decreasing livestock numbers [8]. However,
remedial measures such as low-carbon livestock management could hinder the growth
of the livestock industry as they reduce the number of rearing heads and productivity. A
low-carbon livestock product certification system was being developed for the livestock
sector as a representative CO2-reduction project in the effort to meet carbon neutrality
demands. CO2 sampling, separation, transport, storage, and utilisation technologies are
being researched and developed to reduce CO2 emissions [9]. However, it is necessary to
develop accurate carbon concentration measurement and prediction methods to enable
these technologies to achieve carbon neutrality. The pig industry comprises approximately
35.3% of all livestock production [10]. According to the prospect of an increase in per
capita pork consumption, a response strategy for CO2 emission regulations is required. The
strategy for responding to CO2 emissions can first be set by accurately measuring internal
CO2 concentrations in pig houses.

The CO2 concentrations inside pig houses have been directly measured with sensors,
internal air quality and ventilation performance can be indirectly evaluated using these
data. Previous studies [11,12] evaluated the air quality of the rearing environment by moni-
toring the CO2 concentration in a pig house. Blanes and Pedersen (2005) [13] quantitatively
analysed and validated ventilation characteristics by measuring the internal CO2 concen-
tration in a commercial pig house. Lee et al. (2005) [14] measured the CO2 concentration
inside a pig house and calculated the ventilation and CO2 generation rates using a CO2
balance equation and the measured CO2 concentration. Most of the previous studies used
the field-measured CO2 concentrations as the input for the analysis of ventilation character-
istics via the CO2 balance equation. Before a CO2 measurement sensor is implemented, the
space and installation costs required for it must be considered. Furthermore, the sensor
must be recalibrated periodically and the measurement environment must be properly
managed [15]. Nevertheless, missing data and outliers always occur as a consequence of
sensor, communication, and server computer failure. Other researchers [16,17] evaluated
the thermal, gas distribution, and internal ventilation rates in livestock facilities using the
CO2 tracer gas decay (TGD) method and computational fluid dynamics (CFD). CFD can
variously set the initial boundary conditions, including gas concentration and environ-
mental factors, according to user requirements. Though CFD can run various analyses on
vast amounts of data, it nonetheless demands substantial calculation time and computing
power.

Recently, several studies have been conducted in the attempt to automate the control
of the optimal internal environment based on information and communications technology
(ICT) convergences, such as smart farms including smart livestock and smart greenhouses.
Until now, machine learning (ML)-related research in the livestock sector has focused
mainly on predicting basic environmental parameters and animal growth rates, as well as
identifying individuals affected by disease. To these ends, prior studies used environmental
and image data. However, predictions of the internal air temperature (Ti) and the internal
CO2 concentration are needed to maintain the rearing environment of pig farms and calcu-
late their carbon emissions, respectively. A previous study [18] estimated CO2 emissions
by analysing the factors influencing the changes in field-measured concentrations of CO2
generated by the manure in mechanically ventilated pig houses. A statistical model was
developed to estimate CO2 emissions based on pig weight, ventilation rate, and manure
temperature. These variables are closely related to CO2 generation. Zong et al. (2014) [19]
used field-measured data to develop a statistical model estimating the amount of CO2
generated in fattening pig houses fitted with partial pit ventilation systems. Nevertheless,
certain traditional statistical models fail to meet complex hypothesis conditions and strict
data requirements. By contrast, ML models are not generally required to meet these criteria
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and may be continuously revised to accommodate new data. However, few studies have de-
veloped or evaluated ML models that can estimate CO2 concentrations and Ti in pig houses.
Arulmozhi et al. (2022) [20] attempted to estimate Ti but did not integrate the environment
control devices or pig characteristics into the ML model. A control algorithm based on
the predicted CO2 concentration can prevent sudden increases in CO2 concentration and
reduce energy consumption by driving a low-power exhaust fan. Carbon neutrality can
be applied, and productivity can be increased by implementing ML models that predict
CO2 concentrations using essential environmental variables in livestock production and by
assessing the prediction performance of these models.

In the present work, the performance of three ML models at predicting the internal
CO2 concentration and the Ti of an experimental pig house was analysed and compared.
First, the data generated during the experimental period was pre-processed by removing
redundant values and outliers and through normalisation. The entire dataset was divided
into training (80%) and test (20%) subsets. Each ML model [ElasticNet, random forest
regression (RFR), and support vector regression (SVR)], to predict the pig house Ti and the
internal CO2 concentration, was designed. Finally, the hyperparameter was optimised and
the prediction accuracy of each ML model was evaluated.

2. Materials and Methods

Figure 1 shows a detailed flowchart of the present study. The machine learning
(ML) models were developed using environmental data measured inside and outside the
pig house and applied to predict the Ti and internal CO2 concentration. The predictive
performance of each ML model was evaluated. The internal and external environmental
data (independent variables; features) of the pig house included solar radiation, internal
and external air temperature (Te), relative humidity (RH), exhaust fan operating rate,
and pig weight and heat generation. The predictive data (dependent variables; labels)
included Ti and internal CO2 concentration. The ElasticNet, SVR, and RFR ML models were
used to predict pig house Ti and internal CO2 concentration. Collaboration/Scikit-learn
(https://github.com/scikit-learn/scikit-learn) was used to develop the prediction models.
The hyperparameter for each ML model was optimised. The predictive accuracies of the
ML models were validated using the determination coefficient (R2), the mean absolute
error (MAE), and the root mean square error (RMSE).
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2.1. Training Data (Experimental Pig House and Breeding Conditions)

Field experiments were conducted between 1 and 28 July 2020 to predict the Ti and
internal CO2 concentration of the experimental pig house. The pig farm was located in
Suncheon (35.81905◦ N, 127.733◦ E), Republic of Korea. The pig house consisted of three
rooms for healthy and sick piglets (Figure 2). The worker passageway floor was made of
concrete and the piglet rearing space floor consisted of plastic slats. About 900 piglets were
raised in each pig room for 10 weeks and the piglet weight gain was 25 kg. The internal
thermal environment of the pig house was set and maintained at 28 ◦C with an exhaust
fan (SL-300; Sung-il Co., Seoul, Korea). Each pig room contained four roof exhaust fans (D
500 mm; 8500 m3 h−1 (CMH); 418 W) and six sidewall exhaust fans (D 500 mm; 8500 CMH;
535 W). The ventilation system ran continuously to regulate the air temperature in the pig
house and remove pollutants and humidity from it. One piglet room was designated as a
field experiment space. The air temperature (PR-20; OMEGA Engineering Inc., Norwalk,
CT, USA), CO2 concentration (SH-VR260; SOHA Tech Co., Ltd, Seoul, Korea), and exhaust
fan operating rate (mEMD; GreenENS Co., Ltd., Gwangju, Korea) were monitored in real
time. Figure 3 shows the sensor installations in the pig house. All sensor nodes were
installed 1.0 m above the pit floor. Table 1 lists the specifications of the experimental pig
house.
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Table 1. Experimental pig house and rearing data.

Pig House Type
Mechanically
Ventilated Pig

House

Floor Area and
Volume

330.4 m2

1387.7 m3

Floor type Partially
concreted

Number of
exhaust fans

Roof 4
Sidewall 6

Number of
piglet growth

days

50–90
Fan size and
performance

Roof D500/8500CMH
(418 W)

Sidewall D500/8500CMH
(535 W)

Cleaning pig
house and pit

Before bringing
in new piglets

Set ventilation
controller air
temperature

28 ◦C

2.2. Machine Learning Model

ElasticNet, SVR, and RFR were used as regression-based ML models and Python v.
3.10 (https://www.python.org/downloads/release/python-3100/, accessed on 17 May
2022) was used to develop them. Python is a free open-source programming language that
can incorporate and run modules created in other programming languages. Furthermore,
Python requires no compilation and can be coded at the same time that its output is
being checked. Scikit-learn (https://github.com/scikit-learn/scikit-learn, accessed on 17
May 2022) was used as a library for the ML models. Pandas (https://pandas.pydata.org,
accessed on 17 May 2022), NumPy (https://numpy.org/install, accessed on 17 May 2022),
and others were used as data processing libraries.

https://www.python.org/downloads/release/python-3100/
https://github.com/scikit-learn/scikit-learn
https://pandas.pydata.org
https://numpy.org/install
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2.2.1. ElasticNet

Simple linear regression models predict one dependent variable by using one inde-
pendent variable. In contrast, multiple linear regression models predict one dependent
variable by using several independent variables. The least square method is used to obtain
the regression coefficient in linear regression analysis (Equation (1)). Linear regression min-
imises mean square error (MSE). Increasing the number of independent variables can lead
to multicollinearity. On the other hand, decreasing the number of independent variables
may constrain model optimisation.

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (1)

where y is the dependent variable (label), xi is the independent variable (feature (1 to n)),
βi is the regression coefficient used to predict y (1 to n), β0 is the model intercept/constant,
and ε is the model noise or random error.

The last absolute shrinkage and selection operator (LASSO) and Ridge were developed
to overcome the shortcomings of linear regression and improve its versatility. In LASSO
regression, important variables are selected using hyperparameters (α and L1-ratio) whilst
other variables are excluded from the regression equation by setting the regression coeffi-
cient to zero. In Ridge regression, the regression coefficient is reduced using α. For this
reason, the regression coefficient may significantly fluctuate with α value. Thus, ElastiNet
combines L1-regulation (LASSO) with L2-regulation (Ridge) to attenuate the dependence
of the regression coefficient on α [21,22]. In ElasticNet, LASSO selects variables whilst
Ridge mitigates multicollinearity.

J(θ)Lasso =
1
n

n

∑
i=1

(yi − ŷi)
2 + λ

m

∑
j=1

∣∣ωj
∣∣ (2)

J(θ)Ridge =
1
n

n

∑
i=1

(yi − ŷi)
2 + λ

m

∑
j=1

ωj
2 (3)

J(θ)ElasticNet =
1
n

n

∑
i=1

(yi − ŷi)
2 + γλ

n

∑
i=1
|ωi|+

1− γ

2
λ

n

∑
i=1

ω2
i (4)

where 1
n ∑n

i=1(yi − ŷi)
2 is the mean square error (loss function), λ ∑m

j=1 ωj
2 is the Ridge

penalty (L2-regulation), λ ∑m
j=1
∣∣ωj
∣∣ is the LASSO penalty (L1-regulation), γλ ∑n

i=1|ωi| is the

L1-regulation ElasticNet penalty, and 1−γ
2 λ ∑n

i=1 ω2
i is the L2-regulation ElasticNet penalty.

2.2.2. Support Vector Regression (SVR)

The ML method known as support vector machine (SVM) is a supervised learning
model that analyses data. It is used mainly in classification and regression analysis. Support
vector regression (SVR) applies an ε-insensitive loss function to SVM and extends its use in
regression analysis [23]. SVR maintains the difference between the actual and predicted
values within ε (Figure 4). ε is an error tolerance and the kernel function increases the
dimensions to design a regression model that can accurately solve even nonlinear problems.
Whereas artificial neural networks (ANN) require abundant training data, SVR can generate
accurate results even with minimal training data.
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2.2.3. Random Forest

The random forest (RF) model is suitable both for regression analysis and classification.
RF generates decision trees by randomly sampling data from a dataset via the Bagging
(bootstrap aggregation) technique. RF is created by combining the prediction results of
each decision tree into a single model [24]. Figure 5 shows that when the dataset is entered
as the input, the output is calculated as the prediction results. An ensemble technique that
averages and collects the output of each regression tree lowers the risk of model overfitting.
Prediction quality improves with the number of decision trees generated in the RFR model.
On the other hand, the amount of space required for analysis and the performance level
required for the computer conducting the analysis also increase with the number of decision
trees generated.
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2.3. Data Pre-Processing and Training

The independent variables (features) strongly influence the accuracy of the ML predic-
tion model [25]. For this reason, the appropriate independent variables should be selected
to predict the pig house Ti and internal CO2 concentration. Independent variables that are
highly correlated with the dependent variables (labels) should be selected. This process
is called feature selection. Moreover, data training under various scenarios is essential.
Environmental data for the experimental pig house (solar radiation, wind speed, internal
and external air temperature, RH, pig body weight, and growing day) were collected
between 1 and 28 July 2020.

High-quality data must be extracted and analysed to build an optimal training dataset.
Data pre-processing was conducted for this purpose. The N/A value (uncollected data)
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generated from monitoring device self-inspection and error was deleted. Outliers were also
subjected to data pre-processing by analysing outside the quartile range (IQR). If the data
range was too wide, then noise data could be generated or overfitted. Hence, normalisation
was performed to prevent these errors and accelerate training [26].

Xnormalised =
X− Xmin

Xmax − Xmin
(5)

where Xnormalised is the normalised value, X is the data point, Xmin is the minimum value
of any variable, Xmax is the maximum value of any variable, and y is the average of the
field-measured data.

ML models have hyperparameters that must be determined to ensure precise and
reliable model operation. In fact, model performance may significantly vary with the
degree of control of the hyperparameters. Determination of the hyperparameter range and
interval setting may depend upon developer experience [27]. ElasticNet was designed by
combining the proportions of the L1- and L2-regulations or the L1-ratio. As the regression
model regulation method requires manual adjustment of the α value, α was set to 0.02,
0.05, and 0.1, whilst the L1-ratio (L1-regulation weight; 0 < L1 ratio < 1) was set to 0.25,
0.5, and 0.75. The commonly applied radial basis function (RBF) kernel function was
used for the SVR model. C and γ selection of the RBF kernel function directly affect SVR
model accuracy and generalisation ability [28]. γ determines the curvature of the model
boundary whilst C determines the extent to which the data samples may be placed in
different classes. To ensure good SVR model performance, it is necessary to adjust C
(smooth decision boundary factor) and γ to the model complexity. Algorithm complexity
increases with C and γ. C and γ were set to 0.01, 0.1, 1, 10, and 100 to estimate the RBF
kernel function hyperparameters. The number of trees (n-estimators) was set to 1, 10, 50,
and 100 to optimise the RFR hyperparameters. Table 2 lists the hyperparameter conditions
for each ML model.

Table 2. Hyperparameters for ML models.

Algorithm Hyperparameter Defined Values

ElasticNet
α 0.02, 0.05, and 0.1

L1 ratio 0.25, 0.5, and 0.75

SVR
C 0.01, 0.1, 1, 10, and 100

γ 0.01, 0.1, 1, 10, and 100

RF n-estimator 1, 10, 50, and 100

The amount of data may be increased to enhance the predictive performance of the
model. Nevertheless, the appropriate training to test dataset size ratio must be selected.
The data were divided into training (80%) and test (20%) datasets to predict the pig house
Ti and internal CO2 concentration.

2.4. Predictive Model Validation and Selection

Each ML model was validated by comparing the Ti and internal CO2 concentration
data that it predicted against the field-measured Ti and internal CO2 concentration data.
Twenty percent of the total data for the experimental period was subjected to k-Fold cross-
validation. In the latter procedure, the training dataset has k groups of the same size that
are designated as Folds. The k-Folds consist of (k-1) training folds and one test fold that are
validated k times (Figure 6). In the present study, pig house air temperature and internal
CO2 concentration were predicted using an experimental dataset.
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R2, RMSE, and MAE are used to evaluate the performance of models at predicting
specific environmental variables. Statistical indicators such as R2 and MSE that are calcu-
lated by using squared data are difficult to understand intuitively as they have different
dimensions. Hence, MAE was also analysed as it indicates the average error magnitude by
applying absolute values. MAE determines the quantitative error between the actual and
predicted values. MSE is a squared average of the difference (error) between the observed
and predicted values. As it obtains the square of the error, its value is larger than the actual
average error. Compared with MSE, RMSE more comprehensively penalises large errors.
MAE is a statistical error indicator that is the average of the absolute value (predicted value
minus observed value). MAE is calculated as shown in Equation (9):

R2 =

 ∑n
i=1(yi − y)(ŷi − ỹ)√

∑n
i=1(yi − y)2 ∑n

i=1 (ŷi − ỹ)2

 (6)

MSE =
∑n

i=1(yi − ŷi)
2

n
(7)

RMSE =
√

MSE (8)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (9)

where n is the total number of data points, yi are field-measured data, y is the average of the
field-measured data, ŷi are the ML-based predicted data, ỹ is the average of the ML-based
predicted data, R2 is the coefficient of determination, MSE is the mean square error, RMSE
is the root mean square error, and MAE is the average value of all absolute errors.

3. Results and Discussion
3.1. Field-Measured Experimental Pig House Data

The rearing environment (air quality) greatly affects pig productivity. Hence, proper
environmental air quality control is needed. In particular, air temperature and CO2 concen-
tration are correlated with feed intake, water consumption, and internal humidity. Figure 7
shows the data for the external and internal environment and environmental control device
operation of the pig house measured during the field experiment. The pig house Ti was in
the range of 28.4–32.5 ◦C. The average pig house air temperature was 29.4 ◦C and Ti was
maintained at 2.4–6.5 ◦C above the optimal (26 ◦C). Although it was early summer, the in-
ternal thermal environment was controlled to lower energy costs and the risk of respiratory
diseases. Relative humidity (RH) was high between 12 and 16 July 2022 and between 19
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and 22 July 2022 as the weather was cloudy and Te was reduced (Figure 7). During the
other experimental periods, Te rose immediately after sunrise and the fan operated at a
higher rate. These results were consistent with the environmental data characteristic of
sunny days. The internal RH of the pig house was measured to maintain the appropriate
RH range, namely, 50−70% [29]. When Te was low, the exhaust fan operated at a variable
rate. When Te was high, the pig house Ti increased even though the exhaust fan operated
at a higher rate.
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The average, minimum, and maximum CO2 concentrations in the pig house were
986.3 ppm, 541.8 ppm, and 1570.8 ppm, respectively. The CO2 concentration was at its
minimum when the exhaust fan operated at a high rate. By contrast, when the exhaust fan
operated at a low rate, the CO2 accumulated and neared its maximum concentration in
the pig house. On certain days, the internal CO2 concentration exceeded 1000 ppm which
corresponds to the previously reported CO2 concentration limit [30]. The logic control of
the exhaust fan in the pig house operated according to the pig house Ti. If the operating
rate of the exhaust fan was maintained at ≥30%, the internal CO2 concentration in the pig
house could be maintained at a level ensuring the appropriate rearing environment. An
earlier study [31] analysed the impact of the ventilation rate on changes in the internal
gaseous pollutant concentrations in a closed pig house. The total suspended particulate
(TSP) concentration did not significantly vary with ventilation rate (p > 0.05). However, the
pollutant concentrations decreased with increasing ventilation rate.
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3.2. Selection of Machine Learning (ML) Model Features

In feature selection, independent variables are chosen to construct the ML model.
ML model complexity increases with the number of model features. Hence, the use of
excess model features increases the risk of overfitting. Feature selection reduced model
complexity whilst improving performance and increasing processing speed. Pearson’s
correlation coefficient analysis was conducted to select the ML model features used herein.
Figure 8 shows the Pearson’s coefficients of correlation (R) between variables measured
in the experimental pig house. Features weakly correlated (R < 0.4 or R > −0.4) with
the dependent variables (Ti and internal CO2 concentration) were eliminated to reduce
redundancy and accelerate the learning model. The correlations (R) between Te and Ti,
CO2 concentration, exhaust fan operating rate, and RH were 0.7895, −0.7537, 0.7477, and
−0.7311, respectively. The external air temperature of the pig house affected the Ti, CO2
concentration, exhaust fan operation rate, and RH. The internal CO2 concentration was
negatively correlated (R =−0.382) with the Ti of the pig house. The correlations between the
exhaust fan operating rate, the internal CO2 concentration, and the Ti of the pig house were
−0.7043 and 0.43, respectively. Hence, fresh air exchange decreased whilst internal CO2
concentration increased with exhaust fan operating rate. However, the Ti-based exhaust
fans operated continuously, and the internal CO2 concentration fluctuated. On the other
hand, the exhaust fans maintained a relatively constant Ti (28−32 ◦C) and their operating
rates were more strongly correlated with Te than Ti.
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Te was most strongly correlated with Ti and CO2 concentration whereas solar radiation,
heat generation, and live pig weight were not significantly correlated with the carbon
dioxide content. Therefore, pig house Te, RH, and exhaust fan operating rate were the
features selected for the ML models. Only the data for external air temperature, RH, and
exhaust fan operating rate were trained. These data are relatively easy to acquire for pig
houses and are generally applicable to ML models used in the livestock industry. As few
farms install their own weather stations, it is impractical to monitor the external wind
environment and radiation in real time. Based on the principal feature analysis, then, the
three aforementioned features served as the input for ML models predicting Ti and internal
CO2 concentration.
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3.3. Evaluation of Predictive Models

ML models were developed to predict Ti and internal CO2 concentration in a mechan-
ically ventilated pig house. Tables 3 and 4 summarise the results of analyses validating
the accuracy of the models at predicting Ti and internal CO2 concentration. Evaluation of
the accuracy of prediction of the ML model using the test dataset revealed that R2, RMSE,
and MAE were lower than the corresponding values in the training dataset. For ElasticNet,
the accuracy of Ti prediction was higher for the test than the training dataset in terms of
MAE (6.2%) and RMSE (9.2%) but lower in terms of R2 (3.8%). For SVR, the accuracy of Ti
prediction was higher for the test than the training dataset in terms of MAE (60.3%) and
RMSE (62.0%) but lower in terms of R2 (13.6%). For RFR, the accuracy of Ti prediction was
higher for the test than the training dataset in terms of MAE (55.3%) and RMSE (24.4%) but
lower in terms of R2 (5.5%). The R2 for each ML model had Ti prediction accuracy ≥ 0.83.
RMSE was < 0.251 ◦C and MAE were 0.178 ◦C, 0.151 ◦C, and 0.141 ◦C for ElasticNet, SVR,
and RFR, respectively. Hence, RFR had the highest Ti prediction performance. RMSE and
MAE were both 0.03 ◦C lower for the ElasticNet model than the RFR model and their R2

differed by 3.5%. There was no significant error in the air temperature prediction by any
model.

Table 3. Ti prediction accuracy of optimised machine learning models (ElasticNet, SVR, and RFR).

Dataset Statistical
Index

ElasticNet
(a: 0.02; L1-Ratio: 0.25)

SVR
(C:10 and γ: 1)

RFR
(n-Estimator: 100)

Training

RMSE 0.228 0.084 0.152

MAE 0.167 0.060 0.063

R2 0.867 0.983 0.940

Test

RMSE 0.251 0.221 0.201

MAE 0.178 0.151 0.141

R2 0.835 0.865 0.891

Table 4. Internal CO2 concentration prediction accuracy of optimised machine learning models
(ElasticNet, SVR, and RFR).

Dataset Statistical
Index

ElasticNet
(a: 0.02; L1-Ratio: 0.75)

SVR
(C:100 and γ: 1)

RFR
(n-Estimator: 50)

Training

RMSE 73.871 61.189 22.175

MAE 57.995 43.668 15.632

R2 0.853 0.899 0.987

Test

RMSE 79.702 66.415 59.468

MAE 62.284 50.422 42.756

R2 0.825 0.880 0.900

The results of the model predictions for internal CO2 concentration were similar to
those for Ti when the test dataset was used. For ElasticNet, the accuracy of internal CO2
concentration prediction was higher for the test than the training dataset in terms of MAE
(6.9%) and RMSE (7.3%) but lower in terms of R2 (3.4%). For SVR, the accuracy of internal
CO2 concentration prediction was higher for the test than the training dataset in terms of
MAE (13.4%) and RMSE (7.9%) but lower in terms of R2 (2.2%). For RFR, the accuracy of
internal CO2 concentration prediction was higher for the test than the training dataset in
terms of MAE (63.4%) and RMSE (62.7%) but lower in terms of R2 (9.7%). The R2 for each
ML model had internal CO2 concentration prediction accuracy ≥ 0.825.

The average RMSE for ElasticNet, SVR, and RFR were 79.702 ppm, 66.415 ppm, and
59.468 ppm, respectively. Hence, this trend was the same as that for Ti prediction. The
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average MAE for ElasticNet, SVR, and RFR were 62.284 ppm, 50.442 ppm, and 42.756 ppm,
respectively. Here, RFR also demonstrated excellent internal CO2 concentration prediction
performance whilst that of ElasticNet was the poorest. RMSE and MAE for ElasticNet
were 13.29 ppm and 11.86 ppm smaller, respectively, than those for RFR, and R2 differed
between models by 6.3%. The RFR model generally exhibits high prediction accuracy as
numerous techniques have been applied to models estimated from multiple decision trees.
A previous study [32] compared the relative performance of various ML models to predict
the rate of evaporation from litter in a duck house. The RF model most accurately predicted
the litter evaporation rate, possibly because it amplifies data using the Bagging technique.
Thus, the RF model has relatively high prediction accuracy even when insufficient data
are used. Nevertheless, the model used to predict CO2 concentration must be improved
through further learning.

3.4. Model Evaluation by Hyperparameter Tuning

ML model parameters that must be pre-set are known as hyperparameters. Exces-
sively large or small values can degrade model performance. Thus, hyperparameters
must be carefully adjusted to optimise the performance criteria. In hyperparameter tuning,
suitable parameter values for a particular dataset are found. Here, we applied a fivefold
cross-validation method to find the optimal hyperparameter. We presented the predic-
tion accuracy of non-optimised and optimised ML models to assess model performance
(Figures 9 and 10; Tables 5 and 6).
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Table 5. Pig house Ti prediction accuracy of RFR model based on n-estimator.

Dataset Statistical Index 1 10 50 100

Training

RMSE 0.184 0.1 0.265 0.265

MAE 0.075 0.063 0.056 0.055

R2 0.910 0.974 0.982 0.983

Test

RMSE 0.315 0.235 0.226 0.221

MAE 0.204 0.160 0.152 0.151

R2 0.730 0.848 0.859 0.865

Table 6. Pig house internal CO2 concentration prediction accuracy of RFR model based on n-estimator.

Dataset Statistical Index 1 10 50 100

Training

RMSE 61.013 26.978 22.175 23.458

MAE 24.762 17.998 15.632 15.848

R2 0.899 0.980 0.987 0.987

Test

RMSE 99.966 64.392 59.468 61.046

MAE 63.707 46.173 42.726 43.478

R2 0.728 0.885 0.902 0.897

We evaluated the ElasticNet model which considers L1- and L2-regulations. Model
performance varied with L1-ratio (regulatory coefficient) and α value. In the ElasticNet
model, the prediction accuracy that changed the limiting condition (α; alpha) was re-
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duced. The average R2 for predicting Ti was 0.633 when α = 0.02 and the prediction
performance decreased by 31.92% (R2 = 0.431) as α increased to 0.1. For the Ti predic-
tion, RMSE = 0.524 ◦C when α = 0.02 and RMSE = 0.583 ◦C when α increased to 0.1.
MAE = 0.275 ◦C when α = 0.02 and MAE = 0.340 ◦C when α increased to 0.1. Increasing the
L1-ratio to 0.25, 0.5, and 0.75 decreased the average R2 from 0.611 to 0.558 and increased
RMSE and MAE by 12.9% (0.383–0.410 ◦C) and 5.81% (0.280–0.297 ◦C), respectively.

For ElasticNet, when α = 0.02, the average R2 = 0.752 for the prediction of internal CO2
concentration and when α increased to 0.1, R2 decreased to 0.672 (10.6%).
RMSE = 94.68 ppm when α = 0.02. When α increased to 0.1, RMSE increased to 108.77 ppm
(32.0%). MAE = 75.138 ppm when α = 0.02 and RMSE increased to 84.707 ppm (12.7%)
when α increased to 0.1. Increasing the L1-ratio from 0.25 to 0.75 increased R2 from 0.708 to
0.749 and decreased RMSE and MAE by 16.2% (from 102.67 ppm to 95.25 ppm) and 6.5%
(from 80.25 ppm to 75.37 ppm), respectively.

The pig house Ti and internal CO2 concentrations were predicted using the SVR
model and the hyperparameter (C and γ) values 0.01, 0.1, 1, 10, and 100 were applied to it.
Figure 10 shows the Ti and CO2 concentration prediction accuracies using the SVR model
according to the hyperparameters. When γ = 1 and C = 100, SVR exhibited excellent Ti and
internal CO2 concentration prediction performance. C displayed a relatively low error rate
(>1 and <100) and a relatively constant trend when the error rate was <0.1. At 0.1, 1, and 10,
γ demonstrated excellent performance. When the manual search technique was applied, C
and γ of 10 and 1, respectively, showed the best performance in the SVR model. When C
and γwere 10 and 1, respectively, the accuracy of the SVR at predicting Ti was as follows:
R2 = 0.891, RMSE = 0.201 ◦C, and MAE = 0.141 ◦C. The SVR model also presented with
excellent Ti prediction performance when C = 100 and γ = 1. In this case, its Ti prediction
accuracy was as follows: R2 = 0.877, RMSE = 0.211 ◦C, and MAE = 0.149 ◦C. The models
did not significantly differ in terms of overall Ti prediction accuracy. R2, RMSE, and MAE
differed by 1.62%, 8.96%, and 5.41%, respectively. γ exhibited the lowest error rates at <0.01
or >100. Moreover, Ti prediction performance improved with C value. The SVR model had
the highest internal CO2 concentration prediction accuracy when C = 100 and γ = 1. In this
case, R2 = 0.88, RMSE = 66.42 ppm, and MAE = 50.42 ppm. The internal CO2 concentration
prediction accuracy of the SVR model increased with C value and was optimal at γ = 1.

Ti and internal CO2 concentration prediction accuracy of the RFR model based on
its n-estimator hyperparameter was evaluated. R2, RMSE, and MAE values for Ti pre-
diction by considering different n-estimators ranging from 1 to 100 were calculated. RFR
model prediction accuracy increased with n-estimator value. R2 had the highest value
when the n-estimator was 100. For the test dataset, the accuracy of the RFR model was
R2 = 0.865 based on average cross-validation (Table 5). Similar results were obtained for the
RFR model predictions of both internal CO2 concentration and Ti. Table 6 shows the RFR
model prediction accuracy of internal CO2 concentration based on the n-estimator. When
the n-estimator was 100, R2, RMSE, and MAE had the highest values. The RFR model
computational time and cost increase with the n-estimator value. Thus, there is a trade-off
between RFR model performance and n-estimator value. In the present study, the predictive
accuracy of the RFR model did not significantly change at n-estimator values ≥ 10. For this
reason, it was determined that the optimal n-estimator value for the RFR model was 10.

4. Conclusions

It is necessary to establish a strategy responding to the regulation of CO2 emissions
from pig production. To this end, the CO2 concentrations in pig farms must be accurately
measured. To date, CO2 emissions have been calculated based on the relationships among
the internal and external CO2 concentrations and the ventilation rate. However, poor
environmental conditions constrain the collection and prediction of quantitative data by
using on-site sensors. In the present study, Ti and CO2 concentrations in an experimental
pig house by using its weather and operation (environmental control device) data were
predicted. Three machine learning (ML) models were designed and the accuracies of their
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internal air temperature and CO2 concentration predictions were compared. The input data
were processed by normalising them and eliminating redundant values and outliers before
evaluating the accuracy of each ML model. Feature selection was then conducted, and
three parameters were extracted and used as the model characteristics. ElasticNet, support
vector regression (SVR), and random forest regression (RFR) models were applied, and
their prediction performance accuracies were evaluated. The order of prediction accuracy
was ElasticNet < SVR < RFR. Hence, RFR provided superior prediction performance.
Model performance could be improved through hyperparameter optimisation. Analyses
of the performance of each ML model in the accurate prediction of pig house Ti and CO2
concentration could serve to develop air temperature and carbon-dioxide-based control
strategies. A prior study [33] monitored CO2 concentration-based ventilation control
systems for one year and reported that they reduced overall energy consumption by 33%
compared to conventional ventilation control systems. Therefore, the results of the present
work provide data and reference for developing and optimising control algorithms in the
future. Furthermore, the prediction of internal CO2 concentration can be used to calculate
CO2 emissions and establish mitigation strategies for them. The ML models developed
herein can be continuously improved by learning field-measured data. Thence, ML model-
based environmental control algorithms may be developed. Highly accurate ML models
are expected to be widely applied in the livestock industry.
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