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Abstract: Deploying crops in regions bordering their initial distribution area requires adapting
existing cultivars to particular environmental constraints. In this study, we revealed the main Eco-
climatic Factors (EFs)—climatic factors recorded over specific phenological periods—impacting both
yields and Genotype by Environment Interactions (GEI) for yield in early maturity soybeans (Glycine
max (L.) Merrill) under high latitudes. A multi-year (2017–2021) and multi-environment (n = 112)
database was built based on the official post-inscription French soybean trial network “SOJA Terres
Inovia-GEVES-Partenaires”. Yields of 57 cultivars covering MG00 and MG000 maturity groups were
considered. For each environment, 126 EFs were calculated using a Crop Growth Model (CGM)
based on observed weather data and simulated developmental stages. Partial Least Square (PLS)
regression analyses using the Variable Importance in Projection (VIP) score were used to sort out the
most relevant EFs for their impact on yield levels on the one side and on GEI for yield on the other
side. Our results confirmed that yield levels for both maturity groups were greatly influenced by
climatic factors from the seed filling phenophases, mainly End of Pod to Physiological Maturity. The
cumulative potential evapotranspiration during the End of Pod to Physiological Maturity period
was the main EF affecting yield levels positively for both maturity groups (VIP = 2.86; R2 = 0.64).
Interestingly, EFs explaining yield levels strongly differed from those explaining GEI, in terms of both
climatic factors and phenophases. GEI were mostly influenced by climatic factors from First Flower to
End of Pod; these factors were maximum temperatures and solar radiation intensity. Cold stress from
Sowing to First Seed also appeared to be a critical driver for GEI in MG00 soybeans. The contrasted
responses of several cultivars to the main GEI-drivers highlighted a potential genetic variability
that could be exploited in early maturity soybean breeding. This study revealed the complexity
of GEI ecophysiology, and our results should help breeding strategies to deliver germplasm that
outperforms the existing genetic material for expanding the crop to northern European regions.

Keywords: CROPGRO; crop growth model; DSSAT; genotype× environment interactions; phenophase;
protein crop; soybean breeding

1. Introduction

The continuous improvement of crop adaptation to the environment is essential for
maintaining crop productivity in the context of increasing food demand [1]. Furthermore,
crop diversification is essential to more sustainable agriculture [2]. This diversification
could be implemented either by the adaptation of species that are not cultivated yet,
requiring considerable breeding efforts, or by the deployment of crops that are at the limit
of their distribution area [3,4]. The first challenge of expanding crops into a new cultivated
area is to assess the yield potential and stability of the existing germplasm under new
environmental conditions [5].
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Concerning yield potential, the most influential factors regularly cited are CO2 con-
centration, solar radiation and temperatures [6]. However, the impacts of those factors are
frequently studied individually and are rarely ranked and prioritised [7–10]. Furthermore,
the assessment of climatic factors influencing relative cultivar performances across environ-
ments, i.e., Genotype by Environment Interactions (GEI; Table 1 includes a description of
abbreviations and acronyms used in this paper), constitutes an important lever to develop
relevant breeding strategies [11].

Table 1. List of abbreviation and acronyms used in the paper.

Abbreviation Definition Abbreviation Definition

CGM Crop Growth Model MET Multi-Environment Trial
cv. Cultivar name MG Maturity Group

DSSAT Decision Support System for
Agrotechnology Transfer PLS Partial Least Square regression

EF Eco-climatic Factor PY-MG00 PLS meta-analysis using pairs of years for MG00
EMFI Emergence to Flower Induction PY-MG000 PLS meta-analysis using pairs of years for MG000
EPPM End of Pod to Physiological Maturity RMSE Root Mean Square Error
FFFP First Flower to First Pod SEM Sowing to Emergence
FIFF Flower Induction to First Flower SY-MG00 PLS meta-analysis using single years for MG00
FPFS First Pod to First Seed SY-MG000 PLS meta-analysis using single years for MG000
FSEP First Seed to End of Pod VIP Variable Importance in Projection
GEI Genotype by Environment Interactions

Understanding GEI is key to maximise genetic gain in plant breeding [12–14]. Multi-
Environment Trials (MET), from breeding programmes or official trials, constitute a source
of information to assess GEI [15]. However, the environmental context is often too poorly
characterised in MET datasets to link crop growth conditions to ecophysiological processes.
Crop Growth Models (CGM) as a function of time, environment (climate, soil and man-
agement) and genetics could be used to describe plant growth and development [16–19].
The environmental context can then be described by combining developmental stages with
duration, temperature, solar radiation and stress factors such as heat, cold, drought, anoxia
and nitrogen, generating Eco-climatic Factors (EFs). Therefore, understanding GEI could be
tackled by revealing the main EFs driving GEI [16,20]. In this paper, the main EFs driving
GEI will be referred to as GEI-drivers. Specific statistical methods are needed to reveal
them; some have already been developed in the literature, and among them, Partial Least
Square regression (PLS) seems the best suited [21,22].

In the context of the European protein deficit, leguminous crop deployment has been
accelerated [23,24]. Among legumes, soybean (Glycine max L. (Merrill)) might be a good
candidate as a major oil-protein crop for both food and feed [25]. Moreover, introducing
soybean could be particularly effective for diversifying cropping systems, helping to break
down disease, pest and weed cycles and limiting the use of nitrogen fertilisers [26]. Soybean
is grown mainly in Brazil (tropical regions) and in the United States (temperate regions)
because of the optimal growth conditions and historical breeding efforts. In western Europe,
soybean is essentially grown in northern Italy and southwestern France [27]. To develop
soybean in European regions, northern expansion is preferable, considering the negative
impacts of climate change on the Mediterranean Basin as maximum temperatures increase
and summer water shortages forbids irrigation [28].

Because soybean is a thermophilic short-day plant sensitive to photoperiod, the ex-
pansion of this crop to northern areas first requires the adaptation to long days [29]. This
expansion has resulted in the release of early and very early cultivars belonging to Maturity
Groups MG00 and MG000, respectively. Soybean physiology and, by extension, yield
potential are known to be impacted by various abiotic factors [30]. Low temperatures
(under 15 ◦C) are considered as a chilling stress in soybean and have been reported to affect
plant growth and pod setting [31–34]. Water deficits and drought stress have also been
largely identified as major yield-limiting factors [35–37]. These factors have different effects
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on crop performance, depending on the growth type: indeterminate or determinate, as
vegetative and reproductive phases sometimes overlap [38,39]. The reproductive phase,
particularly from pod setting to physiological maturity, has been well documented and
perceived to be the most critical one [30,40–42].

Recent studies have addressed different aspects of soybean northern expansion in
Europe: predicting soybean phenology [43], simulating emergence and germination [44],
identifying agro-economic potential [45] and determining major environmental covariates
influencing simulated and observed yield levels [46,47]. However, concerning the under-
standing of GEI, only the genetic dimension has been investigated by identifying genetic
regions linked to GEI for soybean grown in the US Corn Belt [48]. No focus has yet been put
on the environmental dimension of GEI. A sufficient early soybean MET database is needed
to unravel the GEI variance resulting from the contrasted contributions of a large number
of EFs [20]. Therefore, the objectives of this study were to (i) reveal the main EFs driving
GEI for yield in early maturity soybean in northern European regions, (ii) compare the
GEI-drivers to the main EFs impacting yields and (iii) illustrate genotypic responses to the
GEI-drivers. Our results are expected to provide enlightenment for breeders to accelerate
soybean genetic gain under high latitudes in northern Europe.

2. Materials and Methods
2.1. Experimental Dataset
2.1.1. Multi-Environment Trials Data Source

The French technical institute for oil and protein crops, called Terres Inovia, has
produced each year since 2017 a public synthesis of statistically validated post-registration
soybean cultivar trials from the network SOJA Terres Inovia-GEVES-Partenaires used for
varietal recommendation (https://www.myvar.fr/resultats/campagne-177.html). Two
Maturity Groups (MGs) were investigated in our study: very early maturity MG000 and
early maturity MG00. The trials were located in France between the forty-fifth and the
fiftieth north parallels. France’s climate type is considered temperate, with both oceanic
and continental influences [49]. The trials were distributed mostly in the north, the centre
and the east of France, following a temperature gradient and conducted independently by
MG (Figure 1). The synthesis provided by Terres Inovia for each trial included the trial
location, the cultivars yield and the cultural practices (sowing dates and irrigation amount).

The database regrouped 112 environments, a combination of the location, year and
maturity group. The environments are distributed over five years (2017 to 2021). A total of
57 cultivars were tested (29 from MG00 and 28 from MG00). The detailed distribution of
cultivars over the five years can be found in Supplementary Table S1.

2.1.2. Weather and Soil Data Source

Gridded (25 km/25 km) meteorological data were extracted from the Agri4Cast
Resources Portal, available at the European Joint Research Centre (JRC) website. The closest
gridded point (in kilometres) was attributed to each trial location. Daily minimum and
maximum temperatures (◦C), daily precipitation (mm) and solar radiations (MJ m−2 day−1)
from 1 January to 31 December were extracted. Soil parameters extracted from raster files
produced by the European Soil Data Centre (ESDAC) [50] were used to characterise each
soil location (1 km/1 km grid) using QGIS3 (v. 3.14.1). Clay content (%), silt content (%),
sand content (%), gravel (%), organic carbon content (%), total nitrogen content (%) and
bulk density (g cm−3) from topsoil and subsoil were extracted as well as the depth available
to roots (cm).

2.2. DSSAT Simulations and Eco-Climatic Factors Calculation

Eco-climatic Factors (EFs) consisted of climatic variables calculated between two de-
velopmental stages (i.e., phenophases) over the entire crop cycle. The CROPGRO-soybean
model—DSSAT v4.7.5 (Decision Support System for Agrotechnology Transfer) [51–53] was

https://www.myvar.fr/resultats/campagne-177.html
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used to calculate the phenophases needed for EFs calculation. The CROPGRO model
demands weather data, soil parameters, crop management and genotypic inputs [52].
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Figure 1. Geographical repartition of the Multi-Environmental Trial (MET) under French climatic
conditions. The MET is constituted of 112 environments (a result of the unbalanced combination of
60 locations and five years). Both maps indicate the trials’ positioning over the five years (2017 to
2021) by tested maturity: MG000 (�), MG00 (∆) and both (#). The maps show a colour gradient
of mean temperature (left) and cumulative precipitation (right) over the five years, calculated on
the average growing period from 15 April to 30 September (data source: Joint Research Centre
meteorological data).

2.2.1. CROPGRO-Soybean Model Inputs

Daily weather data and soil parameters were used to characterise each environment
(see Section 2.1.2). A minimum set of crop management inputs was used to run the
simulations: the sowing date and the irrigation scenario. Recorded sowing dates ranged
from 04/17 to 06/01. Recorded irrigation amount ranged from 0 mm to 330 mm. Sowing
parameters were set at 65 plant m−2 with 35 cm spacing and 3 cm depth which are the
usual farmers’ practices in the area recommended by the technical institute, Terres Inovia
(https://www.terresinovia.fr/p/guide-soja).

Concerning the genotypic inputs, ideally, the growth stages of each genotype in each
environment should be measured or simulated. Indeed, there is some phenotypic variability
between cultivars’ phenophases [43,54]. However, phenophases had not been measured
and the simulation required the calibration of each cultivar which was not feasible [19].
Moreover, the purpose was to use environmental explanatory variables (referred to as
EFs in our study) to explain GEI for yield. These variables have to be unique for an
environment and the same for all the tested cultivars in this environment. This approach
was developed by Vargas et al. (1998) [22] on wheat crop. The CROPGRO-soybean model
uses a set of genetic coefficients to describe a cultivar. The genetic coefficients for phenology
prediction are highly related to cultivar photoperiod sensitivity [55]. The differences in
phenophases are therefore less between cultivars belonging to the same maturity group [54].
The model has been tested in northern France by Boulch et al. (2021) [46] and showed
very good phenological predictions using generic MG000 and MG00 cultivars available in
the model. Thus, in the 67 environments where MG000 were grown, the MG000 generic

https://www.terresinovia.fr/p/guide-soja
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genetic coefficients were used whereas in the 45 environments where MG00 were grown,
the MG00 generic genetic coefficients were used (Supplementary Table S2).

A total of 112 simulations were performed corresponding to the 112 environments of
the MET, i.e., the location, year and maturity group combination.

2.2.2. CROPGRO Outputs and Eco-Climatic Factors Calculation

Using CROPGRO-soybean model, soybean developmental stages were simulated.
These stages were used to divide the crop cycle into seven phenophases, i.e., periods
between two consecutives stages: Sowing to Emergence (SEM), Emergence to Flower In-
duction (EMFI), Flower Induction to First Flower (FIFF), First Flower to First Pod (FFFP),
First Pod to First Seed (FPFS), First Seed to End of Pod (FSEP) and End of Pod to Physiolog-
ical Maturity (EPPM). In the CROPGRO-soybean model the phenology simulation is based
on daily parameters: preceding stage, photoperiod and temperature functions, combined
with photoperiod, temperature, water and nitrogen sensitivities [52,56].

Five major categories of environmental variables were calculated for each phenophase:
period duration (number of days), temperature (average minimum temperatures in ◦C,
number of days below 10 ◦C, number of days below 15 ◦C [31–34], average maximum
temperatures in ◦C, number of days above 30 ◦C, number of days above 34 ◦C, average
mean temperature in ◦C and thermal amplitude in ◦C, defined as the difference between the
maximum and minimum temperature), water (cumulative precipitation in mm, evapotran-
spiration and potential evapotranspiration in mm using Priestley-Taylor/Ritchie method),
solar radiation (photoperiod in hours, cumulative daily solar radiation and average of solar
radiation in MJ m−2, photothermal quotient defined as the ratio of solar radiation on heat
units) and stresses (water and nitrogen stress indices), calculated by the DSSAT model and
based on the supply demand ratio [57]. Finally, each trial was described by 126 eco-climatic
factors that were used to explain both yields and genotype by environment interactions.

2.3. Partial Least Square Regression Analysis for the Selection of Eco-Climatic Factors

Partial Least Squares regression (PLS) is a bilinear regression method in which data
are decomposed using latent variables: response variables yi are a linear combination
of explanatory variables xi. This model is well adapted for analysis, having the number
of explanatory variables (p) exceeding the number of observations (n) and explanatory
variables that are mutually correlated [58]. In PLS, the p explanatory variables are stored
in the matrix X = (x1, . . . , xp), and the v response variables are stored in the matrix
Y = (y1, . . . , yv), where v is the number of response variables that can be unique or multiple.
Each x1, . . . , xp and y1, . . . , yv vectors must have n dimensions. An xi vector having a
variance equal to 0 is excluded.

PLS analysis generates statistical parameters that can be used to sort out the most
important explanatory variables [59]. Among them, the Variable Importance in Projection
(VIP) can serve as a selection criterion. A VIP was calculated for each EF. The average of
all squared VIPs is equal to 1, so 1 is commonly used as a threshold for selecting a set of
relevant variables [60]. This criterion is very reasonable for discarding irrelevant variables,
but in our case, this threshold was increased to keep the most impacting variables (see
Sections 2.3.1 and 2.3.2). All analyses were performed under R software (version 4.0.5).

2.3.1. Yield Analysis

For the yield analysis, the X matrix contained the 126 calculated EFs for each trial and
the Y matrix contained the yields (v = 1) calculated as the average of all cultivar yields
grown at each trial. To avoid variable dimension issues, the X matrix was centred and scaled.
PLS analyses were performed on MG00 trials (45), MG000 trials (67) and trials combining
both maturity groups (112). The number of components selected in each PLS was defined
based on minimising the Root Mean Square Error (RMSE) using cross-validation [61]. A
VIP of 1.9 was used as the threshold for retaining the most relevant yield contributing EFs.
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2.3.2. Genotype by Environment Interactions Analysis

In the GEI analysis, the X matrix contained the same EF calculated for yield analysis,
and the Y matrix contained the yield per cultivar per trial (v > 1). The X and Y matrices
were centred and scaled. Because the trials were unbalanced (i.e., not all the cultivars were
tested every year) and the MG00 and MG000 trials were independent, separate PLS were
conducted. A total of 25 PLSs were run, combining maturity groups (MG00, MG000) with
years (2017 to 2021) and maturity groups with pairs of years (2017 and 2018, 2017 and 2019,
2017 and 2020, 2017 and 2021, 2018 and 2019, 2018 and 2020, 2018 and 2021, 2019 and 2020,
2019 and 2021 and 2020 and 2021). For each PLS, the number of components was selected
based on the evolution of R2 between the observed and the calculated Y matrix, using the
highest increase between two R2 to define the number of components to retain.

PLS results were analysed by maturity group and single years or pairs of years,
leading to four meta-analyses: single years for MG00 (SY-MG00), single years for MG000
(SY-MG000), pairs of years for MG00 (PY-MG00) and pairs of years for MG000 (PY-MG000).
A score was defined per EF per meta-analysis to summarise the five (single-year) or ten
(pair of years) VIP values using the following equation (1), where ScoreEF i,n is the score
calculated for the ith EF with i ∈ [1;126] in the nth meta-analysis n ∈ [1;4]; VIPEF i,j is the
VIP obtained for the ith EF in the jth PLS with j ∈ [1;5] for single-year meta-analyses; or
j ∈ [1;10] for pair of years meta-analyses. ScoresEF i,n of 1.18, 1.17, 1.21 and 1.21 were used
as a threshold, representing 10% of the EF having the main influence on GEI.

ScoreEF i,n =
4 or 6

∑
j=1

VIPEF i,j

∑126
i=1

VIPEF i,j
126

(1)

3. Results
3.1. Main Eco-Climatic Factors Impacting Yields

As the Eco-climatic Factors (EFs) detected by the PLS analyses for each maturity
group were similar, only the results of the analysis combining both maturity groups will
be presented.

Table 2 displays EFs with a VIP greater than 1.9. Among the nine EFs selected for
this criterion, all concerned the First Pod to Physiological Maturity phenophase: two from
the First Pod to First Seed (FPFS), three from First Seed to End of Pod (FSEP) and four
from End of Pod to Physiological Maturity (EPPM). The water stress index, cumulative
evapotranspiration and duration had a VIP greater than 1.9 for both phenophases (FSEP
and EPPM), with higher VIPs at EPPM. Regarding the cumulative daily solar radiation,
only the EPPM phenophase was concerned.

Among selected EFs, the cumulative evapotranspiration during EPPM showed the
highest VIP and had a strong positive impact on the observed yields (VIP = 2.86;
β-coefficient = 0.14; R2 = 0.64) (Figure 2a). The water stress index during EPPM had a
strong negative impact on the observed yields (VIP = 2.82; β-coefficient = −0.15; R2 = 0.53)
(Figure 2b). The duration and cumulative daily solar radiation during EPPM presented a
high VIP (VIP = 2.54 and VIP = 2.25, respectively) and impacted the observed yields posi-
tively (β-coefficient = 0.13 and β-coefficient = 0.1, respectively). No EF from phenophases
prior to the First Pod stage showed a VIP greater than 1.9.

Among selected EFs, strong correlations (r > |0.8|) were observed. The cumulative
evapotranspiration at EPPM was positively correlated with the cumulative solar radiation
at EPPM (r = 0.89; p < 0.001) and negatively with the water stress index at EPPM (r = −0.84;
p < 0.001). The water stress index and the phenophase duration were negatively correlated
at both EPPM and FSEP (r = −0.94 and r = −0.85, respectively; p < 0.001).



Agronomy 2023, 13, 322 7 of 16Agronomy 2023, 13, 322 8 of 17 
 

 

 
Figure 2. Relationship between observed soybean grain yield and the two first contributing eco-
climatic factors from End of Pod to Physiological Maturity. (a) Sum of evapotranspiration. (b) Water 
stress index (0 = no stress, 1 = high stress). Water stress index and sum of evapotranspiration were 
simulated daily by the CROPGRO-soybean model. 

Among selected EFs, strong correlations (r > |0.8|) were observed. The cumulative 
evapotranspiration at EPPM was positively correlated with the cumulative solar radiation 
at EPPM (r = 0.89; p < 0.001) and negatively with the water stress index at EPPM (r = −0.84; 
p < 0.001). The water stress index and the phenophase duration were negatively correlated 
at both EPPM and FSEP (r = −0.94 and r = −0.85, respectively; p < 0.001). 

3.2. Main Eco-Climatic Factors Affecting Genotype by Environment Interactions 
The upper part of Figure 3 displays the frequency of each phenophase involved in 

the selected EFs for each meta-analysis. The results revealed that each phenophase, from 
Sowing to Physiological Maturity, contributed to GEI. The First Flower to First Pod 
(FFFP), First Pod to First Seed (FPFS) and First Seed to End of Pod (FSEP) were the most 
frequently detected phenophases. In PY-MG000 analyses, phenophases occurring after 
the First Pod stage were prevalent (100%). 

Figure 2. Relationship between observed soybean grain yield and the two first contributing eco-
climatic factors from End of Pod to Physiological Maturity. (a) Sum of evapotranspiration. (b) Water
stress index (0 = no stress, 1 = high stress). Water stress index and sum of evapotranspiration were
simulated daily by the CROPGRO-soybean model.

3.2. Main Eco-Climatic Factors Affecting Genotype by Environment Interactions

The upper part of Figure 3 displays the frequency of each phenophase involved in
the selected EFs for each meta-analysis. The results revealed that each phenophase, from
Sowing to Physiological Maturity, contributed to GEI. The First Flower to First Pod (FFFP),
First Pod to First Seed (FPFS) and First Seed to End of Pod (FSEP) were the most frequently
detected phenophases. In PY-MG000 analyses, phenophases occurring after the First Pod
stage were prevalent (100%).

Among the 48 selected EFs, solar radiation, maximum temperature and minimum
temperature variables were the ones explaining GEI the most (Figure 3). In the SY-MG00
analysis, solar radiation variables after the First Pod stage (photothermal quotient, aver-
age and cumulative daily solar radiation) and minimum temperature variables (average
minimum temperature, number of days below 10 ◦C and 15 ◦C) from Sowing to First
Flower were selected. For SY-MG000, the selected variables were average temperature
from Emergence to First Flower, then minimum temperature during FPFS and maximum
temperature from First Seed to Physiological Maturity. For PY-MG00, minimum, average
and maximum temperature were selected along the growth cycle. In the PY-MG000 analy-
sis, mainly maximum and average temperature variables from First Seed to Physiological
Maturity were selected.
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Figure 3. Frequency of phenophases and repartition of the eco-climatic factors selected for their main
impact on genotype by environment interactions in the different meta-analyses. Twelve eco-climatic
factors were selected for the analyses on # single year by MG00, � single year by MG000, • pair
of years by MG00 and � pair of years by MG000. (SEM: Sowing to Emergence; EMFI: Emergence
to Flower Induction; FIFF: Flower Induction to First Flower; FFFP: First Flower to First Pod; FPFS:
First Pod to First Seed; FSEP: First Seed to End Pod; EPPM: End Pod to Physiological Maturity). The
double horizontal bars separate the growth phases: emergence, vegetative growth, reproductive
growth and grain filling.

3.3. Effect of Eco-Climatic Factors Frequently Detected in GEI Analyses on Genotypic Responses

In this section, examples of genotype responses to contrasted levels of key EFs, based
on their opposite β-coefficients, are displayed. Cv. ‘ATACAMA’ and ‘SOLENA’ showed
a differential reaction to the average daily solar radiation during the FPFS phenophase
(Figure 4a). When the cv. ‘ATACAMA’ average relative yield increased from 100% to 110%
in environments with higher solar radiation (environments below 23 MJ m−2 d−1 versus
environments above 23 MJ m−2 d−1), the cv. ‘SOLENA’ relative yield decreased from 102%
to 93%. Moreover, cv. ‘RGT SHOUNA’ and cv. ‘SULTANA’ had contrasted reaction norms
to the number of days with a minimum temperature below 15 ◦C (< 6.3 or≥ 6.3 days) at the
FPFS phenophase (Figure 4b). When the cv. ‘RGT SHOUNA’ relative yield increased from
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98.8% to 94.5% with the number of days below 15 ◦C, the cv. ‘SULTANA’ relative yield
decreased from 94.2% to 98.7%. Likewise, cv. ‘RGT SIROCA’ and cv. ‘TIMOR PZO’ were
contrasted in their response to increased average minimum temperature during the FFFP
phenophase (from 93% to 100% and from 104% to 99%, respectively) (Figure 4c). Finally,
cv. ‘OBELIX’ and cv. ‘SIRELIA’ showed a differential reaction to the average maximum
temperature during the FSEP phenophase (from 100% to 97% and from 96% to 104%,
respectively) (Figure 4d).
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Figure 4. Relative yield performance of cultivars with contrasted response to different levels of
selected eco-climatic factors frequently involved in GEI. (a) Relative yield of cv. ‘ATACAMA’ and
cv. ‘SOLENA’ by average daily solar radiation during First Pod to First Seed (FPFS) phenophase.
(b) Relative yield of cv. ‘RGT SHOUNA’ and cv. ‘SULTANA’ by number of days with a minimum
temperature below 15 ◦C during First Pod to First Seed (FPFS) phenophase. (c) Relative yield of cv.
‘RGT SIROCA’ and cv. ‘TIMOR PZO’ by average minimum temperature during First Flower to First
Pod (FFFP) phenophase. (d) Relative yield of cv. ‘OBELIX’ and cv. ‘SIRELIA’ by average maximum
temperature during First Seed to End Pod phenophase. Cultivar relative yields were calculated as the
ratio of cultivar yield on the performance checks average yield present in all trial/year combinations.
Only analyses showing a VIP greater than 1 for the selected eco-climatic factors were retained.
Average VIP and β-coefficient are given for each cultivar. The numeric value “n” above each box
corresponds to the number of environments included in each box plot. Each box displays the median,
upper and lower quartiles of the respective distribution. Box whiskers represent the maximum and
minimum range excluding any extreme outliers (shown as dots).
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Table 2. Eco-climatic factors with a VIP > 1.9 sorted by descending VIP attributed after PLS analysis.
PLS analysis was performed on 112 trials conducted from 2017 to 2021, associated with 126 eco-
climatic factors (i.e., environmental factors calculated between two developmental stages). The
statistical model estimated that the five-components option was the optimal solution based on
minimising RMSE. β-regression coefficients indicate whether the considered factor had a positive or
negative effect on observed yields.

EF Description VIP β-Coeff Std. Err. t-Value p-Value

ETsumEPPM Sum of evapotranspiration from End Pod to
Physiological Maturity (mm) 2.86 0.14 0.02 7.26 0

WSMNEPPM Average water stress index from End Pod to
Physiological Maturity 2.82 −0.15 0.02 −7.08 0

DurationEPPM Duration of the period from End Pod to
Physiological Maturity (days) 2.54 0.13 0.02 7.30 0

SRADsumEPPM Sum of solar radiation from End Pod to
Physiological Maturity (MJ/m2) 2.25 0.10 0.02 6.18 0

WSMNFSEP Average water stress index from First Seed
to End Pod 2.16 −0.08 0.03 −3.08 0

ETsumFSEP Sum of evapotranspiration from First Seed
to End Pod (mm) 2.08 0.05 0.02 2.91 0

WSMNFPFS Average water stress index from First Pod
to First Seed 2.02 −0.08 0.02 −4.00 0

NSMNFPFS Average nitrogen stress index from First Pod
to First Seed 1.91 −0.10 0.04 −2.59 0.01

DurationFSEP Duration of the period from First Seed
to End Pod (days) 1.91 0.05 0.02 2.46 0.02

4. Discussion
4.1. Eco-Climatic Factors Influencing Soybean Yields

The multi-year and empirical approach developed in this study allowed the rank-
ing of 126 eco-climatic factors according to their relative impact on MG00 and MG000
soybean yields in a high-latitude context. These factors resulted from a combination of
seven phenophases (the period between two developmental stages) and 18 environmental
variables. The First Seed to Physiological Maturity (FSPM), encompassing the First Seed to
End Pod (FSEP) and the End Pod to Physiological Maturity (EPPM) phenophases, appeared
to be the most yield-influencing phenophases in our context. The FSPM phenophase, corre-
sponding to the seed filling, was already identified in a long-term simulation study [46],
but our results specified the prevalence of the EPPM phenophase. Herein, periods prior to
the First Seed appeared to be less critical in determining soybean yields, as no eco-climatic
factor from the vegetative period was prevalent in the analysis. Our results confirmed the
predominance of the reproductive period in soybean yield establishment, where key yield
components such as the number of seeds per pod and seed size are determined [62].

Regarding the First Seed to Physiological Maturity, the results revealed four main
climatic factors: water stress index, evapotranspiration, period duration and cumulative
daily solar radiation. The average values for the water stress index and potential evapotran-
spiration were 0.22 (from 0 to 0.91) and 80 mm (from 12 to 141 mm), respectively. Increasing
water stress index is not favourable to yield (β = −0.08 and β = −0.15, respectively for
FSEP and EPPM), contrary to evapotranspiration (β = 0.05 and β = 0.14, respectively
for FSEP and EPPM). On the one hand, a water deficit is known to negatively impact
physiological processes such as CO2 assimilation, leaf senescence, xylem and phloem sap
transportation and turgor maintenance [63] as well as N2 fixation [35]. On the other hand,
the evapotranspiration has been demonstrated to be well correlated to yield potential
in many crops [64]. Overall, these two factors seem to impact in opposite ways the car-
bon and nitrogen metabolisms involved in the final seed weight, which is one of the key
yield components [42]. To prevail yield loss and reach better yield potential, the use of
reasoned irrigation during the seed filling period or soil tillage practices involved in soil
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evapotranspiration mitigation (e.g., no or strip tillage) could be a lever to prevent water
stress [45,46].

Both cumulative daily solar radiation and period duration at the grain-filling period
had a positive influence on yield (positive β coefficient ranging from 0.1 to 0.13). The
average values are 427 MJ m−2 (from 290 to 605 MJ m−2) and 21.1 days (from 17 to
25 days), respectively. Solar radiations are known to be the source of energy needed for
carbon fixation, leading to plant biomass production [65]. The increase in solar radiation
accumulation by the crop enhances global photosynthetic activity and, necessarily, the dry
matter accumulation in the seeds, as demonstrated in maize by Daynard et al. (1971) [66].
The increase in the grain-filling duration allows crops to accumulate more solar radiation
(r = 0.5; p < 0.001). Moreover, the EPPM duration is found to be well correlated to water
stress (r = −0.94; p < 0.001), meaning that the intensity of drought stress is the main factor
influencing grain-filling duration and thus solar radiation accumulation.

4.2. Major Eco-Climatic Factors Impacting Genotype by Environment Interactions

This study is the first attempt to identify the most prevalent Eco-climatic Factors
(EFs) (i.e., combination of critical phenophases and climatic variables) driving Genotype by
Environment Interactions (GEI) in MG00 and MG000 soybeans (Figure 3). An early soybean
multi-environment trials database (112 environment over five years testing 57 cultivars)
was built to unravel the GEI variance resulting from the contrasted contribution of a large
number of EFs [20]. Transforming cultivar yield data into an interaction matrix revealed
GEI sources and complexity, ensuring that they are not confounded by or linked with yield
levels [22]. This differs from studies focusing on explaining yield performances per se or
characterising environments to test their contribution to GEI effects afterwards [11,67,68].
The multi-year database on the one side (i.e., analyses on single years and pairs of years)
and the contrasted networks for MG00 and MG000 on the other side were key to assess the
diversity of GEI origins [19]. For instance, working on pairs of years allowed to test the
genotype-by-year interaction effects, while single year analyses detected factors influencing
genotype-by-location interaction effects. Other assets of our approach were the use of
commercial cultivars and germplasm diversity tested each year and across years, revealing
factors that are not addressed within the breeding process.

Single year analyses identified First Pod to First Seed as the prevalent phenophase for
both maturity group (25% and 42%, respectively, for MG00 and MG000). Environmental
stresses during pod setting are known to reduce the number of pods per plant, a major
yield component [42,69,70]. The climatic variables affecting the GEI differed by maturity
group. Our results are in light with previous studies [31,32,34] and revealed that, in MG000
soybeans, both the number of days with a minimum temperature below 15 ◦C (mean = 7.4,
min = 0 and max = 14 days) and the average minimum temperature at FPFS (mean = 14.3,
min = 10.9 and max = 20.1 ◦C) are crucial to explain GEI. For this EF, a genotypic contrast
can be observed (Figure 4b). To further understand this contrasted germplasm behaviour
in relation to low temperature, a growth chamber experiment should be designed to char-
acterise the above-ground and below-ground plastic response to cold stress. Concerning
MG00, the analysis revealed the importance of solar radiation variables (average and cumu-
lative solar radiation and photothermal quotient) at FPFS for GEI (mean = 21.9, min = 14,
max = 29 MJ m−2 d−1; mean = 285.5, min = 196.1, max = 371.3 MJ m−2 d−1; mean = 1.08,
min = 0.73, max = 1.45 MJ m−2 d−1, respectively). This period corresponds to the establish-
ment of the potential number of flowers, pods and seeds; they are highly demanding in
energy (light intensity), especially in semi-determinate and indeterminate plants, where
vegetative and reproductive growth occur concomitantly [42]. Solar radiation intensity
around First Pod to First Seed is known to correlate with pod number and grain yield [8,71].
In a recent experiment, Müller et al. (2017) [72] demonstrated a genotypic variation of
solar radiation interception capacity at vegetative stages in late soybeans. Herein, in early
soybeans, we observed a genotypic variation of the response to different levels of solar
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radiation, suggesting different capacities of cultivars to use limited available solar radiation
efficiently (Figure 4a).

Analyses on pairs of years revealed contrasts in EF between MG00 and MG000 soy-
beans (Figure 3). These genotype-by-year interaction effects seemed to be more dependent
on the early reproductive period in MG00 soybeans (mostly FFFP = 42%) when the late
reproductive period is showing more GEI in MG000 soybeans (mostly FSEP = 67%). Inter-
estingly, both cold stress (number of days with a minimum temperature below 10 ◦C and
average minimum temperature) and heat stress (number of days above 30 ◦C) affect GEI
for MG00 while not being correlated (r = 0.11). Selecting cultivars that are more tolerant
to these stresses would limit flower abortion and would better control GEI in MG00 [73].
Concerning MG000, heat stresses at the FSEP phenophase were the most prevalent factors
affecting GEI. During the reproductive period, the optimal temperature for seed yield
varies between 22 and 24 ◦C [74]. Increasing the temperature from 30 ◦C to 35 ◦C during
the First Seed to Physiological Maturity phenophase reduces the number of seeds per pod,
the single seed weight, the seed weight per plant, the seed filling rate and the photosyn-
thetic rate (decrease of 16%, 15%, 18%, 20%, 8% respectively) [75]. Regarding breeding
for early soybeans, responses to heat stress should be considered as a relevant parameter.
The genotypic response to daily maximum temperature that exists in the germplasm could
be useful to select more adapted cultivars (Figure 4d). From this perspective, we would
suggest building an environmental classification system to better control the complexity of
GEI effects, as was already achieved in maize [76].

5. Conclusions

This study, combining multi-environmental trials and crop simulations, is the first
attempt to identify and understand the Eco-climatic Factors (EFs) influencing yield levels
on the one side and Genotype by Environment Interactions (GEI) for yield on the other
side in MG000 and MG00 European soybeans. Yield levels for both maturity groups
were mostly influenced by climatic factors from the grain-filling periods, with a minor
impact of the vegetative and early reproductive stages. The most critical ones were water
stress, evapotranspiration and quantity of solar radiation. Interestingly, EFs explaining GEI
differed remarkably from those explaining yields, both in terms of critical phenophases
and climatic factors. Moreover, the main EFs explaining GEI were contrasted between
MG00 and MG000 soybeans. For MG00, cold stress during the vegetative growth and
early reproductive period as well as solar radiation intensity during the seed setting were
the main GEI-drivers. For MG000, cold stress during the reproductive period and high
temperatures during the late seed filling period were the main GEI-drivers. Contrasted
responses of cultivars to the main GEI-drivers were observed, revealing a genetic variability
that could be directly exploited. In breeding, the promise is to deliver germplasm that
outperforms the existing genetic material. Understanding the underlying factors driving
the adaptation to the target environment offers elements to adapt breeding strategies.
Breeders should screen their germplasm against the relevant GEI-drivers to improve yield
stability. Knowing strengths and weaknesses of the available germplasm for these critical
EFs will help breeders to make better choices of parental lines. This study has demonstrated
the complexity of GEI and the diversity of contributing factors. Considering this complexity,
it is now possible, by selecting the most frequent EFs, to define discriminating climatic
scenarios (i.e., environmental classes) for GEI in northern European regions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agronomy13020322/s1, Table S1: Distribution of very
early (MG000) and early (MG00) soybean cultivars grown over the four years of trials (2017–2020).
Number of entries per trial and number of trials per year are summarized at the bottom. Table S2: Ma-
turity groups 00 and 000 (MG00 and MG000, respectively) genetic coefficients used for the simulation
of MG00 and MG000 environments, respectively.

https://www.mdpi.com/article/10.3390/agronomy13020322/s1


Agronomy 2023, 13, 322 13 of 16

Author Contributions: C.E., G.B., M.-P.F. and B.L. contributed to the conception and conduction of
in silico experiments. L.L. produced the R script used for PLS regression. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The “SOJA Terres Inovia-GEVES-Partenaires” are acknowledged for the open
access trial dataset. The authors are grateful to Patrice Jeanson (Lidea Seeds) for his insights on the
manuscript. We are thankful to Romain Armand and Chloé Girka (Institut Polytechnique UniLaSalle,
Beauvais, France) for their help in mapping climatic conditions and trials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cooper, M.; Byth, D.E. Understanding Plant Adaptation to Achieve Systematic Applied Crop Improvement—A Funda-

mental Challenge. In Plant Adaptation and Crop Improvement; IRRI; CAB International: Wallingford, UK, 1996; pp. 5–23,
ISBN 978-0-85199-108-5.

2. Lin, B.B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. BioScience
2011, 61, 183–193. [CrossRef]

3. Massawe, F.; Mayes, S.; Cheng, A. Crop Diversity: An Unexploited Treasure Trove for Food Security. Trends Plant Sci. 2016, 21,
365–368. [CrossRef]

4. Cortinovis, G.; Di Vittori, V.; Bellucci, E.; Bitocchi, E.; Papa, R. Adaptation to Novel Environments during Crop Diversification.
Curr. Opin. Plant Biol. 2020, 56, 203–217. [CrossRef] [PubMed]

5. Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M.; Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M. Plant
Adaptation to Climate Change-Opportunities and Priorities in Breeding. Crop Pasture Sci. 2012, 63, 251–268. [CrossRef]

6. van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield Gap Analysis with Local to Global
Relevance—A Review. Field Crops Res. 2013, 143, 4–17. [CrossRef]

7. Mae, T. Physiological Nitrogen Efficiency in Rice: Nitrogen Utilization, Photosynthesis, and Yield Potential. Plant Soil 1997, 196,
201–210. [CrossRef]

8. Mathew, J.P.; Herbert, S.J.; Zhang, S.; Rautenkranz, A.A.F.; Litchfield, G.V. Differential Response of Soybean Yield Components to
the Timing of Light Enrichment. Agron. J. 2000, 92, 1156–1161. [CrossRef]

9. Earl, H.J.; Davis, R.F. Effect of Drought Stress on Leaf and Whole Canopy Radiation Use Efficiency and Yield of Maize. Agron. J.
2003, 95, 688–696. [CrossRef]

10. Leilah, A.A.; Al-Khateeb, S.A. Statistical Analysis of Wheat Yield under Drought Conditions. J. Arid Environ. 2005, 61, 483–496.
[CrossRef]

11. Chenu, K.; Cooper, M.; Hammer, G.L.; Mathews, K.L.; Dreccer, M.F.; Chapman, S.C. Environment Characterization as an Aid to
Wheat Improvement: Interpreting Genotype–Environment Interactions by Modelling Water-Deficit Patterns in North-Eastern
Australia. J. Exp. Bot. 2011, 62, 1743–1755. [CrossRef]

12. Annicchiarico, P. Genotype X Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations;
Food & Agriculture Organization: Rome, Italy, 2002; ISBN 978-92-5-104870-2.

13. Voss-Fels, K.P.; Cooper, M.; Hayes, B.J. Accelerating Crop Genetic Gains with Genomic Selection. Theor. Appl. Genet. 2019, 132,
669–686. [CrossRef]

14. Resende, R.T.; Piepho, H.-P.; Rosa, G.J.M.; Silva-Junior, O.B.; e Silva, F.F.; de Resende, M.D.V.; Grattapaglia, D. Enviromics in
Breeding: Applications and Perspectives on Envirotypic-Assisted Selection. Theor. Appl. Genet. 2021, 134, 95–112. [CrossRef]

15. Smith, A.; Ganesalingam, A.; Lisle, C.; Kadkol, G.; Hobson, K.; Cullis, B. Use of Contemporary Groups in the Construction of
Multi-Environment Trial Datasets for Selection in Plant Breeding Programs. Front. Plant Sci. 2021, 11, 623586. [CrossRef]

16. Caubel, J.; García de Cortázar-Atauri, I.; Launay, M.; de Noblet-Ducoudré, N.; Huard, F.; Bertuzzi, P.; Graux, A.-I. Broadening the
Scope for Ecoclimatic Indicators to Assess Crop Climate Suitability According to Ecophysiological, Technical and Quality Criteria.
Agric. For. Meteorol. 2015, 207, 94–106. [CrossRef]

17. Chenu, K. Chapter 13—Characterizing the Crop Environment—Nature, Significance and Applications. In Crop Physiology (Second
Edition); Sadras, V.O., Calderini, D.F., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 321–348. ISBN 978-0-12-417104-6.

18. Chenu, K.; Porter, J.R.; Martre, P.; Basso, B.; Chapman, S.C.; Ewert, F.; Bindi, M.; Asseng, S. Contribution of Crop Models to
Adaptation in Wheat. Trends Plant Sci. 2017, 22, 472–490. [CrossRef]

19. Rincent, R.; Malosetti, M.; Ababaei, B.; Touzy, G.; Mini, A.; Bogard, M.; Martre, P.; Le Gouis, J.; van Eeuwijk, F. Using Crop Growth
Model Stress Covariates and AMMI Decomposition to Better Predict Genotype-by-Environment Interactions. Theor. Appl. Genet.
2019, 132, 3399–3411. [CrossRef]

http://doi.org/10.1525/bio.2011.61.3.4
http://doi.org/10.1016/j.tplants.2016.02.006
http://doi.org/10.1016/j.pbi.2019.12.011
http://www.ncbi.nlm.nih.gov/pubmed/32057695
http://doi.org/10.1071/CP11303
http://doi.org/10.1016/j.fcr.2012.09.009
http://doi.org/10.1023/A:1004293706242
http://doi.org/10.2134/agronj2000.9261156x
http://doi.org/10.2134/agronj2003.6880
http://doi.org/10.1016/j.jaridenv.2004.10.011
http://doi.org/10.1093/jxb/erq459
http://doi.org/10.1007/s00122-018-3270-8
http://doi.org/10.1007/s00122-020-03684-z
http://doi.org/10.3389/fpls.2020.623586
http://doi.org/10.1016/j.agrformet.2015.02.005
http://doi.org/10.1016/j.tplants.2017.02.003
http://doi.org/10.1007/s00122-019-03432-y


Agronomy 2023, 13, 322 14 of 16

20. Heslot, N.; Akdemir, D.; Sorrells, M.E.; Jannink, J.-L. Integrating Environmental Covariates and Crop Modeling into the Genomic
Selection Framework to Predict Genotype by Environment Interactions. Theor. Appl. Genet. 2014, 127, 463–480. [CrossRef]

21. Crossa, J.; Gauch, H.G., Jr.; Zobel, R.W. Additive Main Effects and Multiplicative Interaction Analysis of Two International Maize
Cultivar Trials. Crop Sci. 1990, 30, 493–500. [CrossRef]

22. Vargas, M.; Crossa, J.; Sayre, K.; Reynolds, M.; Ramírez, M.E.; Talbot, M. Interpreting Genotype × Environment Interaction in
Wheat by Partial Least Squares Regression. Crop Sci. 1998, 38, 679. [CrossRef]

23. Marraccini, E.; Gotor, A.A.; Scheurer, O.; Leclercq, C. An Innovative Land Suitability Method to Assess the Potential for the
Introduction of a New Crop at a Regional Level. Agronomy 2020, 10, 330. [CrossRef]

24. Ayerdi Gotor, A.; Marraccini, E. Innovative Pulses for Western European Temperate Regions: A Review. Agronomy 2022, 12, 170.
[CrossRef]
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