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Abstract: Heterogeneous image features are complementary, and feature fusion of heterogeneous im-
ages can increase position effectiveness of occluded apple targets. A YOLOfuse apple detection model
based on RGB-D heterogeneous image feature fusion is proposed. Combining the CSPDarknet53-Tiny
network on the basis of a YOLOv5s backbone network, a two-branch feature extraction network is
formed for the extraction task of RGB-D heterogeneous images. The two-branch backbone network is
fused to maximize the retention of useful features and reduce the computational effort. A coordinate
attention (CA) module is embedded into the backbone network. The Soft-NMS algorithm is intro-
duced, instead of the general NMS algorithm, to reduce the false suppression phenomenon of the
algorithm on dense objects and reduce the missed position rate of obscured apples. It indicates that
the YOLOfuse model has an AP value of 94.2% and a detection frame rate of 51.761 FPS. Comparing
with the YOLOv5 s, m, l, and x4 versions as well as the YOLOv3, YOLOv4, YOLOv4-Tiny, and Faster
RCNN on the test set, the results show that the AP value of the proposed model is 0.8, 2.4, 2.5, 2.3,
and 2.2 percentage points higher than that of YOLOv5s, YOLOv3, YOLOv4, YOLOv4-Tiny, and Faster
RCNN, respectively. Compared with YOLOv5m, YOLOv5l, and YOLOv5x, the speedups of 9.934FPS,
18.45FPS, and 23.159FPS are obtained in the detection frame rate, respectively, and the model are
better in both of parameter’s number and model size. The YOLOfuse model can effectively fuse
RGB-D heterogeneous source image features to efficiently identify apple objects in a natural orchard
environment and provide technical support for the vision system of picking robots.

Keywords: object detection; heterogeneous images; YOLOv5s; fruit detection; attention mechanism

1. Introduction

Nowadays, intelligent robot picking of fruits has become possible, and intelligent
picking robots have become a current research hotspot [1]. In the study of apple picking
robots, due to the randomness of an apple location, the apple images collected by the vision
system often have a large number of obscured targets, and the reasons for obscuring can be
generally attributed to leaf obscuring, branch obscuring, and fruit overlapping obscuring.
The defective information of the obscured apples will make it more difficult for the vision
system to identify and locate the apple fruits and directly affect the grasping accuracy.
Designing a target detection model that can effectively identify the obscured apples has
important research value.

1.1. Related Works

The YOLOv5 network architecture has the advantages of high detection accuracy and
fast operation [2]. There are four model architectures, including YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x, with increasing model volume in sequence. Zhang et al.
2022 embedded the transformer module [3] into the backbone network of YOLOv5 and
combined the self-attentive mechanism with a convolutional neural network to improve
the detection accuracy of the model for cherry fruit with a mAP of 95.20% [4]. Yan et al.
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2022 embedded the squeeze and excitation (SE) channel attention mechanism [5] into
backbone network of YOLOv5m to improve the feature map spanning fusion of the input
medium-sized target detection layer, and the improved model had an mAP of 80.70 and
an average detection time of 25 ms for one image [6]. He et al. 2022 used YOLOv5 for
recognition of tomato in the nighttime environment of a heliostat and achieved tomato
fruit recognition under dark light features by recomputing the adaptive frame with an
improved CIOU objective loss function [7]. Sun et al. 2022 embedded the convolutional
block attention module (CBAM) [8] into YOLOv5s and used the phantom structure of
GhostNet [9] to reduce the model complexity. The YOLOv5s was improved by adding
the transformer structure to the model and applying it to apple fruit disease detection
with a mAP of 88.2% and a model parameter count of only 2.06 MB, which is ideal for
deployment on mobile devices [10]. Huang et al. 2022 introduced the CBAM attention
mechanism and α-IoU loss to YOLOv5 for improvement and applied the improved model
to citrus fruit target detection with an AP of 91.3% and a single image detection speed of
16.7 ms [11]. Lyu et al. 2022 adopted a lightweight YOLOv5-CS to recognize green citrus
in wild field [12]. Xu et al. 2023 proposed HPL-YOLOv4 to improve the recognition of
citrus-fruit and ensured real-time efficiency [13].

YOLOv5s has little volume and quicker detection speeds than the other three architec-
tures but has the lowest detection accuracy. It is more suitable for detecting large target
scenarios. The volume of lightweight model determines that YOLOv5s runs with fewer
computational and memory resources, making it more suitable for deployment on the
embedded devices commonly used by picking robots.

We propose a new YOLOfuse model with YOLOv5s combined with CSPDarknet53-
Tiny [14] and a coordinate attention (CA) mechanism [15]. The features of heterogeneous
source images separately are extracted by the backbone and then fused by the fusion
strategy. Then, the fused features are fed into the neck network for target detection after the
CA attention mechanism. Experiments are designed to evaluate the model performance
including detection accuracy, detection speed, and model parametric number under the
test set.

1.2. Highlights

First, this paper embeds CSPDarknet53-Tiny as a feature extraction network for a
depth map on the basis of YOLOv5s, which can extract features of both the depth map and
RGB image for model judgment.

Second, we introduce a more lightweight coordinate attention (CA) module, which
can ensure the lightweight and improve the accuracy and efficiency.

Third, we design a new feature fusion strategy for feature fusion, which multiplies the
sparse features of the depth map by the scaling factor and adds the features of the RGB
map. This way ensures the dominance of RGB features and guarantees the accuracy.

2. Materials and Methods
2.1. Materials
2.1.1. Datasets

There are two datasets for the experiments, including one public dataset and one
self-built dataset. The cameras in the two datasets use the technology of time of flight (ToF)
to capture the depth images. The ToF technology adopts the time difference between the
active transmission signal and the received reflection signal to perform centimeter-level
precise ranging, providing pixel values as distance information. The proposed YOLOfuse
model is suitable for fruit detection of a pair of heterogeneous images with RGB and ToF
technology in natural orchard scene.

The public dataset used for the experiments is from the publicly available apple RGB-D
image dataset PApple_RGB-D-Size [16] from the Universitat de Lleida (Spain). The dataset
contains 4017 pairs of RGB-D images from six Fuji apple trees, including 2407 pairs of
mature apple images and 1610 pairs of 75% mature green apple images, containing a total
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of 16,332 apple objects. In this dataset, there are a large number of apple objects in the
state of branch occlusion, inter-fruit overlap occlusion, and edge mutilation. The image
acquisition device of this dataset is a Microsoft Kinect v2 depth camera. The capture range
of the camera is between 0.3 and 0.8 m. The target imaging distance is about 0.5 m, the
images are saved in PNG format, and the image resolution reaches 1024 × 1024.

The self-built dataset RGB-D heterologous images are captured by a depth camera
produced by Basler Company in Germany in cooperation with a color camera. The capture
range of the camera is between 0.3 and 1.5 m. The target imaging distance is about 0.8 m, the
images are saved in TIFF format, and the image resolution reaches 640× 480. There are four
types of camera output, including intensity images, confidence images, depth images, and
3D point cloud images. In an outside scenario, when the camera’s deep information lacks
performance, we avoid taking photos in direct sunlight or choose to avoid the noon period.
The heterologous images were collected from the apple experimental base at Tianshui Fruit
Research Institute in Gansu Province, China. Over 2000 RGB-D heterogeneous images were
captured at different time periods from 14:00 to 17:00 in August.

2.1.2. Image Enhancement

We use LabelImg image annotation software to target and annotate RGB images in
the RGB-D heterogeneous image dataset using XML format for annotation. In order to
increase the spatial multi-scale and feature richness of training set images, four image
enhancement methods, namely random Affine transformation, random horizontal flip,
Mosaic data enhancement, and HSV gamut transformation, are used in series at the input
end of the network. The RGB color image and depth image of two datasets are expanded
to 10,000 images by using the above four image enhancement methods.

Two datasets are randomly divided into training, validation, and testing sets in an
8:1:1 ratio, respectively. In order to reduce the redundant information of high-resolution
images and accelerate the model convergence, the image resolution of two datasets of the
input network is uniformly scaled to 480 × 480. Some RGB-D image pairs and the training
images of the public dataset after data enhancement are displayed in Figure 1.
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2.2. YOLOfuse Apple Detection Model
2.2.1. YOLOv5s Network Framework

The network framework of YOLOv5s includes backbone, neck network and head
network. The first part is used as the feature extractor. It generates feature maps and inputs
them into the neck network for subsequent prediction. The first layer of the backbone
is the focus module, which splits the input image into four complementary parts by
extracting pixels at intervals in the image aspect direction. In this way, the information in
the image aspect direction can be concentrated in the channel direction. The loss of direct
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downsampling of the image and model computation can be reduced and thus the network
convergence can be accelerated as well. The focus module structure is shown in Figure 2.
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Layer 2 of the backbone is the CBS module, including Conv2d layer, BN layer and
SiLU activation function in series for feature map channel number adjustment and down-
sampling. The details of CBS module is given in Figure 3.
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Figure 3. CBS module.

The third layer of the backbone is the CSP1_X module, which is mainly used to
strengthen the network’s ability to mine deeper features of images. The main component of
CSP1_X is the Res_unit residual unit. There are two CBS modules. One is embedded with
one convolutional kernel, which size is 1 × 1. Meanwhile, the other one is embedded with
another convolutional kernel, which size is 3 × 3 connected sequentially. And the output
features of this part are summed with the input features of the whole residual unit as the
overall output of the Res_unit unit. The CSP1_X module inputs the initial input features
into a parallel two-branch network and connects X Res_unit units in series. The Res_unit
unit is indicated in Figure 4. The CSP1_X structure is given in Figure 5.
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The 9th layer of the backbone is the spatial pyramid pooling (SPP) module [17]. The
main purpose of this module is to increase the network receptive field and improve the
network’s perception ability towards small targets. The SPP module passes the input
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features through three pooling windows of size 5 × 5, 9 × 9, and 13 × 13 of a two-
dimensional maximum pooling layer Maxpool2d to obtain three groups of features in the
same space with input. Finally, the three groups of features are channel-spliced with the
input features as the module output, so as to effectively fuse local features and global
features. The SPP module is listed in Figure 6.
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The 10th layer of the backbone is the CSP2_X module, whose main role is to integrate
the fused features output from the SPP module and enhances the ability of feature extraction.
This module inputs initial features into a parallel two-branch network. And after, one
branch is channel halved by the CBS module and the other branch is channel halved
by the CBS module in series with X sequential modules. The other branch consists of
two CBS modules. One is embedded with one convolutional kernel, which size is 1 × 1.
Meanwhile, another one is embedded with another convolutional kernel, which size is
3 × 3. Finally, the outputs of the two branches are Concat spliced in the channel direction
and the feature maps are output through the CBS module. The CSP2_X module details are
given in Figure 7.
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The neck network uses the overall architecture of feature pyramid networks (FPN) [18]
combined with path aggregation network (PAN) [19] to fuse features of different scales.
The FPN structure can transmit high-dimensional semantic features extracted from deep
network to shallow network. These features are more abstract and have a larger receptive
field, which is beneficial for the network to classify and judge objects. At the same time, this
type of information loses location information, which is not conductive to the network to
judge the position of objects. The PAN structure transmits the low-dimensional localization
features extracted from the shallow network to the deep network, which is more concrete
and has sufficient expression ability for the spatial location of objects. It is beneficial for the
network to judge the position of objects.

The Head network consists of 3 prediction modules, which receive the output feature
maps of the neck network at 3 different scales. These modules are applied to check different
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sizes of targets from three scales. The module mainly consists of a Conv2d layer, and the final
output network detection result has a channel number of 18 (the network contains 3 anchor
frame outputs and each anchor frame output includes 1 category probability, 1 confidence
value, and 4 position coordinates). The YOLOv5s framework is displayed in Figure 8.
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2.2.2. Embedding the CSPDarknet53-Tiny in Backbone

To effectively extract useful features from depth images and RGB color images in
RGB-D images, we combine the CSPDarknet53-Tiny network with the original backbone of
YOLOv5s to form a two-branch backbone, and the 2 branches are used for feature extraction
of the RGB images and depth images. The main components of the CSPDarknet53-Tiny
network are the CBL module and the Resblock_body module. The CBL module consists
of the Conv2d layer, the BN layer, and the Leaky ReLU activation function in series.
Resblock_body module first uses the CBL module to bisect the output features in the
channel direction into two branch networks. Branch 2 network undergoes three rounds
of CBL module (with residual connection in the second CBL) and concatenates with
branch 1 output in the channel direction through Concat concatenation. Finally, feature
downsampling is performed through the Maxpool2d layer with a pooling window of 2 × 2,
as the output of the whole module. The CSPDarknet53-Tiny network consists of two CBL
modules, three Resblock_body modules, and one CBL module sequentially connected in
series. The Resblock_body module and the CSPDarknet53-Tiny network are shown in
Figures 9 and 10, respectively.

The network uses CSPDarknet53-Tiny as the exclusive feature extraction network for
depth images and uses a specific feature fusion strategy to fuse the final output features
with the input features from the SPP module in YOLOv5s’ backbone. The fused features
are then further fed into subsequent networks for prediction.
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2.2.3. Design Feature Integration Strategy

Feature fusion strategy is designed based on using weighted average. Considering the
sparse characteristics of the depth image features, this paper argues that depth features are
prone to feature dilution when the proportion of depth features in the final fused features
is too high. This causes the neck network and head network to fail to obtain enough useful
features and thus causing a decrease in detection accuracy. Therefore, this paper proposes a
measure factor α (α ∈ [0,1]) to measure the utilization of depth image features. The feature
fusion strategy is shown in Equation (1).

Ff use = FRGB + αFDepth (1)
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2.2.4. Embedded CA Attention Module in the Network

Attention weighting is performed directly on the fused features output in the previous
section using the CA attention module. Although channel attention represented by the SE
attention module has been shown to be effective in improving model detection, this type
of attention ignores the spatial location information of features. It has disadvantage of low
efficiency of capture direction-aware and location-sensitive information. The CA attention
module adopts the position into channel to effectively utilize the spatial information of the
features while removing a large computational overhead. The CA attention module adopts
two one-dimensional global averaging pooling layers to aggregate the input features into two
independent direction features in H and W directions. Two maps are encoded. The input
features are captured along their respective perceptual directions. The CA attention module
network structure is given in Figure 11, and YOLOfuse structure is listed in Figure 12.
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2.2.5. Soft-NMS Algorithm

The model improvement replaces the non-maximum suppression (NMS) algorithm
of YOLOv5s [20] with the flexible non-maximum suppression algorithm (Soft-NMS) [21].
YOLOv5s, as an anchor box based object detection algorithm, usually generates multiple
detection boxes for a detected object. The NMS algorithm is applied in YOLOv5s to filter
the poorly predicted detection boxes and ensure that the best-detected box is retained
for each detected object as much as possible. However, when the overlapping degree of
detected objects of the same type is high, the detection boxes of two objects overlap at
the same height. The detection boxes of the obscured objects are easily suppressed by the
detection boxes of the objects in front of them under the NMS algorithm, resulting in missed
detections. The Soft-NMS algorithm can be more effective in solving the above-mentioned
phenomenon of missed detection due to excessive suppression. The Soft-NMS algorithm
is a flexible improvement in the NMS suppression algorithm. When the detection box
suppression condition is established, the Soft-NMS algorithm does not completely suppress
the confidence score of the predicted box to 0 but sets a decay function for the confidence
score of the predicted box. Through multiple iterations of screening, multiple suppressions
are performed as far as possible. The Soft-NMS method is computed in Equation (2).

Si =

Si i f IoU(M, bi) < Nt

Sie−
IoU(M,bi)

2

σ i f IoU(M, bi) ≥ Nt
(2)
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3. Results
3.1. Experiments

The environment configuration used for experiment is listed in Table 1.

Table 1. Environment configuration.

Environment Configuration

Training and testing platform ecloud
CPU Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz
RAM 376 GB

Cloud Storage Space 50 GB
GPU NVIDIA Tesla V00 16 GB
OS Ubuntu18.04.03 LST

Virtual Environment Anaconda
NVIDIA GPU Driver 450.51.05

Programming Languages Python 3.7.6
Deep Learning Framework PyTorch 1.8

CUDA Version 11.0
cuDNN Version 7.6.5

The experiments check the detection performance on test set in five aspects, including
precision, recall, F1 value, average precision, and frames per second (FPS). They are listed
between Equations (3) and (7).

P = TP/(TP + FP)) (3)
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R = TP/(TP + FN) (4)

AP =
∫ 1

0
P(R)dR (5)

F1 = 2PR/(P + R) (6)

FPS = 100/
∫ 100

0

(
Tstart

i − Tend
i

)
(7)

3.2. Experimental Results
3.2.1. Training Results

YOLOfuse is trained by migration learning using pre-trained weights loaded into the
backbone network before the CA attention mechanism, using the optimization function
Adam, and a batch size of eight samples. The number of training rounds (Epochs) is set to
300 rounds. 0.937 is momentum factor. Zero is set as decay rate. The learning rate update
strategy of COS is adopted. 0.00001 is initial learning rate, rising rapidly to 0.0003 at the
beginning of training and decreasing gradually to the initial learning rate as the number of
training rounds increased. Metric factor α is set to 0.2. Every 10 Epochs are saved to the
model weights.

The loss curves of the training and validation sets are listed in Figure 13a, and the AP
curves of the validation set are displayed in Figure 13b.
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Figure 13. Loss curve and the curve of each evaluation index under the validation set (a) Loss curve;
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3.2.2. Performance Results

To analyze the performance of YOLOfuse, it is compared with the original YOLOv5s,
YOLOv5m, YOLOv5l, YOLOv5x, YOLOv3 [22], YOLOV4 [23], YOLOV4-Tiny [14], and
Faster RCNN [24] on the public test set. Among them, Faster RCNN selects ResNet 50 [25]
as the backbone, and the test results using public data are listed in Table 2. Figure 14
displays the detection effect of YOLOfuse on public test set. Figure 15 gives the detection
effect of YOLOfuse from self-built test set.
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Table 2. Results of each model on public test set.

Models Precision Recall F1 AP FPS Param/M Size (MB)

YOLOv3 94.7% 87.1% 90.8% 91.8% 45.676 61.524 235
YOLOv4 91.8% 90.0% 90.9% 91.7% 36.018 63.938 245
YOLOv5s 95.0% 87.4% 91.0% 93.6% 54.645 7.022 26.9
YOLOv5m 94.7% 90.7% 92.7% 94.4% 41.827 20.871 79.9
YOLOv5l 92.7% 91.5% 92.1% 95.7% 33.311 46.138 176
YOLOv5x 94.0% 90.7% 92.3% 96.1% 28.602 86.217 329

YOLOv4-Tiny 93.1% 85.3% 89.0% 91.9% 154.357 5.874 22.4
Faster RCNN 57.0% 92.7% 70.6% 92.0% 17.599 28.275 109

YOLOfuse 95.4% 89.1% 92.1% 94.2% 51.761 10.701 41.1
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Figure 14. The detection effect of YOLOfuse model on the public test set: (a) Severely overlapped;
(b) Overlapping occlusion; (c) Incomplete; (d) 75% ripe green apple.
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3.2.3. Ablation Experiment of Soft-NMS

This experiment verifies the performance difference in YOLOfuse equipped with
Soft-NMS compared to the one equipped with the NMS algorithm. It is tested on the public
test set for model testing, and the performance metrics are obtained after completing the
test as listed in Table 3.
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Table 3. Detection results under NMS and Soft-NMS.

Model Precision Recall F1 AP

YOLOfuse with NMS 95.2% 88.3% 91.6% 93.7%

YOLOfuse with Soft-NMS 95.4% 89.1% 92.1% 94.2%

3.2.4. Ablation Experiment of Attention

The experiments verify the performance differences between YOLOfuse equipped with
the CA attention mechanism and other attention mechanisms. Considering the plug-and-
play and easy replacement of the attention mechanism module, this section’s experiments
use SE and CBAM, to replace CA. A total of three models are obtained and trained in the
network separately, and then, the models are tested on public test set. The performance
metrics are obtained from Table 4. Figure 16 gives detection results of embedding three
attention modules of some public test set images.

Table 4. Results of the models equipped with different attention modules.

Models Precision Recall F1 AP FPS (V100) Param/M Size (MB)

YOLOfuse
SE 94.9% 88.2% 91.4% 93.6% 52.482 10.685 41.0

YOLOfuse
CBAM 95.6% 88.6% 92.0% 94.3% 48.273 10.783 41.1

YOLOfuse
CA 95.4% 89.1% 92.1% 94.2% 51.761 10.701 41.1
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4. Discussion
4.1. Results Discussion

In the training experiment, in Figure 13a, and from the loss curves, we can see that
the loss of YOLOfuse are in a fast-decreasing state in the first 25 rounds, and the model
loss decreases slowly and finally stabilizes after 25 rounds. In Figure 13b and from the
AP curve, the AP value of YOLOfuse in the validation set increases rapidly in the first
40 rounds of training and then stabilizes, and the weight file from the 120 rounds with the
highest AP value in the validation set is selected as the final model for this training, and
the AP is 94.5% at this time.

In the performance test and from Table 2, we can see that the AP value of YOLOfuse
on the public test set reaches 94.2%, the detection frame rate reaches 51.761 FPS, the
parameter’s number is only 10.701 M. Meanwhile, the model size is 41.1 MB. YOLOfuse
has the advantages of high detection accuracy, fast detection speed, a small number of
model parameters, and being a lightweight model when compared with the three models
YOLOv3, YOLOv4, and Faster RCNN. Taking YOLOv5s as an example, the AP value of
YOLOfuse is improved by 0.6%, the detection frame rate is decreased by only 2.884 FPS,
the parameter’s number is increased by 3.679 M, and the model size is increased by 14.2 M,
so that the detection accuracy is higher at a smaller cost. Taking YOLOv5m, YOLOv5l,
and YOLOv5x models as examples, the AP value of YOLOfuse decreases by 0.2, 1.5, and
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1.9 percentage points, but the detection frame rate gains by 9.934 FPS, 18.45 FPS, and
23.159 FPS, respectively, and it has a clear advantage in both parameter’s number and
model size. Although the AP value has decreased, the model gains in the detection frame
rate and model size. Taking YOLOv4-Tiny model as an example, YOLOfuse improves the
detection accuracy by 2.3%, but the detection frame rate decreases by 102.596 FPS.

The model YOLOfuse has better detection results and detection accuracy than other
models except YOLOv5m, YOLOv5l, and YOLOv5x in this apple detection task. To analyze
the reasons, we believe that depth images can provide distance features that RGB color
images do not have, and depth images added to the network greatly enrich the overall
richness of useful features and thus, help the model make more correct judgments. The
model YOLOfuse occupies less memory space than other models, other than YOLOv5s
and YOLOv4-Tiny and has the obvious advantage of light weight, which is more suitable
for the embedded devices of picking robots. This paper concludes that YOLOfuse, as a
dual-input model, has a certain degree of improvement of model parameter’s number
compared with YOLOv5s, and preprocessing of depth images consumes computational
resources. Therefore, the speed of the original YOLOv5s model decreases to a certain extent,
while YOLOv4-Tiny, as a single-input, purely lightweight network, only performs target
detection at two feature scales, and YOLOfuse is not comparable to YOLOv4-Tiny in field
of detection speed.

In the ablation experiment of Soft-NMS, from Table 3, it indicates that YOLOfuse with
the Soft-NMS algorithm has improved 0.2% in detection accuracy, 0.8% in recall, 0.5% in F1
value, and 0.5% in AP value compared with that of the NMS algorithm. It displays that the
Soft-NMS algorithm has a practical optimization effect for the apple fruit detection task
and can effectively avoid the oversuppression of the dominant target on the invisible target
detection frame in the fruit overlap state.

In the ablation experiment of attention mechanisms, from Table 4, it displays that
in terms of detection accuracy, the model YOLOfuse has a 0.6% improvement in the AP
value with the CA attention module compared to that with the SE attention module and a
0.1% decrease in AP value compared to that with the CBAM attention module. In terms of
model size, all three model files are about 41 MB, with no significant volume differences.
In terms of parameter’s number, the number of all three models is about 10.7 M, with no
significant differences. In terms of detection speed, the detection frame rate of YOLOfuse
with CA module decreased by 0.721 FPS compared with that of the SE attention module
and increased by 3.488 FPS compared with that of the CBAM attention module. We believe
that the spatial attention mechanism of the CBAM directly applies attention to overall scale
of features. It is a more direct attention weighting process than the CA attention mechanism
for spatial feature points but requires a lot of computational resources, resulting in the
higher detection accuracy and relatively lower detection speed of YOLOfuse with CBAM
module. Considering both the reverse sides of detection speed and detection accuracy,
this paper concludes that YOLOfuse equipped with the CA attention mechanism is more
suitable for the apple fruit target detection task.

4.2. Discussion Summary

(1) By analyzing data of the public test set, YOLOfuse has relatively higher detection
accuracy and relatively lower detection speed, indicating that using RGB-D heteroge-
neous images as network input can provide richer features to the network than the
model with RGB images alone as input. This facilitates the model to make more accu-
rate predictions, but it also increases the computational burden of the whole vision
detection system and produces negative effects in terms of model detection speed.

(2) The ablation experiments equipped with both Soft-NMS and NMS demonstrat that
the application of Soft-NMS is able to bring a 0.5% improvement in the AP value for
the model on the apple fruit detection task. It is verified that the Soft-NMS algorithm
has a positive impact on the detection task of occluding overlapping targets.
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(3) Ablation experiments equipped with a total of three attention modules, CA, SE, and
CBAM prove that each type of attention module can bring some accuracy improve-
ments for the apple fruit detection task, and the reasons for the performance of each
model equipped with each of the three modules are analyzed. Considering both
detection accuracy and detection speed, we conclude that the CA attention module is
more suitable for the apple fruit detection task as it balances the two most important
factors of detection accuracy and detection speed for picking robots.

5. Conclusions

A YOLOfuse apple detection model for feature fusion of RGB-D heterogeneous im-
ages is proposed, which performs feature fusion on RGB-D heterogeneous images. The
fused features are input into the neck network through the CA attention mechanism
for object detection. The results indicate that the YOLOfuse model can effectively fuse
RGB-D heterogeneous image features and efficiently identify apple targets in natural
orchard environments.

Compared with the YOLOv5m, YOLOv5l, and YOLOv5x models, the YOLOfuse
model still has the defect of low detection accuracy. Further improvements of the network
structure and reduction in parameter quantity are needed to improve the average accuracy.
Next, we will research on the YOLO network series and explore the embedded real-time
characteristics of YOLOv4-Tiny to achieve efficient real-time detection.
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