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Abstract: Plants experience a variety of adverse environments during their vegetative growth and
reproductive development, and to ensure that they complete their life cycle successfully, they have
evolved specific defense mechanisms to cope with unfavorable environments. Flowering is a vital
developmental stage and an important determinant of productivity in the lifetime of plants, which
can be vulnerable to multiple abiotic stresses. Exposure to stress during this period can have dramatic
effects on flower physiological and morphological development, which may ultimately lead to a
substantial loss of yield in seed-producing plants. However, there has been increasing research
evidence that diverse abiotic stresses, ranging from drought, low temperature, and heat stress can
promote or delay plant flowering. This review focuses on how plants alter developmental direction
to balance between survival and productivity under drought and extreme temperature conditions.
Starting from the perspective of the functional analysis of key flowering-regulated genes, it is of great
help for researchers to quickly gain a deeper understanding of the regulatory effects of abiotic stress
on the flowering process, to elucidate the molecular mechanisms, and to improve the regulatory
network of abiotic-stress-induced flowering. Additionally, the important agronomic significance of
the interaction between abiotic stress and the flowering regulation of perennial plants under climate
change conditions is also discussed after summarizing studies on the mechanisms of stress-induced
flowering in annual plants. This review aims to clarify the effects of abiotic stresses (mainly drought
and temperature) on plant flowering, which are significant for future productivity increase under
unfavorable environmental conditions.

Keywords: flowering; abiotic stress; drought; temperature; perennial plants

1. Introduction

Plants are sessile and cannot move to escape from adverse environmental conditions.
Hence, the developmental process of many plants is highly changeable in response to
the environmental stresses they encounter. Abiotic stresses, including drought, salinity,
devastating temperature (extreme high or low), and nutrient (mainly nitrogen, phosphorus,
and potassium) starvation [1], can have a dramatic impact on plant growth and produc-
tivity, such as cellular water scarcity, cell membrane damage, enzyme inactivation, and
other defects, ultimately leading to severe yield reductions and huge economic losses [2–5].
Therefore, abiotic stress has been an important issue in plant vegetative [6,7] and reproduc-
tive [8,9] development, for which the study of abiotic stress effects during reproductive
development is of great significance for the maintenance of food production as well as for
the world economy.

Flowering is an important agricultural trait in the successful transition of plants from
vegetative to reproductive growth, as the optimal flowering time is critical for maximizing
reproductive success and ensuring seed production, which is a key step in the evolutionary
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success of plants. Due to the continuously fluctuated environmental conditions, plants
have evolved specific defense mechanisms to ensure maximum reproductive success [10].
For example, when individuals cannot survive under severe stress conditions, they produce
seeds by adjusting the timing of flowering. In recent years, the effects of abiotic stresses on
flowering induction have been documented in numerous plant species [11–19]. The ability
of abiotic stresses to regulate flowering, with drought and temperature being important
stress factors, suggests that plants can combine abiotic stresses effects with flowering
signaling pathways. Thus, stress-induced flowering has been recognized as a new means
of flowering response due to its important biological benefits throughout the plant life
cycle [20].

Extensive physiological and molecular genetic analyses have revealed six major
floral regulatory pathways in Arabidopsis thaliana, namely, photoperiod, autonomous,
thermosensory (ambient temperature perception), vernalization, gibberellin, and age
pathways [21–26]. These pathways are ultimately integrated through several flowering
genes that regulate flowering in plants. Under long-day conditions, the transcription factor
CONSTANS (CO) (1, Table 1) acts upstream to activate the expression of FLOWERING
LOCUS T (FT) (2, Table 1), a core floral integrator gene transcribed in the leaves. Plants
sense seasonal changes in day length via leaves, and subsequently, when the optimum
environmental conditions are achieved, FT protein is translated into the bast cells as a
long-distance signal (florigen), which is eventually delivered to the shoot apical meristem
to activate phloem tissue genes, such as LEAFY (LFY) (3, Table 1) and APETALA1 (AP1)
(4, Table 1), to induce flowering in Arabidopsis [27,28]. The study of the Arabidopsis flower
formation pathway is a crucial step in revealing the regulatory network of flower-forming
in plants. With the continuation of related research, accumulating evidence indicates that
the key integrating genes of the flowering network can also be induced by abiotic stress in
regulating flowering time. Abiotic-stress-induced flowering has become a research hotspot,
which has attracted extensive attention from worldwide researchers. For example, drought
as well as UV-C stress induced the expression of FT in Arabidopsis [11,29], resulting in early
flowering, while the expression of FT in pharbitis [30,31] was induced by low temperature
and nutrient deficiency. Early flowering in response to drought stress in Arabidopsis re-
quires the combined function of the flowering gene GIGANTEA (GI) (5, Table 1) and the
floral integration factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) (6,
Table 1) in addition to the upregulation of FT [11]. Arabidopsis responds to salt stress by
inhibiting FT and CO expression with delayed flowering. Meanwhile, GI is also involved
in salt-stress tolerance in Arabidopsis [32]. These findings suggest that the key integrating
genes of the flower-forming network have dual roles in regulating the flowering time and
stress tolerance response, and they may be potential genes involved in stress-induced
flowering. Taken together, flowering is subject to a combination of an endogenous gene
regulatory network as well as external environmental stimuli, which also supports the
importance and necessity of further research on abiotic-stress-induced flowering.

Despite its importance, there have been fewer studies concerning the effects of abiotic
stresses on plant reproductive development compared to those in the vegetative growth
process. Moreover, abiotic-stress-induced flowering has been reported mainly in annual
plants, especially during seed germination, seedling growth, and yield. In contrast to annual
plants, there are fewer cases of abiotic-stress-induced flowering in perennials, especially
woody plants. This may be partly due to the fact that studies involving reproductive
development, such as flowering, require longer plant growth cycles and years of study,
which can be a great challenge for relevant materials acquisition as well as for researchers.
Seasonal flowering is a typical feature that distinguishes perennials from annuals [33].
Citrus is representative of perennial fruit trees that generally bloom once in the spring
or several times a year, depending on the variety and genotype, and flowering induction
is affected by drought and low-temperature stresses [34,35]. Drought-induced flowering
provides an applicable method for shortening the vegetative growth of woody plants,
which can be utilized in genetic research and breeding [36]. These cases of stress-induced
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vegetative growth and flowering indicate that the vegetative growth and reproductive
developmental programs of perennial plants can also be affected by abiotic stress, which
might conceal some biological significance [13,36,37]. Therefore, we collected articles
on the topic of drought and temperature affecting plant flowering over the last decade
through PubMed. The study discusses the similarities and differences between annual
and perennial plants. Some insights are provided for further research on the mechanisms
by which drought and temperature affect flowering in perennial plants. Accordingly,
this review summarizes current knowledge showing that diverse abiotic stresses (mainly
drought and temperature) modify the flowering time of plants and examines physiological
alterations in their response to stress. Meanwhile, the role of critical flowering regulation
genes in response to stress was identified with consideration of the cross-talk molecular
mechanisms underlying flowering time regulation and stress response. Finally, valuable
agronomic implications of the cross-talk between abiotic stress and flowering regulation
under climate change conditions is discussed in perennial plants.

Table 1. Specialized terms and their abbreviations appearing in this review.

Number Abbreviations Full-Name Number Abbreviations Full-Name

1 CO CONSTANS 24 HDA6 HISTONE DEACETYLASE 6

2 FT FLOWERING LOCUS T 25 FES1 FRI ESSENTIAL 1

3 LFY LEAFY 26 FRL1 FRI-LIKE 1

4 AP1 APETALA1 27 FLX FLC EXPRESSOR

5 GI GIGANTEA 28 SUF4 SUPPRESSOR OF FRI 4

6 SOC1
SUPPRESSOR OF

OVEREXPRESSION OF
CONSTANS 1

29 VRN1 VERNALIZATION1

7 ROS reactive oxygen species 30 FUL FRUITFULL

8 ABA abscisic acid 31 VAL CAULIFLOWER

9 SD short-day conditions 32 PIF4
PHYTOCHROME-

INTERACTING
TRANSCRIPTION 4

10 LD long-day conditions 33 MAF2 MADSAFFECTING
FLOWERING 2

11 TSF TWIN SISTER OF FT 34 FCA FLOWERING CONTROL
LOCUS A

12 SVP SHORT VEGETATIVE PHASE 35 FVE FLOWERING LOCUS VE

13 FLC FLOWERING LOCUS C 36 FLM FLOWERING LOCUS M

14 Hd3a HEADING DATE 3a 37 HOS1
HIGH EXPRESSION OF

OSMOTICALLY RESPONSIVE
GENE 1

15 RFT1 RICE FLOWERING
LOCUS T1 38 HSR heat stress response

16 Ehd1 EARLY HEADING DATE 1 39 HSPs heat shock proteins

17 RCN1 RICE CENTRORADIALIS 1 40 HSFs heat stress transcription factors

18 FD FLOWERING LOCUS D 41 BOB1 BOBBER1

19 FAC florigen activation complex 42 FTL3 FLOWERING LOCUS T-like 3

20 FRI FLOWERING CONTROL
LOCUS A 43 PRR PSEUDO RESPONSE

REGULATOR

21 OST1 OPEN STOMATA 1 44 LUX LUX ARRHYTHMO

22 VOZ1 VASCULAR PLANT
ONE-ZINC FINGER 1 45 Eps-D1 Earliness per se locus

23 RFS Regulator of Flowering
and Stress 46 EG1 EXTRA GLUME 1
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2. Drought-Induced Flowering

Global warming and the continued increase in the world’s population have led to
a shortage of freshwater resources and a further decline in groundwater levels, posing
a major challenge to agriculture worldwide [38]. Drought, which is defined as being in
a state of water shortage for several consecutive weeks [39], is the most common abiotic
stress around the world and severely affects flowering time, flower morphological devel-
opmental processes, and the seed productivity of several plant species. It is particularly
noteworthy that drought stress can also cause flower abortion and eventually plant sterility
by altering the expression levels of various genes critical to flowering regulation path-
ways, which regulate both flowering time and response to drought stress [40]. In the
following, we discuss how plants perceive and respond to drought stress, further sum-
marize the differential physiological phenotypes of various plant species under drought
stress conditions, and, finally, we focus on the potential molecular mechanisms underlying
drought-stress-induced flowering.

2.1. Perception and Coping Strategies of Drought Stress

Plants perceive drought stress signals mainly through the leaves and the root system.
Stomatal movement can be observed in leaves, and drought stress can lead to the accumu-
lation of reactive oxygen species (ROS) (7, Table 1) and of abscisic acid (ABA) (8, Table 1) in
leaves, which, in turn, regulates the movement of guard cells and ultimately determines the
opening and closing state of stomata [41]. However, it is difficult to determine how plants
respond to drought stress in the root system [42,43]. A deficiency of water can constrain
the growth and development process of plants, and can even have a significant impact on
plant survival [1,44]. As a result, plants have evolved a variety of strategies to cope with
damage caused by drought stress. The process by which plants sense water deficit signals
and further initiate coping strategies in response to drought stress is known as drought
resistance. The adaptability of plants to drought stress mainly consists of three different
coping strategies, namely, drought escape, drought avoidance, and drought tolerance [45].
Drought escape, a common strategy exploited in response to drought stress, refers to plants
that accelerate flowering and shorten their entire life cycle before severe drought stress hin-
ders their survival [46,47]. However, in order to achieve early flowering, a drought escape
strategy will terminate vegetative growth in advance, which can severely influence the
growth and development of vegetative organs, and eventually lead to a dramatic decrease
in seed yield. Drought avoidance (also known as drought dehydration) is another strategy
for plants to cope with external drought conditions by increasing the internal water content
(by reducing water loss or maximizing water uptake) [48]. The drought tolerance strategy
is the ability of plants to tolerate low internal water content and to adapt to the drought
stress while initiating reproduction [49].

Under drought stress conditions, plants can respond by early or late flowering, de-
pending on the onset, duration, and severity of drought [20,50]. A bibliometrics analysis
showed that plant response to drought has become an important research topic [51]. When
plants are adequately supplied with water, the stomata remain open to a large extent to
enable the plants to fully photosynthesize, while under mild drought stress, plants will
appropriately regulate stomatal closure to minimize water loss by reducing transpiration,
but this will result in a decrease in the rate of photosynthesis. When subjected to severe
drought stress, the stomata are generally in a minimally open state to ensure that some
photosynthesis can take place, thus guaranteeing the normal survival needs of plants [52].
This is one of the main approaches for plants to avoid damage caused by drought stress in
the short term [53]. Influenced by geography, many terrestrial plants are frequently affected
by drought stress and have developed various drought-tolerant mechanisms to adapt to or
to resist the drought environment through a long-term evolutionary process [54,55]. The
adaptation of plants to the drought environment is mainly reflected both morphologically
and biochemically [56–58]. Morphologically, adaptation is manifest in the presence of a
very thick cuticle on the leaf surface, with the fenestrated cells being tightly arranged, while
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some leaves have a tomentum on the surface, which can effectively control water loss, and
can also absorb dew at night to replenish the plant’s own water [59]. Generally, there is a
very well-developed root structure with greater water and nutrient absorption capacity
and a poorly developed aboveground branching structure with weaker transpiration and
better water retention capacity [60]. The more drought-resistant the plant, the greater the
root–crown ratio. These morphological adaptations are closely related to the cell division,
elongation, and differentiation of the root apex. Plant vascular tissue systems, such as the
xylem and phloem, are involved in the transport of substances, while their developmental
status also affects plant drought resistance [61]. In Arabidopsis, drought-escape-induced
early flowering is associated with the phloem tissue transport of the florigen FT protein
from the leaves to the shoot apical meristems [62]. Biochemically, it is manifested in the
high expression of some drought resistance genes that positively increase the content of
amino acids and sugars in plants (such as proline and trehalose), the enhanced activity of
antioxidant-related enzymes, and inhibition of the activity of enzymes involved in degrada-
tion pathways to ensure that normal metabolic homeostasis is maintained under drought
stress condition [63]. ROS, including superoxide radicals (O2

−), hydrogen peroxide (H2O2),
and hydroxyl radicals (OH−), regulate plant growth and development at lower concentra-
tions [64,65]. Excessive accumulation of ROS under drought stress leads to membrane lipid
peroxidation [66,67]. Previous studies have shown that excessive ROS in plants will be
scavenged by antioxidant mechanisms, including the enzymatic antioxidants, SOD (super-
oxide dismutase), CAT (catalase), POD (peroxidase), and the non-enzymatic antioxidants,
ascorbic acid, proline, flavonoids, and polyphenols, which ultimately improve the plant’s
drought resistance [68–71]. Ascorbic acid has also been reported to play a role in control-
ling the flowering time in plants [72]. Understanding the perception of drought stress
and the coping strategies (early or late flowering) used by plants in response to drought
provides a physiological basis for subsequent studies on the molecular mechanisms of
drought-stress-induced flowering.

2.2. Flowering Time of Various Plant Species in Response to Drought Stress

Most plants have evolved and adapted to the frequent fluctuations in the natural envi-
ronment, especially the severe damage caused by droughts due to water deficit. Drought
stress can lead to alterations in the flowering time of various plants, effects on flower
development (including reduced flower number, restricted filament elongation, and de-
layed anther development), immature seed development, and reduced yields [40,73,74].
Therefore, the flowering time is an important agricultural characteristic for the develop-
ment of adaptation to drought stress in a wide range of plants (Table 2). The discrepancy
between early and late flowering resulting from the effects of drought stress depends on
the plant species [20,75]. For example, forage and biofuel crops generally have delayed
flowering as a desirable target for them due to the importance of the plant vegetative
biomass. Cereal crops, by contrast, usually exhibit early flowering as an ideal trait to
shorten the harvest time, and, thus, increase the number of plantings during the growing
season, while growing as fast as possible to minimize damage from drought stress caused
by environmental fluctuations [73,76]. Drought stress caused by water deficit delays the
flowering time of Arabidopsis under short-day (SD) (9, Table 1) conditions but accelerates
flowering time under long-day (LD) (10, Table 1) conditions [11,46]. Drought stress causes
premature bolting of Chinese cabbage in the growing season, which leads to insufficient
vegetative growth and influences yield and quality [77]. By studying the effect of drought
stress on flowering time in Brassica rapa offspring, it was found that materials with seeds
collected after drought flowered earlier than those collected before drought, suggesting
that Brassica rapa responds to drought stress and evolves towards earlier flowering [78].
Studies of drought-induced flowering in the chickpea suggest that drought stress generally
accelerates the flowering time of temperate grain legumes [79,80]. The role of drought
in influencing the flowering time varies among plant species and with environmental
conditions, so that drought regulation of flowering is the result of multiple factors.
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Recently, there have been studies on drought-induced flowering in several other plant
species [12,31,81–83]. In contrast to early flowering induced by drought stress, the flower-
ing time of rice is delayed under water deficit conditions to avoid reproductive growth in
unfavorable environmental conditions, but water shortage still results in the retardation of
plant growth and spikelet development, which leads to reduced crop yield and ultimately
economic losses [84–86]. Water deficiency can also delay the first flowering of Medicago
polymorpha. The effect of drought stress on early and late flowering in plants is closely
related to the intensity and duration of the water deficit, in addition to varying by plant
species. The artificial control of the duration and intensity of drought treatment in agri-
cultural production plays an important role in accelerating plant development, especially
regarding flowering. It was found that the response of rice to drought stress was dependent
on the intensity of drought, and mild water deficit in the early development stage triggered
a drought escape response with accelerated flowering and reduced tillering [87,88]. In
a study of wheat response to drought stress, it was also found that the flowering time
showed a nonlinear relationship with the plant water content status, with mild water deficit
shortening the flowering time, while severe drought stress delayed flowering [89].

Drought-induced flowering is a phenomenon more common in annual plants. The
drought stress regulation of plant flowering has been less well studied in woody plants
and remains poorly understood, mainly due to the long duration of vegetative growth in
perennials and the excessive long period of research. Drought stress is one of the major
environmental factors inducing flowering in adult citrus in subtropical regions. Different
citrus species are induced to flower by different environmental conditions, with lemon,
four-season orange, and kumquat being mainly affected by drought stress, while sweet
orange, trifoliate orange, mandarin orange, grapefruit, and tangerine are mainly affected by
seasonal low temperature [39,90]. Notably, drought-induced flowering in citrus was also
accompanied by the upregulation of the CiFT expression level [37,90]. Earlier studies have
also shown that Citrus latifolia flowering is also induced by drought stress, and that all citrus
plant species share this same flowering mechanism [91,92]. Additionally, the perennial
woody plant Sapium sebiferum takes 3–5 years to flower normally, but one-year-old seedlings
under drought stress flower early, which provides a feasible way to shorten the vegetative
growth years of woody plants in genetic research and breeding efforts [36]. These indicate
that the effect of drought stress on the flowering time is not specific to a particular plant
species but is conserved in annuals as well as perennials. There are few studies on the
regulation of flowering time by drought stress in perennials due to the long study time and
the lack of phenotypes, but the available evidence supports the feasibility of researching
this topic in perennials. Moreover, studies on drought-induced flowering in perennial
plants can be carried out on the basis of sufficient theoretical evidence in annual plants.

2.3. Molecular Regulatory Mechanisms of Flowering Involved in Drought Stress

Drought-stress-induced flowering, as well as the traditional flower formation pathway,
accomplish the same flowering purpose, but the traditional pathway is the primary option
for flowering under normal environmental conditions, whereas drought-induced flowering
is an emergency response under stressful conditions [20,93]. Compared with the in-depth
studies of the flower formation regulatory pathways in plants, the molecular regulatory
mechanisms of flowering involved in drought stress are still obscure. Drought stress
triggers the differential expression of a variety of genes, including flowering time regulation
genes and transcription factors associated with the stress response. Among them, the key
genes of flowering regulation in response to drought stress tolerance are FT, CO, LFY, GI,
SOC1, and TWIN SISTER OF FT (TSF) (11, Table 1) [11,40,46,94] (Figure 1).
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pression of CO and miR172 [94], which, in turn, activate the expression of FT, or directly activate 
the transcription of TSF, which ultimately upregulates the expression levels of LFY, AP1, and SOC1 
[11,32,46]. Drought tolerance: miR169 targets NF-YA2 to reduce its transcriptional abundance [96], 
which attenuates the repressive effect on downstream genes FLC and SVP [97], while FRI positively 
regulates the expression of FLC and SVP, resulting in the repression of FT transcription and delayed 
flowering under drought conditions [98]. Solid lines indicate identified associations, arrows indi-
cate positive regulation, and horizontal bars indicate negative regulation. 

The molecular mechanisms by which drought stress regulates flowering time in Ar-
abidopsis have been partially elucidated. Emerging evidence suggests that GI, a photoper-
iodic pathway gene that promotes flowering, is a pivotal regulator of the abiotic stress 
response and can influence plant tolerance to abiotic stresses, especially drought [11,99]. 
Under long-day environmental conditions, water deprivation achieves drought-induced 
early flowering in Arabidopsis through ABA-dependent control of GI signaling that acti-
vates expression of the florigen genes FT and TSF. Under short-day conditions, the 
drought and plant stress hormone ABA is considered to inhibit the transcription of FT and 
TSF via activating repressors of floral formation, which, in turn, leads to late flowering in 
Arabidopsis [11,20,32,46,100]. It has been confirmed that the GI-miR172 pathway is in-
volved in drought-induced early flowering by downregulating WRKY44 (directly re-
pressed by miR172) [94] (Figure 1). Several other flowering inhibition genes are also in-
duced by drought stress. For example, water deficit induces the flowering repressor gene 
SHORT VEGETATIVE PHASE (SVP) (12, Table 1), which represses the transcription of 
genes related to ABA catabolism, and increases ABA accumulation, which improves 
drought tolerance in Arabidopsis, but flowering is delayed [97]. Similarly, FLOWERING 
LOCUS C (FLC) (13, Table 1), a flowering suppressor gene, also plays a role in the drought 
stress pathway, and the loss of FLC function leads to early flowering and decreased 
drought tolerance in Arabidopsis [101]. In rice (Oryza sativa), activation of the florigen genes 
HEADING DATE 3a (Hd3a) (14, Table 1), flowering integration factor OsMADS50 (an 
orthologue gene of SOC1 in Arabidopsis), and RICE FLOWERING LOCUS T1 (RFT1) (15, 

Figure 1. Simplified regulatory pathways linking drought stress and flowering in Arabidopsis thaliana.
Drought escape: ABF3/ABF4 further activates the expression of LFY, AP1, and SOC1 by targeting NF-
YC [95]. GI accelerates flowering under drought conditions by positively regulating the expression of
CO and miR172 [94], which, in turn, activate the expression of FT, or directly activate the transcription
of TSF, which ultimately upregulates the expression levels of LFY, AP1, and SOC1 [11,32,46]. Drought
tolerance: miR169 targets NF-YA2 to reduce its transcriptional abundance [96], which attenuates
the repressive effect on downstream genes FLC and SVP [97], while FRI positively regulates the
expression of FLC and SVP, resulting in the repression of FT transcription and delayed flowering
under drought conditions [98]. Solid lines indicate identified associations, arrows indicate positive
regulation, and horizontal bars indicate negative regulation.

The molecular mechanisms by which drought stress regulates flowering time in Ara-
bidopsis have been partially elucidated. Emerging evidence suggests that GI, a photoperiodic
pathway gene that promotes flowering, is a pivotal regulator of the abiotic stress response
and can influence plant tolerance to abiotic stresses, especially drought [11,99]. Under
long-day environmental conditions, water deprivation achieves drought-induced early
flowering in Arabidopsis through ABA-dependent control of GI signaling that activates
expression of the florigen genes FT and TSF. Under short-day conditions, the drought
and plant stress hormone ABA is considered to inhibit the transcription of FT and TSF
via activating repressors of floral formation, which, in turn, leads to late flowering in
Arabidopsis [11,20,32,46,100]. It has been confirmed that the GI-miR172 pathway is in-
volved in drought-induced early flowering by downregulating WRKY44 (directly repressed
by miR172) [94] (Figure 1). Several other flowering inhibition genes are also induced by
drought stress. For example, water deficit induces the flowering repressor gene SHORT
VEGETATIVE PHASE (SVP) (12, Table 1), which represses the transcription of genes related
to ABA catabolism, and increases ABA accumulation, which improves drought tolerance
in Arabidopsis, but flowering is delayed [97]. Similarly, FLOWERING LOCUS C (FLC) (13,
Table 1), a flowering suppressor gene, also plays a role in the drought stress pathway,
and the loss of FLC function leads to early flowering and decreased drought tolerance in
Arabidopsis [101]. In rice (Oryza sativa), activation of the florigen genes HEADING DATE
3a (Hd3a) (14, Table 1), flowering integration factor OsMADS50 (an orthologue gene of
SOC1 in Arabidopsis), and RICE FLOWERING LOCUS T1 (RFT1) (15, Table 1) (AtFT-like
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gene) coordinates the modulation of the drought escape response [87]. Meanwhile, the
CCT domain protein Ghd7 plays an important role in delaying the rice heading date and
regulating drought stress tolerance under long-day conditions [102,103]. The transcrip-
tion levels of Hd3a, RFT1,and EARLY HEADING DATE 1 (Ehd1, upstream of the florigen
genes) (16, Table 1) are drastically decreased under drought environmental conditions,
which eventually leads to delayed floral transition [85]. RICE CENTRORADIALIS 1 (RCN1,
an orthologue of TFL in Arabidopsis) (17, Table 1) is reported in rice as a flowering time
regulation gene in the pathway of drought-regulated floral transition that interacts with
the 14-3-3 protein and OsFD1 to repress Hd3a protein function but not its transcriptional
level, causing delayed flowering in rice under drought stress [84,104] (Table 2). These
results suggest that when plants are subjected to drought stress, a large number of genes
are induced to be expressed, including genes critical to the flowering pathway, and that
differences in the expression of these genes between species ultimately lead to different
flowering outcomes.

Table 2. Some examples of stress-induced flowering associated with flowering pathway genes. The
yellow areas show examples of flowering induced by drought stress, the blue areas represent low
temperature stress, and the red areas represent heat stress.

Abiotic Stress Factors Species Flowering Response Related Flowering Pathway Genes References
Drought (LD) Arabidopsis early flowering FT, GI, SOC1, TSF [11]
Drought (SD) Arabidopsis delayed flowering FT, TSF [46]

Rice
early flowering Hd3a (AtFT), OsMADS50 (AtSOC1),

RFT1, Ehd1, OsTIR1, OsABF2, OsmiR393 [85,87,105]

delayed flowering RCN1 (AtFT) [84]
Maize early flowering ZmNF-YA3 [106]
Barley early flowering miR172, AP2-like [107]

CiNF-YA1 [92]
Citrus induction CiFD [13]

Brachypodium delayed flowering BdRFS [17]
Solanum lycopersicum early flowering SlOST1, SlVOZ1 [18]

OXS3, AP1 [49]
delayed flowering OXS2, SOC1 [82]Arabidopsis

ABF3/4, NF-YC, SOC1 [95]
early flowering miR169d, AtNF-YA2 [96]

Drought

Sapium sebiferum induction GA1, AP2, CYR2 [36]
FCA, FVE, SVP, FLM [23,108]

MAF2 [109,110]
HOS1, CO, FLC [111–113]delayed flowering

HOS15, GI [114]
Arabidopsis

early flowering miR169d, AtNF-YA2 [96]
Phaibitis induction PnFT1, PnFT2 [30,31]

Chrysanthemum induction MAF2 (AtFLC) [110]
Poplar induction FT1 [115]

CiNF-YA1, CiFT [92]
CiFD [13]Citrus induction

CiFT, CsFT [39,116]
Medicago sativa delayed flowering MsFRI-L [117]

Barley/Wheat induction VRN1, VIN2, VRN3 [118–120]

Low
temperature

Cymbidium goeringii induction CgSVP [121]
FT [122]Arabidopsis early flowering PIF4, PIF5 [123,124]

Soybean induction GmFT2a, GmFT5a [125]
Barley delayed flowering FLC gene family [126]
Rice early flowering EG1, OsGI [127]

Maize early flowering ZmNF-YA3, ZmFTL12 [106]
Chrysanthemum delayed flowering FTL3 (AtFT) [128]

Heat stress

Brassica rapa delayed flowering H2A.Z, FT [129]

A nuclear factor-Y (NF-Y) transcription factor, ZmNF-YA3, has the dual function of
promoting maize flowering while increasing plant drought tolerance, but there is a lack
of evidence on the specific mechanism of ZmNF-YA3 in drought-affected maize flower
formation [106]. Also, Arabidopsis ABF3 and ABF4 act with NF-YCs to mediate drought-
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accelerated flowering by regulating SOC1 [95] (Figure 1). In citrus, CiNF-YA1 was also
found to promote drought-induced flowering by forming a complex with CiNF-YB2 and
CiNF-YC2 to activate CiFT expression, and overexpression of CiNF-YA1 in citrus increased
plants drought-sensitivity [92]. It is evident that NF-YAs are likely to be functionally
conserved in regulating flowering in annual and perennial plants, with functional diversity
resulting from physiological differences in response to stress. These studies support a
critical role for NF-YAs in promoting not only the flowering time but also drought response
(tolerance/sensitivity). However, future studies are needed to clarify whether NF-YAs are
directly involved in regulating drought-affected flowering. The bZIP transcription factor
FLOWERING LOCUS D (FD) (18, Table 1), together with FT and the 14-3-3 proteins, is
the florigen activation complex (FAC) (19, Table 1) that regulates plant flowering [130].
CiFD was found to form two distinct proteins through alternative splicing, CiFDα and
CiFDβ, that both initiate flowering in citrus. Among them, CiFDα was induced by low
temperature while CiFDβ was induced by drought stress. The regulatory mechanism
of CiFDβ promoting drought-induced flowering is independent of FAC and interacts
directly with AP1 [13] (Table 2). FRIGIDA (FRI) (20, Table 1) is an essential regulator of
flowering in various plant species, including Populus balsamifera [131], Medicago sativa [117],
Brassica napus [132], and Vitis vinifera [133]. Importantly, FRI modulates drought tolerance
through the FLC–OST1 regulatory module [101] (Figure 1). CiFRI, a homologue of FRI in
citrus, was drought-induced, and overexpression of CiFRI enhanced drought tolerance in
Arabidopsis and citrus, whereas silenced plants showed drought sensitivity, and the ectopic
expression in Arabidopsis exhibited late flowering. The citrus dehydrogenase gene CiDHN
may maintain the stability of the CiFRI protein during drought-induced degradation [14].
Therefore, the drought-induced flowering regulation genes are conserved between annual
and perennial plants. Together, these studies strongly support the pivotal roles of flowering-
time-regulated genes in drought stress response and tolerance. The main challenge in
woody plants is that the regulatory role of genes in drought-induced flowering can be
demonstrated, but there is no phenotypic evidence of flowering, which is related to its own
longer developmental process.

In addition, drought-induced transcription factors are closely related to the existing
flowering regulatory pathways, and these TFs affect the flowering process of plants by reg-
ulating the transcription level of flowering-regulated genes [12,17,134]. The tomato OPEN
STOMATA 1 (SlOST1) (21, Table 1) loss-of-function mutant causes reduced drought toler-
ance in plants, and the slost1 mutant exhibits a late-flowering phenotype under both normal
and drought environmental conditions. SlOST1 combines with the flowering integrated
gene VASCULAR PLANT ONE-ZINC FINGER 1 (SlVOZ1) (22, Table 1) to form a regulatory
module, and then interacts with the promoter of SINGLE FLOWER TRUSS to regulate
tomato flowering under drought stress [18]. A conserved and specific gene family in plants,
the Regulator of Flowering and Stress (RFS) family (23, Table 1), produces dramatic alterations
in transcriptional levels in response to drought environmental stimuli. Overexpression
of BdRFS in Brachypodium distachyon not only substantially delayed flowering but also
promoted drought tolerance. The rfs mutants in Arabidopsis and Brachypodium distachyon
displayed an early flowering phenotype and were susceptible to water deprivation [17].

Studies have reported that epigenetic mechanisms, including histone acetylation as
well as methylation, are involved in the plant stress response and flowering time regula-
tion. Histone deacetylase HISTONE DEACETYLASE 6 (HDA6)-deficient mutant plants (24,
Table 1) exhibited a phenotype of reduced drought stress tolerance and delayed flowering
with the repression of FLC expression [135–137]. The histone H4 gene BrHIS4.A04, which
interacts with BrVIN3.1, is overexpressed in Chinese cabbage and reduces plant susceptibil-
ity to drought stress and accelerates flowering under normal growth conditions, whereas
under water deficit environmental conditions, the histone H4 gene represses the expression
of photoperiodic flowering genes to prevent premature bolting [77]. The regulation of
flowering time under drought stress is also related to microRNAs (miRNAs). miRNAs are
considered to be important suppressors of gene expression at the transcriptional and post-
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transcriptional levels. The involvement of miRNAs in regulating drought-stress-induced
plant flowering responses has been found in many species, such as the annual plants
Arabidopsis [138], rice [139], wheat [140], and maize [141], as well as in perennial plant
species [142]. miR172 acts in the process of drought tolerance and flowering time regula-
tion. miR172b-3p and miR172b-5p, derived from a common precursor, promoted flowering
and enhanced drought tolerance in barley (Table 2). miR172b-3p expression was upregu-
lated under drought stress treatment, which suppressed the four AP2-like transcription
factors in barley to accelerate flowering. The expression of miR172b-5p was inhibited under
drought conditions; thus, trehalose-6-phosphate synthase (TPS), a key enzyme for trehalose
biosynthesis targeted by miR172b-5p, was significantly accumulated to enhance drought
tolerance in barley [107]. miR156, which is in the same age pathway regulating plant
flowering as miR172, is also induced by drought stress and delays flowering of Arabidopsis
and tobacco [138,143]. miR169 family members play an important role in stress-induced
flowering by inhibiting NF-YA2, which, in turn, decreases FLC expression, allowing the
promotion of flowering [96] (Figure 1). In OsmiR393-overexpressing rice plants, miR393
responds to drought stress by targeting and, thus, repressing the expression of the auxin
receptor genes OsTIR1 and OsAFB2 for early flowering [105]. In addition, differential
expression of key proteins and post-translational modifications, such as SUMOylation, act
in regulating plants’ flowering processes under drought stress conditions [144]. Taken to-
gether, when plants are subjected to drought, a variety of molecular regulatory mechanisms
can be activated, suppressed, and integrated to maintain survival through the adjustment
of flowering time.

3. Temperature-Induced Flowering

With global climate fluctuation, extreme temperature conditions become more intense
and more frequent, and temperature becomes another abiotic stress factor that has an
enormous impact on flowering time [145]. Temperature stress, including heat and cold
stress, are a serious threat to the physiological and developmental processes of plants,
particularly in terms of floral transition and crop productivity [20,93,146]. For many
plants, the process of prolonged exposure to non-freezing temperatures to allow for a
successful floral transition the following spring is called vernalization. Heat and cold
acclimation have been considered as a possible strategy for plants to mitigate the damage
caused by temperature stress [12]. Clearly, understanding the response of plants to diverse
environmental temperatures is essential to discriminate between the effects of vernalization
and temperature stress on plants’ floral transition. Below, we discuss the vernalization
pathway in model plants, further summarize the differential physiological phenotypes of
various plant species under cold and heat stress conditions, and, finally, we focus on the
potential molecular mechanisms underlying temperature-induced flowering.

3.1. Vernalization-Mediated Floral Transition

The successful transition of plants from vegetative growth to reproductive devel-
opment relies on the completion of flowering at an appropriate time to cope with the
hazards caused by adverse environmental conditions. Accordingly, several plant species
have evolved mechanisms to integrate diverse environmental cues, thereby coordinat-
ing flowering time with favorable seasonal conditions, and the vernalization pathway
constitutes a typical example of such a process [147–149]. Vernalization is an essential
adaptation of plants to natural environmental temperatures, ensuring the acquisition of the
competence to flower in spring by prolonged exposure to low winter temperatures so that
reproductive developmental processes can be carried out under appropriate temperature
conditions [150]. This programmed physiological response does not directly initiate flow-
ering, but rather provides meristematic tissue with the ability to perceive environmental
flowering signals. In temperate regions, many annual winter crops, such as wheat (Triticum
aestivum) and barley (Hordeum vulgare), flower in the spring of the following year, which
is conducive to successful reproduction, and adequate exposure to low temperatures for
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several months in winter (0–10 ◦C for about a month or more) is one of the determinants
of their flowering [151–153]. Vernalization is also widely found in biennial and perennial
plant species, such as vegetables and fruit trees, which require a prolonged period of
cold to break dormancy and initiate flowering [154]. Plant perception of low temperature
during the vernalization response consists of two distinct but continuous processes, namely,
cold perception to induce tolerance and output of a vernalization dosage to accelerate the
developmental transition [154,155].

The major molecular mechanisms and diverse genetic networks controlling vernal-
ization have been intensively studied in several plant species, especially in Arabidopsis,
wheat, and barley. In the model plant Arabidopsis, the vernalization requirement is, to
a large extent, conferred by the interaction of two determinant proteins: the MADS-box
protein FLC [156,157] and the scaffold protein FRI [158]. In the autumn prior to winter cold
exposure, FRI transcriptionally activates FLC by forming complexes with FRI ESSENTIAL
1 (FES1), FRI-LIKE 1 (FRL1), FLC EXPRESSOR (FLX), and SUPPRESSOR OF FRI 4 (SUF4)
(25–28, Table 1) [98]. High levels of FLC expression subsequently act both in leaves and
meristems to delay flowering through the transcriptional repression of genes encoding the
flowering promoters, such as FT, FD, SOC1, and LEAFY [159,160] (Figure 2). Therefore,
winter-annual Arabidopsis undergoes vegetative growth in the fall, and the vernalization
response leads to the inhibition of the floral repressor FLC expression, which ultimately ini-
tiates flowering in the following spring [161]. In contrast, Arabidopsis summer annuals with
lower FLC expression can flower rapidly within a single growing period, thus completing
the entire life cycle [98].
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Figure 2. Vernalization pathways in Arabidopsis and wheat. Solid lines indicate identified connections,
arrows indicate positive regulation, horizontal bars indicate negative regulation, red arrows indicate
increases, and blue arrows indicate decreases. Left: FRI interacts with FES1, FRL1, FLX, and SUF4
to activate the transcription of the downstream gene FLC, which regulates flowering in Arabidopsis
by repressing the flowering integrative genes FT, FD, and LFY, and low temperature suppresses
FRI expression [98,157,159,162–164]. Right: prior to vernalization, VRN1 expression levels are low,
and high levels of VRN2 inhibit VRN3 expression, thereby preventing flowering. During prolonged
cold winter exposure, VRN1 expression is activated by chromatin modification via decreased H3K27
methylation and increased H3K4 methylation, which downregulates VRN2 expression and promotes
the accumulation of VRN3 in the leaf, and VRN3 moves to the apical meristem to maintain high levels
of VRN1 and accelerate flowering [118,120,147,165–167].
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Comparatively, genes associated with vernalization requirements vary from Arabidop-
sis to the winter cereals wheat and barley. Thus far, a model of vernalization has been
established in wheat and barley in which VERNALIZATION1 (VRN1) (29, Table 1), VRN2,
and VRN3 are the core regulatory genes in the molecular framework of vernalization-
responsive flowering time control (Figure 2). VRN1 encodes a MADS-box transcription
factor and acts as a plant flowering activator in grasses by vernalization-induced regula-
tion of the plant transition from vegetative growth to reproductive development and is
putatively presumed to be orthologous to the Arabidopsis FRUITFULL (FUL), AP1, and
CAULIFLOWER (VAL) (30–31, Table 1) genes. VRN2, a floral repressor encoding a CCT
domain and zinc-finger containing protein, delays flowering until the plant’s vernalization.
VRN3 is the orthologous gene of Arabidopsis FT encoding a polyethanolamine-binding
protein whose expression is induced by the photoperiod and vernalization, and acts as
a mobile florigen to accelerate the flowering of plants [168–171]. Prior to vernalization,
which is the stage of vegetative growth in winter cereals, VRN1 expression levels are low,
whereas high levels of VRN2 repress VRN3 expression, thereby preventing flowering [172].
During prolonged winter cold exposure, VRN1 expression is activated via chromatin
modifications of reduced H3K27 methylation and increased H3K4 methylation, thereby
downregulating the expression of VRN2 and ultimately promoting VRN3 accumulation in
the leaves after vernalization [119,120,165]. Subsequently, VRN3 in the leaves then moves
to the shoot apical meristem in the form of a mobile florigen to maintain high levels of
VRN1 and accelerates flowering [165]. In recent years, the molecular mechanisms of the
vernalization response in Brachypodium distachyon, which belongs to the same subfamily as
wheat and barley, have been gradually revealed. The regulatory mechanisms of VRN1 and
VRN3 are similar to those of wheat and barley, but VRN2 can be induced under long-term
low-temperature exposure, indicating that the molecular mechanisms of the vernalization
response are not conserved despite being in the same subfamily [148]. The vernalization
requirement is a crucial trait of the transition from the vegetative to the reproductive stage
in many crop species, and, therefore, the studies of the molecular mechanisms underlying
vernalization-regulated flowering in plants are of great significance for the understanding
of low-temperature-induced flowering.

3.2. Cold-Stress-Responsive Flowering

The vernalization response in plants can only be achieved by exposure to winter cold
for a sufficiently long period of time, whereas cold stress acclimation involves a rapid
response to low, non-freezing temperatures. The vernalization pathway accomplishes
developmental transitions mainly by accumulating prolonged cold exposure, whereas cold
stress induces low-temperature tolerance in plants mainly by sensing low temperatures for
a short period of time. Thus, unlike the extensive studies of the vernalization pathways
in annual plants, the regulatory pathway of cold stress acclimation may be distinct. Cold
acclimation is the cold or freeze stress tolerance acquired by plants exposed to low positive
temperatures of 0–5 ◦C for short periods of time [173,174]. The adaptation of diverse
temperature ranges is specific in various plant species, with 0–15 ◦C during rice growth
considered to be cold or chilling stress, while near or below 0 ◦C is considered to be freezing
stress. Additionally, Arabidopsis is adapted to growth in a different temperature range with
rice, and the temperatures for cold (also referred to as chilling) and freezing stresses are
4–10 ◦C and below 0 ◦C, respectively [175–177].

During cold and freezing stress, plant growth and developmental processes are in-
hibited, but plants have evolved the competence to resist, tolerate, escape, or adapt to
the stresses through biochemical, morphological, and transcriptional alterations to pro-
tect themselves from stressful environmental conditions. The biological membrane is the
main damaged part of plants under low-temperature stress. Low temperature will reduce
the fluidity of the membrane, thus enhancing the permeability of the membrane to elec-
trolytes and other small molecules, resulting in an imbalance in ion exchange [66,178]. Also,
low-temperature stress triggers lipid peroxidation. Malondialdehyde (MDA) is the final de-
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composition product of membrane lipid peroxidation, which reflects the degree of damage
to the plant and serves as one of the indicators of cold tolerance, and the accumulation of
MDA will cause the disruption of the integrity of biological membranes, thereby altering the
membrane permeability and affecting the normal physiological and biochemical reactions
of plants [66,179,180]. Cold or chilling stress refers to the low, but non-freezing, temper-
ature that occurs frequently in nature, which has a tremendous restrictive effect on the
geographic location and crop yield of plants (especially tropical plants), leading to reduced
membrane fluidity and cellular dysfunction, which can cause plant wilting, etiolation,
and even necrosis, ultimately constraining growth and development [181–183]. Freezing
stress refers to the subzero temperatures in nature that have a dramatic impact on plant
photosynthesis, respiration, and metabolic processes, and mainly involves the formation of
ice, which leads to cell dehydration and membrane damage, accompanied by alterations in
calmodulin, intracellular Ca2+ levels, ROS signaling, and phytohormones [173]. It should
also be noted that the influence of low-temperature stress depends not only on the actual
temperature, but also on whether the cold or freezing stress appears gradually or suddenly,
and on the duration of the low-temperature stress. Additionally, the regulation of flowering
time by the ambient temperature has been reported in multiple plants range from annuals
to perennials, where short-term low-temperature stress can cause delayed flowering in a
wide range of plants [23] (Table 2).

Plants regulate the activity of many classical floral pathway regulators, such as
AP1 [184], FT [46,164], PHYTOCHROME-INTERACTING TRANSCRIPTION 4 (PIF4) [123],
PIF5 [124], MADSAFFECTING FLOWERING 2 (MAF2) [109] (32–33, Table 1), and SVP [121],
by sensing changes in the ambient temperature, thereby optimizing flowering time and
improving cold acclimation or freezing tolerance (Figure 3). The exposure of vernalization-
sensitive Arabidopsis to prolonged cold promotes floral transition via the vernalization
pathway. By contrast, cold stress caused by short-term cooler temperatures delays flower-
ing through activation of FLC. In Arabidopsis, FLOWERING CONTROL LOCUS A (FCA),
FLOWERING LOCUS VE (FVE), SVP, and FLOWERING LOCUS M (FLM) (34–36, Table 1)
are the cross-talk regulators between flowering time and the cold stress response. SVP
prefers to bind to FLM-β to regulate low-temperature-responsive flowering [108]. FCA and
FVE are floral-autonomous pathway genes and act to repress the expression of FLC, while
SVP forms a flowering repressor complex with FLC to become a floral repressor, which
ultimately co-regulates FT expression (Figure 3). The mutants fca, fve, and svp are insensitive
to ambient low-temperature-induced flowering [23,185–187]. More recent studies have
shown that the photoperiodic flowering pathway plays an important role in temperature
perception, mediated by the circadian clock genes GI and CO, which, in turn, regulate the
floral integrators SOC1 and FT. The transcript levels of GI are elevated together with upreg-
ulation of cold-responsive genes under low-temperature stress (Figure 3). Compared with
the control, gi mutants with a genetic background of the Col-0 ecotype are more resistant to
freezing stress [100], whereas gi mutants with a genetic background of the Ler ecotype have
increased susceptibility to freezing stress and are defective in freezing tolerance [188]. Also,
GI responds to temperature-regulated flowering time in Medicago truncatula [189]. Secondly,
CO serves as a molecular link that combines cold signaling with the photoperiodic flower-
ing pathway. The degradation of CO induced by low-temperature stress is mediated by
the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1
(HOS1) (37, Table 1), which, in turn, inhibits the CO-mediated activation of FT and ulti-
mately regulates the delayed flowering of Arabidopsis [111] (Figure 3). Additionally, HOS1
and FVE negatively regulate the cold stress response, with fve and hos1 mutants having
enhanced cold stress tolerance and hos1 mutants exhibiting an early flowering phenotype.
The chromatin modification factor FVE forms a histone repressor complex with HDA6,
which inhibits FLC transcription by directly binding to FLC chromatin, ultimately leading
to altered flowering time. Under short-term cold stress, HOS1 induces FLC expression at
the chromatin level by antagonizing the actions of FVE and HDA6, interfering with the
association of HDA6 with FLC chromatin in an FVE-dependent manner, which, in turn,
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leads to late flowering [112,113]. Moreover, other transcription factors are also important
for plants to regulate flowering in response to cold stress. HOS15 can interact with GI and
mediate GI degradation to repress flowering in response to low ambient temperature in
Arabidopsis [114] (Figure 3). The atho9 mutant exhibits a delayed flowering phenotype and
is extremely sensitive to cold stress.
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Figure 3. A simplified regulatory pathway for the link between ambient temperature and flowering
in Arabidopsis thaliana. Low-temperature stress: HOS15 and HOS1 were able to degrade GI and
CO proteins, respectively, indirectly inhibiting the expression of FT [111,114], in addition to HOS1
positively regulating the expression of FLC [113], whereas FLM-β regulated the expression of FT,
SOC1, and TSF by enhancing the stabilization of SVP [108,186]. miR156 directly targeted TSF,
reducing its transcript abundance, and delayed flowering in Arabidopsis under low temperature [138].
Heat stress: under higher temperature conditions, miR172 negatively regulated the expression of FLC
and deregulated the inhibitory effect of FLC on TSF. H2A.Z was repressed at high temperature, which
attenuated its inhibitory effect on PIF4, resulting in an increase in the transcript level of FT [129].
FLM-δ accelerated the degradation of SVP at high temperatures, which deregulated the inhibitory
effect on genes such as FT, SOC1, and TSF [108]. Solid lines indicate identified links, arrows indicate
positive regulation, and horizontal bars indicate negative regulation.

In contrast, the short-day plant Pharbitis nil, when exposed to a temperature range of
16–18 ◦C shows restricted vegetative growth and is induced to flower; thus, the process is
considered to be cold-stress-induced flowering [190]. PnFT1 and PnFT2, two homologs of
Arabidopsis FT in Pharbitis (Table 2), are major regulatory genes involved in low-temperature-
induced flowering [30,31]. Further studies are required to elucidate the gene networks that
regulate flowering under cold stress environmental conditions. The effect of cold stress on
the floral transition has also been reported in perennials, such as chrysanthemum (Chrysan-
themum morifolium) [110] and poplar (Populus spp.) trees [115] (Table 2). Similarly, among
subtropical and tropical tree species, including macadamia, mango, avocado, lychee, lime,
trifoliate orange, and satsuma mandarin, flowering is also induced by low-temperature
stress [116,191–193]. The increase in flower density under cold stress is associated with
upregulation of CiFT expression in citrus buds and leaves. The citrus transcription factor
CiNF-YA1 has been reported to control the response process to low-temperature stress by
forming a complex with CiNF-YB2 and CiNF-YC2 as an upstream regulator of CiFT [92].
The CiFDα protein produced by FD alternative splicing is induced by low temperature,
together with FT and the 14-3-3 proteins, forming a complex that regulates plant flow-
ering [13]. Furthermore, two FT homologues in poplar trees have been shown to play
important roles in coordinating the transition between vegetative growth and reproductive
development, with FT1 determining the initiation of reproductive development in response
to low winter temperatures [115] (Table 2). However, the molecular mechanisms involved
in the regulation of flowering by cold stress in perennials, especially in woody plants,
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remain rudimentary compared to those in annual plants. Further studies are necessary
to elucidate the specific gene networks that regulate flowering in perennial plants under
cold-stress environmental conditions by referring to the relevant mechanisms involved in
annual plants.

3.3. Heat-Stress-Responsive Flowering

With predicted global warming and climate change approaching, crop growth and
development can be limited by high ambient temperature [194–196]. Heat stresses are
considered to be above the normal optimal temperature and exceed the critical threshold of
plant tolerance, which is ultimately sufficient to cause irreversible damage to plant growth
and development [197]. The temperature threshold is defined as the optimal tempera-
ture range for regulating growth throughout the plant life cycle, which varies according
to the plant species, developmental stage, and organ type. Warm-season crops, such as
maize, soybean, tomato, and rice, generally exhibit higher temperature thresholds than
barley and wheat from temperate zones. Many crops display slightly lower temperature
thresholds at the early seed development and fruit-setting stages compared to other devel-
opmental phases [198,199]. Reproductive organs are more sensitive to moderate or extreme
temperatures during plant growth and development compared to vegetative organs [200].

A recent review also indicates that how plants respond to high-temperature stress
has become a hot topic of research [51]. Plants are sensitive to temperature, and heat
stress affects a range of physiological, biochemical, morphological, and developmental
processes, which, in turn, mitigate excessive damage from high temperature through such
alterations [122,201]. Heat stress interferes with cellular homeostasis, mainly manifested as
increased fluidity of lipid bilayers at high temperatures, increased membrane permeability,
protein denaturation, organelle function destruction, and even cell death [202,203]. It
has been reported that the nucleus and cytoplasm oxidation of Arabidopsis thaliana is
increased under heat stress, as evidenced by elevated levels of H2O2, which, in turn, induces
various reactive oxygen scavenging enzymes at the transcriptional level [178,204,205].
Moreover, heat stress can also induce accelerated plant growth, which, in turn, generates
plant thermal adaptation by moving susceptible parts away from the stress, a process
known as thermomorphogenesis [202,203,206–208]. For example, Arabidopsis display a
tendency for hypocotyl and petiole elongation under moderately high ambient temperature
conditions [201], whereas the stomata of barley, tomato, and Arabidopsis are induced to
remain open under extreme heat conditions [194,209]. Similarly, monocotyledonous crops,
such as rice, wheat, barley, and maize, or dicotyledonous crops, such as soybean and
tomato, showed elongation of leaves and hypocotyls at moderately high temperatures,
with tomato also exhibiting hypoplastic leaves [194,210–212]. Importantly, the series of
changes that occur when plants are gradually or briefly exposed to high temperatures are
conducive to the enhancement of heat stress tolerance, whereas the sudden occurrence and
prolonged duration of heat stress can be detrimental to plant growth and development.

The reproductive development stage, especially the floral transition process, is greatly
affected by high-temperature fluctuations compared to the adaptive growth of vegetative
development under heat stress conditions [213–215]. Plants avoid high-temperature expo-
sure during fertilization by altering flowering time under heat stress [216–218] (Table 2).
Wheat, sorghum, and rice, for example, flower in the morning or in the cooler evening
to complete fertilization before extreme temperatures lead to sterility [76,219,220]. Plant
species that cannot change their flowering time in response to high-temperature fluctu-
ations gradually disappear from their former natural habitats and eventually migrate to
higher altitudes and latitudes [201]. Moreover, heat stress also has a tremendous effect
on floral organ development in addition to flowering time. The adaptability of plants to
high-temperature stress in the natural environment is different, which can be reflected in
the great differences in flowering responses to heat stress. Heat stress has been reported to
accelerate flowering in Arabidopsis and to delay flowering in Brassica rapa [129], suggesting
that the effect of high ambient temperatures on flowering time is not a universal outcome.
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High temperatures induce early flowering in the monocotyledonous bulb plant Narcissus
tazetta [221,222], in contrast to elevated summer temperatures that delay flowering in
Chrysanthemum morifolium [128,223]. The accelerated flowering of crops in response to high
ambient temperature fluctuations does not translate into higher yields, due to the fact that
accelerated flowering in response to heat stress is also accompanied by faster senescence,
which leads to stunted grain growth, ultimately causing lower crop yields [224]. Therefore,
understanding the specific mechanisms of plant flowering in response to heat stress is
of great significance for improving adaptive growth at high temperatures and for more
effectively balancing the relationship between plant tolerance to heat stress and normal
growth at critical developmental stages.

The plant heat stress response (HSR) acquires high-temperature tolerance through the
induction of heat shock proteins (HSPs) and heat stress transcription factors (HSFs) [225]
(38–40, Table 1). Transcriptional regulation is extremely important in the plant response to
heat stress, especially HSFs, which are responsible for the rapid transcriptional activation of
downstream genes. The HSF-encoding genes are defined by 21 members in Arabidopsis and
25 members in rice, which are differentiated by the structural features of the oligomerized
domains into A, B, and C categories [226]. Based on an analysis of HSFs in Arabidopsis
and tomato, it was shown that the thermal-response-related genes of the HSF family
are also closely related to plant reproductive development [227]. The development of
gametophytes under heat stress in Arabidopsis is regulated by the homeostasis between
AtHSFB2a and its natural antisense RNA [228]. In tomato (Solanum lycopersicum), moderate
heat treatment (37.5 ◦C) leads to the accumulation of SlHSFA2 and enhances the tolerance of
seedlings under extreme heat stress conditions (47.5 ◦C). Meanwhile, SlHSFA2 expression
was inhibited when pollen was subjected to heat stress in the early developmental stage of
pollen formation, thus reducing pollen viability and the germination rate, suggesting that
SlHSFA2 is an important regulator of heat tolerance during pollen development [229]. HSPs
were initially recognized as proteins strongly induced by heat stress and which protected
plants from stress by re-establishing normal protein conformation and cellular homeostasis
under the control of HSFs [230]. The Arabidopsis BOBBER1 (AtBOB1) (41, Table 1) protein
belongs to a class of small HSPs (sHSPs), and atbob1 mutants have been reported to exhibit
developmental defects in flowers and the inflorescence meristem and lower tolerance to
high temperature, indicating that HSPs play a central role in both heat tolerance and the
floral development of plants [231].

The molecular regulatory mechanisms of floral transition in response to heat stress dif-
fer in plants. The accelerated flowering in Arabidopsis under moderately high temperatures
is due to increased AtFT expression [122,232]. ft mutants did not exhibit accelerated flower-
ing in response to heat stress [233]. Flowering response to heat stress was also achieved
in soybean by promoting GmFT2a and GmFT5a expression and repressing the upstream
negative regulators E1 and E2 [125]. Similarly, high temperature, which delays flowering
in chrysanthemum, is also associated with downregulation of FLOWERING LOCUS T-like 3
(FTL3, an FT homologue) (42, Table 1) expression [128]. However, there is no difference
in the expression levels of FT1 in barley and wheat subjected to high-temperature treat-
ment, indicating that the flowering of cereals responds to heat stress in an FT-independent
manner [214] (Table 2). Knowledge about the specific mechanism of floral transition in
Arabidopsis in a fluctuating high-temperature environment provides a framework for further
research on flowering response to heat stress in different plants. At the molecular level,
the histone variant H2A.Z decreases the incorporation of nucleosomes during flowering at
higher temperatures, which, in turn, permits the binding of the bHLH transcription factor
PIF4 to the FT promoter, and ultimately accelerates flowering in a temperature-dependent
manner. Neither pif4 nor pif5 mutants can accelerate flowering under heat stress, and pif4
pif5 double mutants flower later compared with the single mutation, suggesting that PIF4
and PIF5 are related to high-temperature-responsive flowering [123,234]. Additionally, PIF4
has been reported to be involved in controlling temperature-sensing memory and repro-
ductive transition in Arabidopsis [123], and the PIF4 homologue in soybean exhibits unique
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high-temperature adaptability [235]. SVP tends to bind FLM-δ to regulate the expression of
FT, SOC1, and TSF, ultimately mediating flowering in response to high temperature [108]
(Figure 3).

Due to the influence of extreme high temperatures, the alteration of flowering time
can have a huge impact on crop productivity. In barley, high-temperature-dependent ELF3
increased transcription levels of the core circadian clock genes GI, PSEUDO RESPONSE
REGULATOR (PRR), and LUX ARRHYTHMO (LUX) [236,237] (43–44, Table 1). A late-
flowering mutant allele, Ppd-1, was reported to retard flower development and reduce the
flower and seed number in spring barley at high temperatures, in contrast to the Ppd-1
and elf3 mutants, both of which showed earlier flower development and unchanged seed
number [237]. Moreover, an allelic variation of ELF3 in wheat may underlie an Earliness
per se locus (Eps-D1) (45, Table 1), which regulates flowering time depending on tempera-
ture [238,239]. High-temperature-delayed short-day flowering was also accompanied by
increased expression of HvODDSOC2, the MADS box flowering suppressor associated
with the FLC gene family [126]. Heat stress during flowering of rice, a short-day plant, can
lead to sterility. EXTRA GLUME 1 (EG1) (46, Table 1), a gene encoding a lipase primarily
located in mitochondria, acts upstream of flower identity genes (OsG1, OsMADS1, and
OsMADS6) in a high-temperature-dependent manner, thereby promoting robust flower de-
velopment [127]. In contrast, the eg1 mutants exhibit high plasticity in spikelet development
at high temperature and have a detrimental effect on maintaining flower development [127].
In maize, ZmNF-YA3 binds to the FT-like12 promoter to accelerate maize flowering, and
the Zmnf-ya3 mutant exhibits different high-temperature tolerance compared with the con-
trol, indicating that NF-Y transcription factors play an important role in maize flowering
response to heat stress [106] (Table 2). In summary, studies on the mechanisms of flowering
in response to heat stress vary widely between model plants and crops, and the regulatory
networks that have been studied are still relatively basic. Therefore, future research on
the floral transition caused by heat stress can enrich the overall regulatory network by
cross-referencing the components of molecular mechanism studies in different plant species,
laying an extraordinarily important foundation for research on perennial plants.

The effects of heat stress on the reproductive development of perennial plants, espe-
cially woody plants, are poorly understood. Woody plants growing in the temperate zone
follow an annual growth cycle of sprouting in spring, flowering in summer, followed by
the emergence of new buds in the fall [240]. However, the current global warming has a
great impact on the timing of spring bud germination, so the control of temperature on
the timing of bud burst in woody plants has become a new trend in research. In sexually
mature poplar, FT1 has been reported to initiate reproductive development in response to
low temperatures, whereas FT2 promotes vegetative growth as well as bud set inhibition
under high-temperature conditions [115]. Additionally, GtFT2 was found to be involved in
dormancy regulation induced by temperatures in the perennial herb gentian, peaking at the
time of dormancy release [241]. Due to the lack of available model plant species, the current
understanding underlying the molecular regulation mechanisms of the bud dormancy
cycle in woody plants is still incomplete. Similarly, due to the long study period and the fact
that the effects of heat stress on reproductive growth in woody plants are not immediately
apparent, the analysis of the mechanisms of this aspect in woody plants is limited. Taken
together, future studies on the molecular mechanisms of flowering response to heat stress
in woody plants can be further expanded by utilizing Arabidopsis as the framework. A
detailed knowledge of the molecular mechanisms by which heat stress affects flowering
is critical for breeding plant species with higher yields and greater tolerance to heat and
provides crucial information for mitigating the effects of climate alteration.

4. Conclusions and Future Perspectives

The optimal flowering time is crucial for maximizing reproductive success, a process
that is precisely regulated by a wide variety of environmental and internal factors. Accord-
ingly, this review outlines the current knowledge showing that diverse abiotic stresses, such
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as drought, low-temperature and high-temperature stress, alter the flowering time of plants.
Meanwhile, the roles of the critical flowering regulation genes and stress-response-related
genes are identified with consideration of the cross-talk molecular mechanisms underlying
flowering time regulation and the stress response. Compared with annual plants, especially
the model plant Arabidopsis, perennials, especially woody plants, involve a longer period of
time, and a heavier workload, to study the molecular mechanisms related to reproductive
development, resulting in the fact that little is known about abiotic stresses controlling
flowering time in perennial plants. Hence, it is important to understand the molecular
mechanisms of flowering time regulation in perennials under environmental stress. Al-
though our understanding underlying the effects of abiotic stress on flowering timing has
increased considerably in perennials, most of the regulatory mechanisms associated with
abiotic stress have been identified in Arabidopsis and currently remain elusive in perennials.
More importantly, the molecular pathways by which abiotic stress affects flowering time in
different plants are similar, but also exhibit many unique aspects. In future studies, it will
be both challenging and necessary to utilize the molecular network obtained in Arabidopsis
to advance the understanding of the molecular pathways involved in perennial plants
flowering time in response to abiotic stresses, as well as to conduct comparative studies on
different plant species.

Flowering time is affected by abiotic stresses through a complex network, but most of
the existing studies focus on the role of individual genes in the stress-regulated flowering
process, which makes it difficult to localize the key factors and is insufficient to show that
the whole process is controlled by one pathway only. Currently, multi-omics combined
analysis can provide in-depth analysis of complex regulatory networks, including gene
expression, protein function, and metabolites [242–244]. Comparative transcriptomics has
revealed differentially expressed genes for drought-stress-induced flower formation in
Curcuma kwangsiensis [74], as well as a regulatory cascade for flower development under
drought stress in Arabidopsis thaliana [40]. Meanwhile, the detection of protein changes
under abiotic stresses by comparative proteomics analysis is essential for revealing stress-
induced signal perception as well as response, and this information cannot be revealed
by transcriptomic analysis [245]. Certainly, metabolomics is also an important molecular
tool for identifying plant responses to different abiotic stresses [246,247]. However, the
application of omics approaches to abiotic-stress-regulated flowering time in plants is
relatively rare, so the combination of different omics tools is a new trend for future research
to identify complex regulatory networks involved in the abiotic stress regulation of plant
flowering. Since environmental alteration generally entails the simultaneous existence of
multiple abiotic stress factors, it is also necessary to focus on the effects of the combination
of various abiotic stresses on plant flowering in the future, so as to provide better tools for
breeders to cultivate reproductive traits in response to environmental alterations.
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