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Abstract: The sustainable use of water resources is of utmost importance given climatological changes
and water scarcity, alongside the many socioeconomic factors that rely on clean water availability,
such as food security. In this context, developing tools to minimize water waste in irrigation is
paramount for sustainable food production. The evapotranspiration estimate is a tool to evaluate
the water volume required to achieve optimal crop yield with the least amount of water waste. The
Penman-Monteith equation is the gold standard for this task, despite it becoming inapplicable if any
of its required climatological variables are missing. In this paper, we present a stochastic Bayesian
framework to model the non-linear and non-stationary time series for the evapotranspiration estimate
via Bayesian regression. We also leverage Bayesian networks and Bayesian inference to provide
estimates for missing climatological data. Our obtained Bayesian regression equation achieves
0.087 mm · day−1 for the RMSE metric, compared to the expected time series, with wind speed and
net incident solar radiation as the main components. Lastly, we show that the evapotranspiration
time series, with missing climatological data inferred by the Bayesian network, achieves an RMSE
metric ranging from 0.074 to 0.286 mm · day−1.

Keywords: irrigation planning; decision support system; artificial intelligence; stochastic modeling;
Bayesian inference

1. Introduction

Water maintains life. From a broad perspective, water resources are at the core of
several vital elements such as ecology [1], agriculture [2], transportation [3], electricity
generation [4], and thirst quenching [5]. Water resources also impact many sociopolitical
and economic areas and are essential for human survival, alongside other natural and
human resources. Given the importance of these factors for the development of humanity,
the United Nations (UN) proposed sustainable development goals (SDGs). These goals
consist of seventeen components with their underlying objectives proposed as guidelines
for the rational and sustainable development of all UN member states [6]. In Brazil,
many socioeconomic factors are directly tied to the use of water resources. For example,
hydroelectric plants generated the majority of the country’s electricity generation capacity
of 181.6 GW for 2022, with a share of 60.2% [7]. Brazil is also a key contributor to global
food security, ranking in 2021 as the world’s largest producer of coffee beans, oranges,
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and soybeans; the second-largest in cattle meat; and the third in maize and chicken meat,
among several other agricultural and livestock products [8]. The intricate interactions
between soil, plants, and atmospheric systems play a pivotal role in food production [9].
Therefore, techniques that aid in producing nutritious food based on limited components
of soil and water resources are paramount due to climate change and the scarcity of water
resources [10].

The productivity of crops is one of the predominant factors in the maintenance of
food security. The total yield of a crop is highly correlated with factors such as nutrient
satisfaction, the application of pesticides, sunshine, and water availability [11]. Wheat is
one of the three main cereals that underpin global security—alongside maize and rice—and
serves as an example to highlight the amount of water required to produce a significant
quantity of such an essential commodity [12]. In 2021, mainland China was the world’s
largest wheat producer, with an estimated harvested area of 23.5 million hectares, according
to the UN’s Food and Agriculture Organization (FAO-UN) [8]. Based on a rough approx-
imation where the estimated area is composed solely of winter wheat, which requires
approximately 120 mm (1200 m3· ha−1) for optimal production under regular climate
conditions [13], the water required solely for this crop during its production cycle amounts
to about 2.828 × 1010 mm as a volume measurement over a standardized area of 1 m2.
This water volume for the consumptive use of one crop in one country underscores the
importance of policies that promote the sustainable and rational use of water resources

One method to minimize the waste of water in irrigation is to perform the climatologi-
cal water balance for the cultivated area. This task consists of monitoring climatological
events—mainly evapotranspiration and precipitation—to estimate the availability of water
resources to the crops in the area [14]. The Penman–Monteith equation is the gold standard
for estimating a reference evapotranspiration metric under standardized conditions [15].
The method demands the acquisition of climatological variables—net solar radiation, wind
speed, temperature, and relative humidity—whose measurements may not be available
for a given area [16]. Several other empirical equations are present in the literature, most
as simplifications from the gold standard for specific regions or to deal with the lack of a
given climatological variable [17]. Many authors have presented different approaches to
tackle the issue of evapotranspiration estimates from data leveraging computational power
and algorithmic resources [18–22]. Moreover, the method proposed in [23] models and
discusses evapotranspiration on a global scale unaided by soil and vegetation data, and the
review in [24] covers many evaporation and evapotranspiration estimate methods from the
standpoint of several applications, their requirements, and characteristics.

Reliably assessing the parameters of the climatological water balance is paramount
for achieving sustainable water usage and providing food security for the population [25].
Despite the multitude of techniques and approaches to estimate these parameters—mainly
evapotranspiration—most methods presented in the literature lack flexibility when a re-
quired climatological factor is unavailable, becoming inapplicable [18]. Another character-
istic of many methods that provide forecasts based on climatological or agrometeorological
data is their inability to cope with the nonlinearity and non-stationarity inherent to these
elements [26,27]. As such, the specialized literature reveals a knowledge gap for stochastic
methods with a degree of flexibility that allows them to perform even with incomplete
information.

A method class that resonates with the purported characteristics is the stochastic
Bayesian regression analysis, which estimates the probability distribution functions that
best fits the data [28]. This process has the innate ability to assimilate the non-deterministic
and non-stationary characteristics in the data and provide a robust tool for modeling
real-world data in several fields, such as medicines [29] and power planning [30]. An-
other method based on Bayesian statistics is the Bayesian network (BN), which is an
approach based on probabilistic graph models encompassing association relationships
between stochastic variables, which allows for the query of the most probable outcome
of a given variable based on a complete or incomplete observation of the other variables
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in the model [31]. Examples of fields of study that benefit from BN modeling include
environmental science [32], supply chain analysis [33], and engineering reliability [34]. The
main drawback of this method relies on finding the directed acyclic graph that presents the
best adherence to the data, which is a super-exponential problem based on the number of
observed variables and belongs to the NP-hard class of problems [35].

The contributions of this paper are three-fold: first, we present and discuss a fully
stochastic computational framework to determine the climatological variables that are
most relevant to estimate daily evapotranspiration exclusively from data based on semi-
parametric modeling, Bayesian statistics, and MCMC methods. Second, we establish a
Bayesian logistic regression equation to incorporate climatological data characteristics
of nonlinearity and non-stationarity. Thirdly, we present a BN structure to support the
inference task of missing variables, which provides flexibility to the proposed model
and allows for its usage under different scenarios of data availability. We also show the
performance of the proposed BN to infer any of the missing relevant climatological factors
based on the evidence as samples of the other variables and achieve reasonable error
metrics for evaporation estimate from the logistic regression with inferred data against the
expected value. Lastly, we compare the behaviors of measured precipitation, estimated
evapotranspiration—both from the Penman–Monteith equation and the proposed method—
climatological water balance, and in situ tensiometer data to verify the adherence of the
theoretical models to real-world applications.

The remainder of this paper is structured as follows: Section 2 provides the theoretical
background relevant to the conducted experiments and discussions for both the climato-
logical models and fundamentals of Bayesian modeling. Section 3 presents the employed
data, evaluated models, and descriptions of the main algorithms. Section 4 presents the
results and discussions pertinent to the proposed experiments. Lastly, Section 5 presents
the conclusions of this paper, alongside remarks about the advantages and drawbacks of
the proposed methodology and a few identified gaps for future works.

2. Theory

This section provides a theoretical background of the topics discussed throughout this
work. Sections 2.1 and 2.2 present a theory for the climatological and agrometeorological
components of the discussion, while Sections 2.3 and 2.4 focus on the Bayesian inference
and BNs.

2.1. Reference Evapotranspiration—Penman–Monteith (FAO-56) Method

Estimating the amount of water evaporated and transpired by the culture and evapo-
rated from the soil is vital to determine the irrigation volume required for optimal produc-
tion. However, it is difficult—or in some cases, practically impossible—to measure directly
due to various climatological factors.

In light of the significance of evapotranspiration, the literature offers diverse analytical
methods [36–39] to estimate it from climatological variables based on various environ-
mental conditions [17]. These traditional methods utilize regression analysis to model
and extrapolate the evapotranspiration metric conditioned on the availability of specific
climatological variables, such as the Hargreaves–Samani equation, which relies solely on
mean temperature and extraterrestrial solar radiation [36]. Another instance is the Linacre
method, calibrated according to the Australian climate [37].

The Food and Agriculture Organization [15] has designated the Penman–Monteith equa-
tion as the gold standard for estimating standardized evapotranspiration for a grass crop
(vegetation height = 0.12 m, albedo = 23%) on soil with a fixed surface resistance of 70 S ·m−1

without water restrictions. The original Penman–Monteith equation is presented here as
Equation (1), which estimates the ET0 reference evapotranspiration in millimeters per day.

ET0 =

0.408∆(Rn − G) + γ

(
900

Tmean + 273

)
U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)
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The Penman–Monteith equation necessitates several climatological measurements,
including net solar radiation (Rn), mean daily temperature (Tmean), on-site wind speed at
2 m (U2), and actual (ea) and saturation (es) vapor pressure. The slope of the vapor pressure
curve (∆), the soil heat flux density (G), and the psychrometric constant (γ) are additional
parameters.

Despite its high correlation with the observed value for the evapotranspiration metric,
the primary limitation of this equation is its dependence on several climatological factors.
Weather stations that can automatically provide the required data for the Penman–Monteith
equation are unattainable to most rural producers, resulting in this method being unfeasible
to estimate [40].

One analytical approach employed throughout the literature to estimate daily evapo-
transpiration based on fewer climatological variables is the Hargreaves–Samani method [36],
presented here as Equation (2). This method requires the mean, maximum, and minimum
daily temperatures—respectively Tmean, Tmax, and Tmin—as well as an estimate for the
extraterrestrial incident solar radiation (Ra). Another common analytical approach is the
Benavides and Lopez method [39], presented as Equation (3), whose equation only requires
data on the mean daily temperature (Tmean) and mean daily relative humidity (RHmean).

ET0Hg = Ra × 0.408× 0.0023(Tmean + 17.8)(Tmax − Tmin)
0.5 (2)

ET0BL = 1.21× 10
(

7.42Tmean

234.7 + Tmean

)
(1− 0.01RHmean) + 0.21Tmean − 2.30 (3)

The variety of phytomorphology properties for crops used for plantations implies a
high variance for the water amount evaporated and transpired by the plants. For this reason,
and to provide a generic framework to estimate evapotranspiration under scenarios of
different cultures and development stages, the analytical equations—including the Penman–
Monteith approach—provide a standardized reference evapotranspiration (ET0 ≜ ET). To
estimate the evapotranspiration value for a given culture and development stage, one can
use the culture coefficient (kc) to obtain the crop evapotranspiration (ETc) according to
Equation (4).

ETc = kc · ET0 (4)

Throughout this text, the word “evapotranspiration” refers to the reference evapotran-
spiration ET0 ≜ ET unless stated otherwise.

2.2. Climatological Water Balance and Water Requirements

The water balance for a given region obeys the mass conservation principle summa-
rized by Equation (5), which describes the equilibrium of water inflows and outflows from
a control volume [41].

P = ET + Q + ∆S (5)

In Equation (5), the water inflow from precipitation (P) balances the outflows from
evapotranspiration (ET) and surface and subsurface runoff (Q), promoting a variation in
soil moisture (∆S).

When considering a plantation scenario of groundwater flow equilibrium, a linear or
exponential function describes the surface runoff as a function of precipitation [42]. As
such, Equation (6) describes the soil moisture dynamics as a function of evapotranspiration
and precipitation.

P = ET + f (P) + ∆S (6)

Assessing soil water content plays a fundamental role in establishing the water avail-
able to crops, which impacts plantation production. The water amount required for optimal
production depends on the culture, its development stage, and efforts to minimize wa-
ter waste.

A simple approach to estimating the water content in a given region relies on clima-
tological data for precipitation and evapotranspiration, the so-called climatological water
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balance, to estimate the available water deficit (awd), the percentage of water stored in soil
(st), and the net water balance [43]. Algorithm 1 presents the heuristics to assess the awd
and st metrics solely from the climatological factors.

Algorithm 1 Algorithm to estimate the accumulated water deficit curr_awd and water
stored curr_st based on evapotranspiration ET, precipitation P, and the previous values of
these estimates.
Require: ET, P, prev_awd, prev_st

1: if ET > P then
2: curr_awd← prev_awd + (P− ET)
3: curr_st← 100 · ecurr_awd/100

4: else
5: curr_st← prev_st + (P− ET)
6: if curr_st > 100 then
7: curr_st← 100
8: end if
9: curr_awd← 100 · ecurr_st/100

10: end if
return curr_awd, curr_st

Given all these nuances, several methods estimate soil water content based on readings
of low-cost sampling equipment, such as tensiometers and capacitors, to provide decision-
support for the irrigation responsible [44]. One of these methods is the van Genuchten
equation, which estimates soil water content for a specific soil (θ, in percentage) based
on soil moisture content estimated by suction pressure (ψ, in kPa) and experimental
coefficients [45]. Equation (7) provides the generic expression for the van Genuchten
equation.

vG(ψ) = θr +
θs − θr(

1 + (α|ψ|)n)m (7)

where θs is the saturated soil water content or field capacity, and θr is the residual soil water
content or wilting point under the physical limitations of the tensiometers. The parameters
α
[
cm−1], n, and m = 1− 1/n are constants obtained experimentally based on the soil’s

characteristic water retention curve.

2.3. Bayesian Regression and Modeling

Regression analysis is a tool used to estimate the influence of a set of input vari-
ables over an output (response) variable [46]. Let y be the target variable and X =
(X1, X2, . . . , Xn) be the set of components (or covariates) that may contribute to the values
of the outcome. Equation (8) presents a multiple linear regression of y as a linear combina-
tion of elements Xi plus a constant value as the series’ DC component. The main task of
this regression is to estimate A = {a0, a1, . . . , an} as the set of regression parameters from
the dataset.

y ≈ a0 +
n

∑
i=1

aiXi + ε (8)

A random variable usually assumed with a Gaussian N (0, σ2) distribution models
the regression error term ε (non-observed) in Equation (8). Under the frequentist approach,
the estimators of the regression parameters a0, a1, . . . , an are usually obtained using the
minimum squares method, i.e., the set of coefficients that minimizes the square sum of the
errors [47]. The variance parameter σ2 should also be estimated from the data.

Under a Bayesian approach (Bayesian regression model), we assume the same re-
gression model from Equation (8), while considering Gaussian errors, with the regres-
sion parameters βi representing random quantities with specified probability density
functions—also denoted as prior distributions—with hyperparameters φi. These hyperpa-
rameters may be univariate or multivariate, whose values are usually known, as represented
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in Equation (9). If the hyperparameters are unknown, which comes from a hierarchical
Bayesian approach, each hyperparameter also requires—over itself—a prior distribution.

y ≈ β0(φ0) +
n

∑
i=1

(βi(φi) · Xi) + ε (9)

Bayes’ theorem provides the means to obtain the posterior distributions for the re-
gression parameters βi [48]. Let D represent the dataset, π(B) represent the joint prior
distribution for the vector of regression parameters, B = (β0, β1, . . . , βn), and L(B | D)
represent the likelihood function for B based on the data D. Under the assumption of
Gaussian distribution for the error ε in Equation (9), the joint posterior distribution for B,
denoted as π(B | D), is given by the combination of the prior distribution π(B) with the
likelihood function L(B | D), as described in Equation (10). The integral in the denominator
represents multiple integrals with dimension dim(B).

π(B | D) =
π(B)L(B | D)∫

B π(B)L(B | D)dB
(10)

The integral in Equation (10)’s denominator represents multiple integrals with dimen-
sion dim(B), which presents the main drawback of the Bayesian regression analysis. An
analytical approach to estimate the term

∫
B π(B)L(B | D)dB usually becomes unfeasible.

Popular approaches extensively used in applied Bayesian analysis are Markov Chain
Monte Carlo (MCMC) method, such as Gibbs sampling or Metropolis–Hastings algorithms,
to simulate samples for the joint posterior distribution of interest [48]. The MCMC method
generates values from each conditional posterior distribution π(βi | β(i), D), where β(i) de-
notes the vector of all parameters, except βi, and is available in existing Bayesian software.

From the simulated samples of the joint posterior distribution of interest, we obtain
the posterior summaries of interest, such as Monte Carlo point Bayesian estimates for the
parameters of the model (usually the posterior means) or 95% credible intervals for the
parameters of interest.

The authors acknowledge the intricacies and hardships of the MCMC methods, such
as chain convergence, the sampler chosen, and initial values for the parameters in the
iterative method. These characteristics, albeit relevant, lie outside the scope of the present
work and were omitted. Please refer to reference [49] for more details on MCMC methods.

2.4. Bayesian Networks

Let D represent the dataset sampled from a system, which comprises n random
variables, i.e., variables whose values follow a probability distribution function. A BN is a
probabilistic graph model representing the stochastic association relationships between all
variables in a given system [31].

Let Θ be a characterization of the joint probability function, according to a product
measure for a system’s n random variables Xi, i = {1, 2, . . . , n} based on arbitrary ordering.
Equation (11) provides a generalization for such a joint distribution.

P(X1 = x1, . . . , Xn = xn) =
n

∏
i=1

P(Xi = xi | Xj = xj, ∀j < i) j ∈ N∗ (11)

It is possible to factor out the independent terms for each Xi variable in Equation (11),
which relies on conditional probability distributions. Let pa(Xj) represent the set of random
variables whose pairwise joint probability function satisfies the relation in Equation (12),
given an ordering for the system’s variables. The set pa(Xi) defines the set of parent
variables for Xi.

Xi ∈ pa(Xj)⇐⇒ P(Xi = xi, Xj = xj) < P(Xi = xi)P(Xj = xj),

i > j; i, j ∈ {1, 2, . . . , n} (12)
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Equation (13) presents a simplified version of Equation (11), based on the variables Xi
conditioned to their parents’ set pa(Xi).

P(X1 = x1, . . . , Xn = xn) =
n

∏
i=1

P(Xi | pa(Xi)) (13)

A BN Θ is a probabilistic graphic model that represents the joint probability function
in Equation (13), based on a directed acyclic graph (DAG) G [35]. The BN’s graphical
structure contains one vertex for each random variable Xi, and its edges correspond to the
perceived mathematical dependency of a variable on its parents. Based on this definition,
each node Xi has one directed path, starting from each Xj ∈ pa(Xi) and ending on itself.

A relevant comment regarding the definition of the parent sets from Equation (12) that
reflects on the direction of the edges in G is that it establishes an ordering for the random
variables. Based on the symmetrical nature of the right-hand side of Equation (12)—
P(Xi)P(Xj) = P(Xj)P(Xi)—whether Xi belongs to pa(Xj) or Xj belongs to pa(Xi) is
entirely dependent on the ordering of the variables. Indeed, the edges in the graph of a
BN do not imply a causal relationship between random variables but rather association
relationships based on the variables’ ordering [50].

Each vertex on the BN has an underlying representation of the probability distribution
σi for its values, conditioned to each realization for the elements on its parent’s set. This
mechanism—usually a set of conditional probability tables (Σ) when all observed variables
are discrete—allows for inference queries for the most probable outcome of any given
variable, given a complete or partial observation of all the elements on this component’s
parent set. As such, both the DAG G and the collection of CPTs over the vertices Σ are
factors that fully describe a BN Θ = (G, Σ) [31].

Equation (14) presents a generalization for Equation (10) based on Bayes’ theorem, and
the most right-handed side component is valid if the dataset contains only independent
and identically distributed (i.i.d.) samples.

P(Θ | D) =
P(D | Θ)P(Θ)

P(D)
∝ P(D | Θ)P(Θ) (14)

The model that has the best adherence to the underlying system is the one that
provides the best posterior probability based on the provided dataset under the (usually
naive [51]) assumption that the provided data fully represent the system’s behavior. As
such, Equation (15) provides a mathematical expression based on the right-hand side
Equation (14) to find the best model for the underlying system based on data.

max P(Θ | D) ∝ argmax
Θ

P(D | Θ)P(Θ) (15)

In other words, Equation (15) stipulates that the model parametrized by Θ that pro-
vides the best likelihood of data given its parameters P(D | Θ) is the one that provides the
best predictive posterior distribution P(Θ | D) for the system’s components.

Finding the best BN parametrized by Θ = (G, Σ) that maximizes the likelihood of
the data distribution according to the model, satisfying Equation (15), entails a graph
optimization problem [52]. This characteristic is due to the structural component of a BN
being a DAG, and the representation of the joint probability for each node relies on its
parent set.

There are three main approaches to obtaining a BN to maximize the data likelihood
of the model: score-and-search, constraint-based, and hybrid methods. Score-and-search
methods employ a measure to score the model’s adherence to the data and search on the
graph space for a structure that improves this metric. Constraint-based methods rely on
conditional independence tests over the data variables to establish the edges on G, similar
to those presented in Equation (12). Lastly, hybrid methods start from a constraint-based
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approach to scale down the graph search space and, afterward, a score-and-search method
to scour the reduced space.

The significant amount of time and computational power required to derive a Bayesian
Network (BN) from data are among the main disadvantages of this method. Despite these
substantial requirements, the inference queries on the BN structure rely on basic matrix
operations considering the CPT nodes.

3. Material and Method
3.1. Time Series for Climatological Data

The data employed throughout this paper originate from the Brazilian National Institute
of Meteorology (INMET—Instituto Brasileiro de Meteorologia). The dataset consists of time
series of seven climatological variables, i.e., temperature, atmospheric pressure, relative
humidity, dew point temperature, wind speed, incident solar radiation, and precipitation.

The particular monitored location is the city of Patrocínio in the state of Minas Gerais
(18°59′48′′ S, 46°59′09′′ W), at 978.11 m above sea level, and a warm temperate with a hot
summer climate profile (Cwa), according to the Köppen classification. Figure 1 presents
the geographical location of the state of Minas Gerais (MG) within the Brazilian map and
the Patrocínio municipality within the former, alongside four other municipalities whose
climatological time series that the authors employed as validation sets. Patrocínio is Brazil’s
largest coffee producer and the fourth-largest producer of bovine milk, among other goods.
The initial dataset consists of 5473 daily samples for each climatological variable from
Patrocínio/MG. The data span from 22 August 2008 to 31 January 2022, with a 97% rate of
valid elements.

Figure 2a–g present graphical representations of the time series, with temperature,
atmospheric pressure, relative humidity, and dew point temperatures sub-divided into
maximum, mean, and minimum values for each day. Figure 2h presents the estimated
evapotranspiration according to the Penman–Monteith equation over the available climato-
logical data.

An additional dataset with the same climatological variables from Patrocínio/MG acts
as a test set to evaluate the proposed method. This extra set spans from 1 February to 31
December 2022, with a total of 334 samples. Furthermore, four supplementary datasets,
each containing 334 samples from the same period previously described, from four dif-
ferent cities across Brazil, serve to evaluate the model when considering distinct regions
and climate profiles. Table 1 presents the names of cities, their geographic coordinates,
the climate profiles according to the Köppen classification, and their distances from Pa-
trocínio/MG. The only criterion for choosing these cities is to provide good coverage across
Brazil’s territory.
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Figure 1. The geographical location of the Minas Gerais (MG) state is highlighted in yellow within
Brazil’s map. The red detail within the blue area highlights the Patrocínio/MG municipality’s
geographical location. The other four markers represent cities with different climate profiles from
Patrocínio/MG’s, whose climatological time series were employed by the authors to validate and
deepen the discussion around the proposed model.

Table 1. Localization and profile climate of four different cities within Brazil, alongside their distances
to Patrocínio/MG.

City’s Name Coordinates Climate Profile Distance to
Patrocínio/MG (km)

Rio Preto da Eva/AM
2°41′56′′ S

59°42′00′′ W Tropical rain forest (Af) 2278

Cabaceiras/PB
7°29′20′′ S

36°17′13′′ W Hot semi-arid (BSh) 1723

Porangatu/GO
13°26′27′′ S
49°08′56′′ W Tropical wet (Aw) 659

Santo Augusto/RS
27°51′03′′ S
53°46′37′′ W Humid subtropical (Cfa) 1202
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(a) Temperature (b) Atmospheric pressure

(c) Relative humidity (d) Dew point temperature

(e) Incident solar radiation (f) Wind speed

(g) Precipitation (h) Estimated evapotranspiration

Figure 2. Visualization of the complete time series for each of the fifteen climatological variables
observed for the experiments in this paper, totaling 5473 samples; (a–d) follow the same colour pattern,
where the red line represents the maximum value for that variable, green for the mean observed
value, and blue for the minimum value; (e–h) represent the daily observations for each variable.
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3.2. Data Collectors

INMET employs the commercial Vaisala HydroMat™ model MAWS301 as a standard
climatological data collector for automatic stations, responsible for data acquisition and
communication with the governmental systems [53]. The climatological factors monitored
hourly by INMET are as follows:

• Temperature [◦C], available at maximum, minimum, and instant values;
• Relative humidity [%], available at maximum, minimum, and instant values;
• Dew point temperature [◦C], available at maximum, minimum, and instant values;
• Atmospheric pressure [hPa], available at maximum, minimum, and instant values;
• Wind speed and gust [m · s−1], measured at 10 m height;
• Wind direction [degrees];
• Incident solar radiation [kJ ·m−2];
• Precipitation [mm].

INMET provides climatological data hourly within an open-access policy from their
automatic collectors after acquisition, communication, and pre-processing. The final dataset
is available at https://tempo.inmet.gov.br/TabelaEstacoes/xxxx (accessed on 1 July 2023)
(site in Brazilian Portuguese), where xxxx is the required station’s code. The station code
for the automatic collector in Patrocínio/MG is A523.

3.3. Soil Characterisation

The soil characteristics around the Patrocínio/MG municipality correspond to those
of the Ferralsol reference soil group, according to the International Union of Soil Sciences
classification, with a high concentration of hematite [54,55].

The physical water parameters for this soil (field capacity (FC) and wilting point (WP))
alongside the water retention curve were obtained via the pressure plate method applied to
three different soil samples, with one from each layer, i.e., from 0 cm to 20 cm, from 20 cm
to 40 cm, and 40 cm to 60 cm.

The experimental results suggest uniform physical water parameters throughout
the three layers. As such, Figure 3 presents the resulting water retention curve for the
three strata.

Figure 3. Semi-log representation for the water retention curve obtained from three soil samples from
different depths near the Patrocínio/MG municipality. The uniform distribution of soil characteristics
throughout the layers allows for the representation of a single water retention curve.

Lastly, Table 2 presents the van Genuchten equation parameters based on the observed
soil retention curve in Figure 3. The authors include the parameters for each of the three
layers as a matter of completeness despite their uniformity.

https://tempo.inmet.gov.br/TabelaEstacoes/xxxx
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Table 2. Parameters for the van Genuchten equation obtained via the water retention curve and
pressure plate method.

Layer
θs

(cm3 · cm−3)
θr

(cm3 · cm−3)
α

(cm−3) n m

0–20 cm 0.59 0.31 0.25 1.33 0.25
20–40 cm 0.59 0.31 0.25 1.33 0.25
40–60 cm 0.59 0.31 0.25 1.33 0.25

3.4. Stochastic Modeling

The statistical models employed in this paper address three factors to assess the quality
of the Bayesian regression for the evapotranspiration metric: (1) Which mathematical
transformation applied to the target variable yields regression results with the lowest error
metric? (2) The influence of autoregressive components on the quality of the regression.
(3) An evaluation concerning the impact of the sample size on the regression learning
process and its results.

The experiments evaluate five distinct operations over the evapotranspiration metric:
linear— f (x) = x, Box-Cox transformation, square root, natural logarithm, and exponential.
Equation (16) presents the definition of the one-parameter Box-Cox transformation [56]
with an estimation of the value of the parameter λ from the dataset, which leads to better
normality of the transformed series or is assumed to be known in each application. The
number of autoregressive elements is, at most, three. Lastly, experiments employed the last
1000 or 2500 samples or the entire set with 5473 entries. A complete permutation of these
components results in a total of sixty experiments.

f (x, λ) =

{
(xλ−1)

λ , λ ̸= 0
log(x), λ = 0

(16)

Equations (17)–(23) establish the experiments’ framework based on the posterior dis-
tribution in Equation (10). Let N ∈ {1000, 2500, 5473} represent the number of samples for
each experiment and Xi represent each of the fifteen climatological variables employed,
according to Section 3.1. Equation (17) establishes the target series y composed of the evap-
otranspiration series after applying one of the five equations presented, while Equation (18)
provides a prior probability distribution assumed for this series based on a Gaussian density
function.

Equations (19a) and (19b) describe the parametrization of the hyperparameter µi
as a linear combination of the climatological elements. Equation (19a) applies when no
autoregressive window is present, while Equation (19b) denotes the experiments with
w ∈ {1, 2, 3} of such components.

Lastly, Equations (20)–(23) provide initial, approximately non-informative prior distri-
butions for the parameter τ and regression parameters βi. Equation (23) only applies to the
experiments with at least one autoregressive component.

The authors employed MultiBUGS 2.0 software [57] (available at https://www.multibugs.
org/, accessed on 15 August 2023). Each experiment contained five chains, 1000 samples as
the burn-in, and one in every ten values for the next 5000 obtained for the estimates.

yi = f (ET0i ) i = {1, 2, . . . , N} (17)

yi ∼ N (µi, τ) i = {1, 2, . . . , N} (18)

µi = β0 +
15

∑
j=1

β jXji + ε i = {1, 2, . . . , N} (19a)

https://www.multibugs.org/
https://www.multibugs.org/
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µi = β0 +
15

∑
j=1

β jXji +
w

∑
k=1

βky(i−k) + ε i = {1, 2, . . . , N},

w ∈ {1, 2, 3} (19b)

τ ∼ Γ(1, 1) (20)

β0 ∼ N (4, 0.01) (21)

β j ∼ N (0, 1) j = {1, 2, . . . , 15} (22)

βk ∼ N (0, 1) k = {1, . . . , w} (23)

3.5. Structural Learning

To build a BN that presents the best likelihood to the climatological and evapotran-
spiration data, the authors employed both the standard K2 greedy algorithm [58] and a
bio-inspired score-and-search algorithm [59].

The relevant nodes and the amount of required data were consonant with the results
of the set of sixty experiments described in Section 3.3, resulting in eight climatologi-
cal variables, alongside evapotranspiration as the target component and a dataset with
1000 samples.

The parameters for both methods were the default ones, with the Bayesian Dirichlet
equivalence with the uniform prior metric (BDeu) [60] as a scoring function and k-fold
(k = 5) cross-validation. Both methods resulted in the same graphical structure.

4. Results and Discussion

This section presents the results and relevant discussions about the proposed ex-
periments. Appendix A presents the complete tables for the numeric results of all the
experiments, and presents the graphical comparisons of the evapotranspiration metric,
considering the inference task of each climatological variable.

4.1. Selection of Climatological Variables

The root mean square error (RMSE) metric for each of the sixty experiments against
the expected time series for the Penman–Monteith equation over the original dataset ranges
from 0.086 mm · day−1 to 3.502 mm · day−1. These results range from the experiment with
logarithmic transformation, one autoregressive element, and 1000 samples, to the test with
the exponential function, no autoregressive terms, and 5473 samples, respectively. Table A1
presents the RMSE results for the sixty experiments proposed in Section 3.4, alongside their
mean absolute error (MAE) metrics; the closer the value of each error metric to zero, the
better adherence between the two series.

The total time required to reach convergence for each experiment on MultiBUGS
depends mainly on the amount of data provided to the software. Experiments with
1000 samples took 12.2 min, 2500 samples required 36.3 min, and the complete dataset
needed 67.3 min, on average. These times were achieved on a desktop with an Intel® Core™

i5-6600 CPU at 3.30 GHz, 8 GB of RAM, and operating a Windows® 10 Pro 64-bit.
The first finding is that the RMSE metric exhibits minor fluctuations within the same

transformation but higher fluctuations across functions. For instance, the experiments within
the logarithm function present RMSE from 0.086 mm · day−1 to 0.100 mm · day−1, while
experiments within the Box-Cox transform—with each λ parameter automatically obtained
by the transformation algorithm for each series—achieve RMSEs from 0.097 mm · day−1 to
0.107 mm · day−1. These results suggest that the mathematical function choice is a relevant
first step to minimize the estimation error based on this approach.

Within the same mathematical transformation, when comparing the error metric
according to the number of samples of each experiment, the error metric consistently
presents the lowest value for experiments with 2500 samples. Although this improvement
is marginal compared to the errors from those with 1000 samples, this result suggests the
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existence of an optimal data volume for the inference task on these variables, and a large
volume of data may impair the inference task by introducing more noise into the model.

Finally, when observing the error performance based on the amount of past informa-
tion provided to the model, there is a marginal improvement across all sixty experiments for
each past value added. This result is consistent with the observed meteorological dynamics,
as the amount of water evaporated and transpired from the previous day plays a role in the
maintenance of relative humidity, dew point temperature, and surface temperature for the
current day, which are factors that directly impact the evapotranspiration phenomenon.

The exponential transformation is the one that consistently presents inference results
with the highest error metric, according to Table A1. The results and discussions from this
point onward do not consider the experiments with the exponential function, given their
errors within one or two orders of magnitude greater than those obtained by the other four
transformations.

The output of the MultiBUGS software includes the interval at 95% credibility for each
beta regression parameter and the most probable value within this interval. As such, a
climatological element is relevant if the credible interval for its beta coefficient does not
encompass zero, as any value for the climatological variable would represent no impact in
the regression.

Table A2 contains a complete overview of the occurrence of each climatological vari-
able deemed relevant by the regression model, grouped by transformation. Across all forty-
eight experiments—excluding the twelve from the exponential function—precipitation and
all three measurements for atmospheric pressure do not contribute to the regression model.
The variables for maximum dew point temperature and minimum temperature and dew
point temperature contributed to a few experiments.

Eight variables consistently supported the regression analysis in more than half of
the twelve experiments for each function. Wind speed and net solar radiation are relevant
across all forty-eight experiments; mean temperature and dew point temperature, maxi-
mum temperature and relative humidity, and minimum relative humidity are significant
for several experiments. Mean relative humidity is the last of the relevant climatological
variables, although this component did not contribute to any regression with the square
root function.

The high relevance observed from the wind speed and net solar radiation throughout
all experiments is consistent with the observed meteorological phenomena. Both com-
ponents directly contribute to the regional climate, represented by temperature, relative
humidity, and dew point temperature. The irrelevance of the precipitation is also within
expectation, given the assumption that elements within a much wider region contribute
to this component with their dynamics not considered here. The atmospheric pressure
components directly impact the dew point temperature, and the absence of this variable
from the set of relevant variables is likely due to a discrepancy in the magnitude of the
pressure measurements compared to the other elements

While Table A1 shows that the natural logarithm is the function that provides a
regression with the lowest errors, Table A2 presents this function as the most assertive
to which variables are most relevant to the stochastic regression for evapotranspiration.
Further, the error improvements within this transformation are negligible after providing
more data and autoregressive components, given the trade-off of obtaining these. Based
on these considerations, the authors establish that the stochastic model with a natural
logarithm transformation and no autoregressive elements, trained with 1000 samples,
shows the best adherence to the evapotranspiration metric.

Table 3 presents the numerical values achieved for the beta coefficients from the
experiment utilizing natural logarithm transformation on the evapotranspiration data, with
1000 samples for the parameter learning and no autoregressive component. The coefficients
and their respective climatological variables—whose 95% credible intervals do not contain
zero and, as such, characterize a relevant variable in this context—are highlighted in blue.
The independent coefficient β0 for this experiment is β0 ≈ 0.6373.
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Based on the maximum a posteriori (MAP) values of each beta parameter and the rela-
tionships detailed in Equations (17) and (19a), Equation (24) presents the approximation for
the hierarchical Bayesian regression for the evapotranspiration metric; this is based on the
experiment identified as the best among the sixty conducted. Although this representation
for Equation (24) is similar to linear regression, each beta coefficient corresponds to a den-
sity distribution function, and its best point estimator value lies within the non-symmetrical
95% credible interval.

ln(ET0) ≈ 0.6373− 0.024 · Tmean + 0.022 · Tmax

− 0.006 · RHmean − 0.005 · RHmax − 0.010 · RHmin (24)

+ 0.028 · DPmean + 0.498 ·Wspeed + 0.113 · Rad

Table 3. Credible interval at 95% for the beta regression coefficients obtained from the experiment
with natural logarithm transformation, using a data partition of 1000 samples, and excluding the
autoregressive window feature. The relevant beta coefficients (i.e., those that do not include zero on
the interval or whose value is close to zero) are highlighted in blue.

Variable Coefficient 2.5% 97.5% MAP Value
Tmean β1 −0.035 −0.010 −0.024
Tmax β2 0.014 0.028 0.022
Tmin β3 −0.008 0.003 0

RHmean β4 −0.009 −0.004 −0.006
RHmax β5 −0.005 −0.004 −0.005
RHmin β6 −0.011 −0.008 −0.010

DPmean β7 0.014 0.039 0.028
DPmax β8 −0.005 0.006 0
DPmin β9 −0.008 0.004 0
Pmean β10 −0.001 0.002 0
Pmax β11 −0.003 0.001 0
Pmin β12 −0.003 0.001 0

Wspeed β13 0.484 0.513 0.498
Rad β14 0.093 0.133 0.113
Prec. β15 −0.001 0.000 0

Figure 4a contains a graphical comparison of the evapotranspiration time series based
on the Penman–Monteith equation (blue continuous line) against the estimated time series
from Equation (24) (red line) throughout 1000 samples. This result suggests that the
proposed method and subsequent equation properly conciliated the series’ non-stationarity.

It is relevant to evaluate if the error component follows a Gaussian distribution for
the estimated time series against the expected one, as the proposed Bayesian regression in
Equation (24) is similar to the model in Equation (19a). To this end, Figure 4b presents a
quantile–quantile plot for the distribution of the residual errors. As the blue dots lie close
to the red 45-degree line, the distribution for the error is close to a Gaussian distribution, as
required by the theoretical model.
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(a) Comparison. (b) Quantile–quantile plot.

Figure 4. Graphical representation of the results obtained from the experiment with natural logarithm
transformation, using a data partition of 1000 samples, and excluding the autoregressive window
feature; (a) presents the original time series as the blue line and the estimated time series as the red
line; (b) presents the quantile–quantile plot of the residuals for the estimated time series.

One relevant comparison is to ascertain the proposed method’s adherence to the
expected evapotranspiration according to the gold-standard FAO56 method against the
evapotranspiration estimated by other classical and deterministic approaches. As such,
Figure 5 presents a graphical comparison between the natural logarithm of the evapotran-
spiration from the FAO56 method (blue line), the Benavides and Lopez method (orange
line), and the Hargreaves–Samani method (green line); all three are based on the same
dataset, alongside the estimate from the proposed method (red line). This result confirms
the ability of the proposed approach to closely model the complex behavior of the FAO56
estimate, with an adherence better than the ones presented by other classical equations.

Figure 5. Graphical comparison of the results obtained from the experiment with natural logarithm
transformation, using a data partition of 1000 samples, and excluding the autoregressive window
feature (as the red line). The blue line represents the natural logarithm of the reference evapotranspira-
tion according to the FAO-56 equation; the orange and green lines represent the natural logarithm for
the reference evapotranspiration according to the Benavides and Lopez and the Hargreaves–Samani
equations, respectively. The latter two methods represent some of the analytical approximations
commonly employed under the unavailability of the climatological components required by the
FAO-56 equation.
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4.2. Stochastic Climatological Water Balance Comparison with In Situ Measurements

A proxy measurement for the water balance dynamics is necessary, mainly due to the
characteristics of the evapotranspiration metric. Given the measurement hardship, this
paper employs an estimate for the available soil water content on a coffee plantation in
the proximity of Patrocínio/MG based on tensiometer readings and the van Genuchten
equation.

Although the authors cannot divulge the precise location of this plantation due to
confidentiality concerns, Equation (25) presents the estimated soil water content θ as a
function of the matric potential ψ (kPa), according to the original Equation (7). For this
particular soil, θs ≈ 59% and θr ≈ 31%, α ≈ 0.25 cm−1, n ≈ 1.33 and m ≈ 0.25, based on the
experiments described in Section 3.3. Tensiometer readings were provided by a PalmaFlex
digital tensiometer, model SL-PF-TNSE.

θ = vG(ψ) ≈ 0.31 +
0.28(

1 + (0.25|ψ|)1.33
)0.25 (25)

Figure 6 presents the relationships between rainfall, estimated soil water content,
and estimated evapotranspiration on the top panel, based on in situ measurements from
a tensiometer monitoring the substrate from the surface to a depth of 20 cm, and from
a pluviometer, with both sampling data from the 9th to the 25th January 2021. In the
highlighted period (from the 9th to the 15th), the observed rainfall is enough to keep the
soil water content close to its maximum capacity (≈59%). From the 16th onward, when
there is no observed rainfall, the curves for soil water content and evapotranspiration
have a symmetrical relationship: the higher the estimated evapotranspiration, the faster
the reduction in soil water content. This characteristic against the in situ measurements
reinforces the Penman–Monteith method as adequate to model the consumptive use of
water due to evaporation and transpiration.

The middle panel of Figure 6 presents the influence on the estimated evapotranspi-
ration by the two most relevant climatological variables, according to the MAP values in
Equation (24). This panel exhibits the correlations for evapotranspiration trends with wind
speed (β13 ≈ 0.113) and net incident solar radiation (β14 ≈ 0.498). These relationships
of the target variable with the two most relevant climatological factors, according to the
Bayesian regression model, combined with the adherence observed in the first panel against
the in situ measurements, suggest the adequacy of the proposed method to represent the
hydrological phenomenon, even under scenarios where the traditional method cannot
be employed.

Lastly, the third panel compares the analytical time series for evapotranspiration
according to the Penman–Monteith metric and the results from Equation (24) over the same
dataset. These three panels suggest that this method models the expected analytical time
series and the underlying real-world dynamics.

These results support the adequacy of the proposed method in tracking the analyt-
ical FAO-56 equation and functioning as a framework to model dynamic and complex
phenomena based on non-linear, non-stationary time series and their underlying factors.
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Figure 6. Graphical representation of the climatological water balance compared to in situ samplings
from the 9th to the 26th of January 2021. The top panel contains a time series for the two principal
factors of the climatological water balance—rainfall and evapotranspiration—compared to the dy-
namics of the soil water percentage. The area highlighted in red represents the days when the water
intake to the plantation due to rainfall was sufficient to counteract the amount of water evaporated
and transpired. The middle panel presents the interaction between the estimated evapotranspira-
tion, wind speed, and incident net solar radiation, the latter two being the most relevant factors for
evapotranspiration estimation based on the results presented in Section 4.1. Lastly, the bottom panel
presents the estimated evapotranspiration based on the FAO-56 method compared to the values
obtained by Equation (24), applied to the same dataset during the established timeframe.
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4.3. Stochastic Evapotranspiration Inference with Complete or Incomplete Data

To evaluate the model’s adequacy in estimating evapotranspiration over a dataset
with new information, Figure 7 presents a graphical comparison of the natural logarithm of
the evapotranspiration calculated with the Penman–Monteith equation against the time
series obtained from Equation (24). This new dataset, comprising 334 samples not used
in the learning process, contains complete information on all the climatological variables
presented in Section 3.1.

Figure 7. Graphical comparison of the reference evapotranspiration from the Penman–Monteith
equation over the complimentary dataset against that obtained via the regression presented in
Equation (24). The RMSE metric between the natural logarithm of both series is 0.087 mm · day−1,
consistent with the results in Table A1.

Another way to check the model’s performance is to compare the expected time
series for the Penman–Monteith equation against the result from Equation (24) when
dealing with climatological data from regions with different climate profiles. Figure 8a–d
provide a graphic comparison similar to that in Figure 7, but this time it is applied to the
cities described in Table 1, with RMSE metrics and distances from Patrocínio presented in
Table 4. As expected, the RMSE error for each region increases as the distance from the
original city increases, reinforcing the notion that Penman–Monteith equation relies on
local climatological factors for an accurate estimate.

Table 4. Error metrics for the natural logarithm of the reference evapotranspiration derived from the
Penman–Monteith equation versus the values from Equation (24), based on the climatological data
from different cities in Brazil with different climate profiles compared to Patrocínio/MG.

City
RMSE

(mm · day−1)
Distance to

Patrocínio/MG (km)

Rio Preto da Eva/AM 0.202 2278

Cabaceiras/PB 0.140 1723

Porangatu/GO 0.102 659

Santo Augusto/RS 0.185 1202
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(a) Rio Preto da Eva/AM (b) Cabaceiras/PB

(c) Porangatu/GO (d) Santo Augusto/RS

Figure 8. Graphical comparison of the reference evapotranspiration from the Penman–Monteith
equation over the complimentary dataset for each different city presented in Table 1, against the
value obtained via the regression presented in Equation (24) over that city’s climatological time series;
(a) presents the comparison for Rio Preto da Eva/AM, which achieved RMSE = 0.202 mm · day−1;
(b) presents the comparison for Cabaceiras/PB, which achieved RMSE = 0.140 mm · day−1;
(c) presents the comparison for Porangatu/GO, which achieved RMSE = 0.102 mm · day−1; lastly,
(d) presents the comparison for Santo Augusto/RS, which achieved RMSE = 0.185 mm · day−1.

One shortcoming of every analytical approach to estimating evapotranspiration is
their prerequisite of having all the required climatological variables available. Under the
Bayesian framework, the BN provides a probabilistic approach to supply the most probable
value for missing data based on complete or incomplete evidence from the system.

Figure 9 presents a graphical representation of the BN’s DAG, which provides the best
posterior likelihood estimates based on the original dataset containing 1000 samples. The
nodes represent only the random variables relevant to the Bayesian regression from Table 3
instead of the complete set of fifteen variables. This approach reduces the graph search
space for the learning algorithm and employs only the relevant climatological variables,
which decreases the number of required components and sensors. The evapotranspiration
node is highlighted in blue; the omission of the conditional probability tables from the BN
is intentional due to the high dimensionality of each one.
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Tmean Tmax DPmean

Wspeed RadET0

RHmin
RHmean

RHmax

Figure 9. Bayesian network for estimating the natural logarithm of reference evapotranspiration from
the climatological variables most frequently present as relevant, according to the set of experiments
with natural logarithm transformation.

After learning the conditional probability tables based on the maximum likelihood of
the model over the training dataset, the BN framework represented in Figure 9 allows for
queries about the most probable state of a climatological variable, providing the Bayesian
regression analysis with a new level of flexibility to deal with missing data. For instance,
if a meteorological data collector experiences a failure in its anemometer, an estimate of
the most probable value for wind speed may allow for the use of the underlying methods
that require this variable, albeit within an error margin. Figure A1 presents the natural
logarithm of the expected evapotranspiration time series against the values obtained from
Equation (24) after replacing each climatological variable from the original dataset with
values inferred from the BN.

As expected, wind speed estimates based on the BN provide a time series with the
lowest adherence to the baseline time series. This result occurs because the wind speed is
one of the independent variables in the BN, resulting in the inference task for this variable
becoming a query for the most probable value that would induce the observed values for
the other variables in the system. This type of inverted query increases the error margin for
the estimated value and, alongside the relatively high MAP value for wind speed’s beta
coefficient, culminates in the amplification of the inference error on the final estimate for
evapotranspiration when wind speed data are lacking.

Table 5 presents the RMSE metric for the evapotranspiration estimates according
to Equation (24), considering the removal and subsequent inference of each one of the
climatological variables from the BN in Figure 9 and the expected evapotranspiration time
series. The variables presenting the highest error values are wind speed and minimum
relative humidity, which is reasonable within the BN structure as both components are
independent elements of the BN. The lowest error values are from the maximum relative
humidity component, likely due to its position on the graphical structure, where only one
random variable influences it, and it does not influence any others, and due to the lowest
absolute MAP value of the beta parameter for maximum relative humidity in Equation (24).

The results in Table 5 suggest that the BN approach provides efficient estimates for
the required variable under scenarios lacking a single component and allows for the
maintenance and usage of methods that may require these missing factors.
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Table 5. Error metric for the natural logarithm of the reference evapotranspiration metric from the
Penman–Monteith equation against the value from Equation (24), after the removal of each relevant
climatological variable and the inference of its value from the BN in Figure 9.

Removed and Inferred Variable
Evapotranspiration RMSE

(mm · day−1)

Tmean 0.087
Tmax 0.092

RHmean 0.087
RHmax 0.074
RHmin 0.156
DPmean 0.085
Wspeed 0.286

Rad 0.096

5. Conclusions

In this paper, the authors provided and discussed a complete stochastic and Bayesian
framework to model a real-world application based on non-deterministic and non-stationary
data.

The first result shows how the Bayesian regression analysis is affected by the employed
mathematical pre-processing operation, the amount of provided data, and the number
of available autoregressive components for this application. Based on the RMSE metric,
the natural logarithm function is the best candidate to model the evapotranspiration
time series.

The established baseline Bayesian regression equation provides a close approximation
for the evapotranspiration metric modeled by the Penman–Monteith equation, and for the
dynamics of soil water moisture measured by tensiometers. As such, the results from the
entirely data-driven approach are coherent with the traditional analytical method and the
real-world phenomenon it proposes to model.

The Bayesian regression analysis also highlights the subset of random variables rele-
vant to the stochastic model. We leverage this newfound insight to build another Bayesian
structure in the form of a BN, as the knowledge of relevant variables allows for a reduction
in the graph‘s search space.

Lastly, we show the adequacy of probabilistic queries over the BN structure to estimate
climatological variables required for the analytical methods. Our results show that the
BN toolset provides synthetic data with a high degree of adherence to real-world data
and, in turn, allows for the application of subsequent methods. As expected from the
theoretical basis, this inference task presents the worst performance when estimating a
value for independent nodes on the graphical structure. The flexibility the BN provides for
analytical methods may even offset the time and computational power required to learn an
adequate configuration for the query process.
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Appendix A

Appendix A.1. Complete Table for the Error Metrics

Table A1. The RMSEs and MAEs of all sixty experiments, combining each proposed transformation,
original dataset partition, and autoregressive window. From a scoring standpoint, every experiment
achieved error metrics within the same order, except for those with the exponential transformation.

Transformation Nº of Samples Window
RMSE

(mm · day−1)
MAE

(mm · day−1)

Linear

1000

0 0.115 0.074

1 0.112 0.073

2 0.112 0.073

3 0.112 0.073

2500

0 0.118 0.076

1 0.116 0.075

2 0.116 0.075

3 0.116 0.075

5473

0 0.139 0.090

1 0.134 0.089

2 0.134 0.088

3 0.133 0.088

Box-Cox

1000

0 0.107 0.054

1 0.105 0.054

2 0.105 0.054

3 0.105 0.054

2500

0 0.097 0.059

1 0.095 0.058

2 0.095 0.058

3 0.095 0.058

5473

0 0.101 0.070

1 0.098 0.069

2 0.097 0.068

3 0.097 0.068

https://tempo.inmet.gov.br/TabelaEstacoes/xxxx
https://tempo.inmet.gov.br/TabelaEstacoes/xxxx
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Table A1. Cont.

Transformation Nº of Samples Window
RMSE

(mm · day−1)
MAE

(mm · day−1)

Square root

1000

0 0.094 0.061

1 0.092 0.061

2 0.092 0.061

3 0.092 0.061

2500

0 0.093 0.062

1 0.092 0.062

2 0.092 0.061

3 0.092 0.061

5473

0 0.108 0.074

1 0.105 0.072

2 0.104 0.072

3 0.104 0.072

Natural logarithm

1000

0 0.088 0.054

1 0.086 0.053

2 0.086 0.054

3 0.086 0.053

2500

0 0.088 0.058

1 0.087 0.057

2 0.086 0.057

3 0.086 0.057

5473

0 0.100 0.070

1 0.098 0.069

2 0.097 0.068

3 0.097 0.068

Exponential

1000

0 2.408 1.010

1 2.296 0.979

2 2.283 0.988

3 2.282 0.993

2500

0 2.190 1.029

1 2.129 1.007

2 2.130 1.010

3 2.128 1.009

5473

0 3.502 1.609

1 3.458 1.560

2 3.430 1.561

3 3.429 1.560



Agronomy 2023, 13, 2970 25 of 28

Appendix A.2. Complete Table for the Relevant Variables

Table A2. The frequency of each climatological variable found relevant for each set of twelve
experiments, according to the transformation applied to the evapotranspiration metric. The variables
most frequently present are highlighted in blue.

Variable Linear Box-Cox Square Root Natural
Logarithm

Tmean 6 12 8 12
Tmax 9 12 12 12
Tmin 3 4 1 4

RHmean 8 10 0 11
RHmax 11 8 4 12
RHmin 11 12 12 12
DPmean 6 12 8 12
DPmax 2 1 0 0
DPmin 8 1 1 2
Pmean 0 0 0 0
Pmax 0 0 0 0
Pmin 0 0 0 0

Wspeed 12 12 12 12
Rad 12 12 12 12
Prec. 0 0 0 0

ET0[−1] 9/9 9/9 9/9 9/9
ET0[−2] 4/6 4/6 4/6 4/6
ET0[−3] 1/3 1/3 1/3 2/3

Appendix A.3. Graphical Comparison between the Expected Time Series and Inferred Data

(a) Maximum relative humidity (b) Minimum relative humidity

(c) Mean relative humidity (d) Mean dew point temperature

Figure A1. Cont.
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(e) Maximum temperature (f) Mean temperature

(g) Wind speed (h) Net solar radiation

Figure A1. A graphical comparison between the expected time series and the results obtained after
each climatological variable was removed from the dataset; subsequent inference of the components
based on the Bayesian Network structure.
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