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Abstract: Maize is one of the important grain crops grown globally, and growth will directly affect
its yield and quality, so it is important to monitor maize growth efficiently and non-destructively.
To facilitate the use of unmanned aerial vehicles (UAVs) for maize growth monitoring, comprehen-
sive growth indicators for maize monitoring based on multispectral remote sensing imagery were
established. First of all, multispectral image data of summer maize canopy were collected at the
jointing stage, and meanwhile, leaf area index (LAI), relative chlorophyll content (SPAD), and plant
height (VH) were measured. Then, the comprehensive growth monitoring indicators CGMICV and
CGMICR for summer maize were constructed by the coefficient of variation method and the CRITIC
weighting method. After that, the CGMICV and CGMICR prediction models were established by the
partial least-squares (PLSR) and sparrow search optimization kernel extremum learning machine
(SSA-KELM) using eight typical vegetation indices selected. Finally, a comparative analysis was
performed using ground-truthing data, and the results show: (1) For CGMICV, the R2 and RMSE
of the model built by SSA-KELM are 0.865 and 0.040, respectively. Compared to the model built
by PLSR, R2 increased by 4.5%, while RMSE decreased by 0.3%. For CGMICR, the R2 and RMSE
of the model built by SSA-KELM are 0.885 and 0.056, respectively. Compared to the other model,
R2 increased by 4.6%, and RMSE decreased by 2.8%. (2) Compared to the models by single indicator,
among the models constructed based on PLSR, the CGMICR model had the highest R2. In the models
constructed based on SSA-KELM, the R2 of models by the CGMICR and CGMICV were larger than
that of the models by SPAD (R2 = 0.837), while smaller than that of the models by LAI (R2 = 0.906)
and models by VH (R2 = 0.902). In summary, the comprehensive growth monitoring indicators
prediction model established in this paper is effective and can provide technical support for maize
growth monitoring.

Keywords: multispectral remote sensing; summer maize; comprehensive growth; SSA-KELM;
vegetation index

1. Introduction

Maize is one of the most important crops grown globally and accounts for the highest
proportion of the global cereal market. Ensuring maize production is of great significance
in guaranteeing global economic development and food security [1]. The growth of maize
is an important data source for early yield estimation, and its final yield can be predicted to
a certain extent. Sujan Sapkota et al. [2] used a drone equipped with a multispectral camera
to obtain the canopy spectral information of maize plants, and successfully monitored the
growth and yield estimation of maize by using multiple growth parameters such as maize
plant height, biomass, and leaf area index combined with vegetation index. Therefore,
real-time and effective monitoring of field corn growth is of great significance in guiding
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field management [3]. In maize growth monitoring research, many parameters characterize
maize growth [4–7], such as aboveground biomass, chlorophyll content, leaf area index,
plant height, and leaf nitrogen content. In the study, three growth indicators, leaf area index
(LAI, total plant leaf area per unit land area as a multiple of land area), relative chlorophyll
content (SPAD, relative proportions of chlorophyll content in different samples), and plant
height (VH, distance from the base of the plant to the top of the main stem, i.e., between the
growing points of the main stem), were selected to initiate research and analysis of summer
maize growth monitoring.

The leaf area index (LAI) is an important basis for characterizing the canopy structure
and growth of crops, and is one of the most important parameters for evaluating crop
growth conditions [8]. Ma JW et al. [9] constructed and validated a winter wheat LAI
prediction model by combining four methods (GPR, artificial neural network (ANN),
partial least-squares regression (PLSR), and spectral index (SI), with hyperspectral data),
and the results showed the best results for ANN and GPR. Hang YH et al. [10] explored
the use of spectral features, texture index, and crop cover to construct LAI estimation
models through UAV remote sensing data, and the results showed that the combination
of the three types of indices to construct multiple stepwise regression and artificial neural
network models estimated LAI with the best accuracy. Tao HL et al. [11] used a UAV with a
hyperspectral camera, and used stepwise regression analysis (SWR) and PLSR methods to
predict AGB and LAI using vegetation index, red edge parameters, and their combinations,
respectively. The results showed that the PLSR algorithm had the best effect in predicting
AGB and LAI by combining the vegetation index with the red edge parameters. Chlorophyll
(SPAD) is the main pigment that converts light energy into chemical energy and is the
driving force behind photosynthesis in plants [12]. Qiao L et al. [13] utilized multispectral
remote sensing images of maize captured by drones during the tasseling stage. They
observed a significant linear correlation between near-ground vegetation indices and maize
canopy chlorophyll content under medium and low crop coverage. For high coverage,
a noticeable nonlinear correlation emerged, and the model for monitoring chlorophyll
content, established based on partial least-squares regression (PLSR), demonstrated the
best performance. Guo Y [14] and team identified optimal combinations of drone spectral
indices and texture indices using the SRM model. Applying support vector machine (SVM)
and random forest (RF) models, they estimated maize SPAD values, with the SVM model
yielding the most optimal predictive results. Plant height (VH), as an important indicator
of crop growth, can be used to indirectly obtain crop biomass [15], and can also be used to
predict crop yield in conjunction with vegetation index and canopy cover [16]. Bending
et al. [17] obtained visible-light data of barley based on a UAV-mounted digital camera. By
constructing a CMS, they realized the accurate extraction of crop height and established
a barley plant height estimation model. Xu YF et al. [18] constructed 22 multispectral
vegetation indices with image spectral reflectance features, and selected three different
machine learning algorithms to establish a plant height monitoring model for winter
wheat. The results showed that the optimal prediction model for plant height was the
MLR-VH model. Under normal circumstances, a single growth indicator characterizes the
physiological information status of crops in a certain aspect. The data belong to the ‘point’
data in essence, and to a certain extent, they cannot represent the overall growth situation
of crops, the use of multiple indicators, and the relationship between them to establish a
comprehensive growth monitoring indicator (CGMI), which is of practical significance for
remote sensing monitoring of crop growth.

Comprehensive growth monitoring indicators can be modeled according to different
assignment methods, and the commonly used assignment method is the equalization
method. Pei HJ et al. [19] synthesized five indicators reflecting wheat growth, including
leaf area index, leaf chlorophyll content, plant nitrogen content, plant water content,
and biomass, into a single growth indicator according to equal weights, and combined
wheat growth by combining with partial least-squares regression, and achieved a high-
precision model. This method did not take into account the contribution of a single
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indicator to the integrated growth monitoring indicator and simply constructed each
indicator into a composite indicator according to equal weights. Although the above
studies have good predictive capabilities, most of them are limited to using a single growth
indicator to predict crop growth, or simply constructing a comprehensive growth indicator
without considering the contribution of each indicator to crop growth, which makes them
constructed from the prediction model has certain limitations. Considering the different
degrees of importance of each indicator in the comprehensive growth monitoring indicators
and the non-uniformity of the scale of each indicator, the coefficient of variation method
and the CRITIC weighting method were used to try to construct the comprehensive growth
monitoring indicators (CGMI).

In the study, we used summer maize multispectral image data to establish a crop
growth monitoring model, and comparatively analyzed the correlation between compre-
hensive growth monitoring indices and individual indices and vegetation index. The main
objectives include: (1) use of the coefficient of variation method and CRITIC weighting
method to weight chlorophyll content, leaf area index, and plant height according to their
contribution to the overall growth, and construct comprehensive growth monitoring indices
respectively; (2) analysis of the correlation of comprehensive growth monitoring indicators
and individual indicators with vegetation indices; (3) use of the PLSR and SSA-KELM
algorithms to construct a comprehensive growth monitoring indicator prediction model,
followed by analysis in comparison with a single growth indicator prediction model.

2. Materials and Methods
2.1. Overview of the Experimental Area

The experimental area was situated in China’s first tractor company limited intelligent
agriculture demonstration farm in Yiyang County, Luoyang City, Henan Province, China,
at coordinates 112◦37′11.72′′ E, 34◦47′79.03′′ N, belonging to the temperate continental
monsoon-type climate. The area where the geographical coordinates are located is shown in
Figure 1. The terrain in the experimental field was flat. The maize variety in this experiment
was Zheng Dan 958, which was planted in rotation with wheat. The planting density is
67,000 plants m−2, the row spacing is 0.6 m, and the plant spacing is 0.2 m. Its management
methods, such as irrigation, fertilization, pest, and weed control, were the same as those of
local conventional farmland.
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Figure 1. Geographical location of China’s first tractor company limited intelligent agriculture
demonstration farm.

2.2. UAV Data Acquisition and Preprocessing

This study utilized a DJI Phantom 4 drone (DJI, Shenzhen, China) to collect multi-
spectral remote sensing data of summer maize, equipped with an integrated multispectral
imaging system consisting of one visible-light camera and five multispectral cameras (blue,
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green, red, red edge, and near-infrared). The experiment took place on 22 July 2022, from
10:00 to 12:00 during the summer maize jointing stage, with stable light intensity, clear
weather, and no wind.

Before image acquisition, flight routes were planned using mapping software (DJI
Terra, V3.9.4, DJI, Shenzhen, China), and spectral image collection followed the planned
routes. The drone flew at a height of 70 m, with the sensor lens pointing vertically down-
ward and an 85% overlap rate in both longitudinal and lateral directions. The flight
direction was north-south, with a speed of 3.5 m/s.

For reflectance calibration, a calibration reflectance panel was placed on the ground in
the experimental area before and after image acquisition. The drone, manually controlled,
hovered 2 m directly above the calibration panel to capture spectral images, obtaining
standard reflectance values for the test.

Import the gathered multispectral images into Pix4D Mapper software (from Pix4D,
V4.4.12, Lausanne, Switzerland) for preprocessing to derive the reflectance spectrum of
summer corn within the sampling point ROI region (illustrated as the box in Figure 2). The
primary steps encompass (1) ortho-image processing; (2) calibration using reflectance board
DN values, generating stitched images; (3) geometric correction with concurrently obtained
high-definition digital images as references; (4) choosing the necessary ROI region pertinent
to this study; (5) deriving the average reflectance spectrum within the ROI, representing
the summer corn’s reflectance spectrum within that specific ROI region. For this study,
20 experimental ROI regions, each measuring 10 m × 5 m, are chosen based on growth
gradients. Of the data, 70% is designated as the training set (70 plants of maize), while the
remaining 30% forms the validation set (30 plants of maize).
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2.3. Field Data Acquisition

Growth indicators are time-sensitive [21]. Ground-truthing data, mainly including
relative chlorophyll content, leaf area index, and plant height, were synchronously collected
on the same day that summer maize multispectral remote sensing data were acquired.

(1) Measurement of Relative Chlorophyll Content

In this experiment, a portable SPAD-502Plus chlorophyll meter (Konica Minolta,
Tokyo, Japan) was used for SPAD determination. Five maize plants were selected in each
experimental area according to the five-point sampling method, avoiding leaf veins to
collect the SPAD values of the three parts of the ear leaves of each maize plant, the root, the
middle of the leaf, and the tip of the leaf. Each part was repeated twice, and the average of
the six times’ data was taken as the SPAD value of the plant [22]. The mean SPAD value
of 5 plants in the experimental area was calculated as the relative chlorophyll content of
maize plants in that area.
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(2) Determination of Leaf Area Index

In this experiment, leaf area index data were collected using the aspect ratio method.
Measure summer maize leaf length Lij and maximum leaf width Bij with a tape measure.
Five maize plants were selected from each experimental area according to the five-point
sampling method, and the Lij and Bij of their leaves were measured, and each part was
repeated three times to take the average value [23]. The mean LAI value of five plants
in the experimental area was calculated as the LAI of maize plants in the area. The LAI
calculation formula is as follows:

LAI = α× ρ
∑m

i=1 ∑n
j=1
(

Lij × Bij
)

m
(1)

where α is the maize leaf area conversion factor with a value of 0.75, ρ is the planting
density (plants m−2), n is the total number of leaves (pieces) of the jth plant, and m is the
number of plants measured.

(3) Maize Height Measurement

Five maize plants were selected in each ROI area according to the five-point sampling
method, and the vertical distance from the ground to the highest point of the plant was
measured physically using a tape measure with the plant’s leaves naturally spread. Mea-
surements were repeated three times for each plant to take the average value. The average
heights of the five maize plants in the experimental area were taken as the plant height of
the maize in that area.

2.4. Comprehensive Growth Indicator Construction

Based on the importance of relative chlorophyll content, leaf area index, and plant
height in the comprehensive growth monitoring indicator of summer maize, the Compre-
hensive growth monitoring indicator (CGMI) of maize was constructed. For this reason, in
this study, the CRITIC weighting method was used in this study to determine the weights
of the three indicators, and the weights of LAI, SPAD, and VH were A, B, and C. This led to
the establishment of the comprehensive growth monitoring indicator CGMICR.

The CRITIC weighting method is an objective method of assigning weights based on
the volatility of data [24]. Its basic idea lies in two indicators, which are volatility (contrast
strength) and conflict (correlation) indicators. Volatility is expressed using the standard
deviation. If the larger the standard deviation of the data indicates greater volatility, the
higher the weight will be. Conflict is expressed using the correlation coefficient table. If the
value of the correlation coefficient between the indicators is larger, it means that there is
more similarity between the indicators, and the smaller the conflict, then its weight will
be lower.

(1) Data Normalization

To eliminate the influence of different scales on the evaluation results, it is necessary
to normalize the indicators. The normalization formula is as follows:

X′ ij =
Xij − Xjmin

Xjmax − Xjmin
(2)

Uj =
(

X′1j, X′2j, X′3j . . . . . . X′ij
)

(3)

where Xij denotes the value of the jth evaluation indicator for the ith sample, Xjmin de-
notes the minimum value in the jth indicator, Xjmax denotes the maximum value in the
jth indicator, and Uj denotes the data normalized to the jth indicator.

(2) Calculation of Indicator Volatility
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In the CRITIC weighting method, a larger standard deviation indicates that the indica-
tor is more volatile and more informative, and more weight should be given to the indicator.

X j =
1
n

n

∑
i=1

Xij (4)

Sj =

√
∑n

i=1
(
Xij − X j

)2

n− 1
(5)

where X j denotes the mean of the jth indicator, and Sj denotes the standard deviation of
the jth indicator is the volatility of that indicator.

(3) Calculation of Conflicting Indicators

The conflict between indicators is expressed using the correlation coefficient; the
stronger the correlation between an indicator and other indicators, the less conflict there is
between the indicator and other indicators, reflecting more of the same information, and
the more repetitive the content of the evaluation that can be embodied, which to a certain
extent weakens the intensity of the evaluation of the indicator, and the weight assigned to
the indicator should be reduced.

R =
∑P

j,k=1
(
xij − xj

)
(xik − xk)√

∑P
j=1
(

xij − xj
)2

∑P
k=1(xik − xk)

2
(6)

Aj =
P

∑
i=1

(
1− rij

)
(7)

where R denotes the correlation matrix of the indicator, j, k denote the jth indicator and
the kth indicator, rij denotes the correlation coefficient between the ith indicator and the
jth indicator, and P denotes the number of indicators.

(4) Calculation of the Information Content of the Indicator

Cj = Sj × Aj (8)

(5) Calculation of Objective Weights for Indicators

Wj =
Cj

∑P
j=1 Cj

(9)

where Wj denotes the weight of the jth indicator in the whole evaluation system, and
P denotes the number of indicators.

(6) Comprehensive Growth Monitoring Indicator CGMICR

The CRITIC weight method was used to derive A, B, and C as 0.331, 0.390, and 0.279,
respectively, and the comprehensive growth monitoring indicator CGMICR was constructed.
The expression of CGMICR is as follows:

CGMICR = 0.331U1 + 0.390U2 + 0.279U3 (10)

where U1 is the normalized LAI value, U2 is the normalized SPAD value, and U3 is the
normalized VH value.

2.5. Selection of Vegetation Indices

In the initial stage of the study, the correlation analysis between a single band and the
maize growth indicator showed that the correlation between the single band and the maize
growth indicator was low, which was similar to the results of previous studies [25,26].
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Therefore, the vegetation index was used to predict the growth of maize. The vegetation in-
dex (VI) changes through the combination of reflectance in different bands, which weakens
the interference of background and other factors on the spectral characteristics of vegetation
to a certain extent, and helps to improve the accuracy of remote sensing data to express
crop growth. [27]. To better reflect the information contained in CGMI, this study extracted
the spectral reflectance of 20 ROI regions from the spliced raw images and constructed
vegetation indices by linear or nonlinear combinations. Eight vegetation indices with high
relevance and wide application were selected: Green Ratio Vegetation Index (GRVI), Green
Optimal Soil-Adjusted Vegetation Index (GOSAVI), Optimal Vegetation Index (VIopt),
Normalized Difference Vegetation Index (NVI), Green Difference Vegetation Index (GDVI),
Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), Vegetation
Index (RVI), Green Normalized Difference Vegetation Index (GNDVI), and Canopy Chloro-
phyll Content Index (CCCI). The formula for calculating the vegetation indices is shown
in Table 1.

Table 1. Vegetation indices and its calculation formula [20].

Vegetation Indices Equation References

GOSAVI (1 + 0.16)× (NIR− RE)/(NIR + RE + 0.16) Marin D B et al. [28]
GDVI NIR−G Zhou X F et al. [29]
RVI NIR/R Jiang J et al. [30]

GNDVI (NIR−G)/(NIR + G) Jiang J et al. [30]
GRVI NIR/G Motohka T et al. [31]
VIopt (1 + 0.45)× (2NIR + 1)/(R + 0.45) Motohka T et al. [31]
NDVI (NIR− R)/(NIR + R) Deng L et al. [32,33]
CCCI (NIR− RE)/(NIR + RE) Shu M Y et al. [34]

Note: R is the red band, G is the green band, NIR is the near-infrared band, and RE is the red-edge band.

2.6. Model Construction

In this study, kernel-based extreme learning machine based on sparrow search algorithm
optimization (SSA-KELM) was used to construct a comprehensive growth monitoring model.

Kernel-based extreme learning machine (KELM) is an improved algorithm based
on ELM, and combined with the kernel function, KELM guarantees good generalization
ability and faster learning speed based on retaining the advantages of ELM to improve
the prediction performance of the model [35]. The predictive performance of KELM is
significantly influenced by the regularization coefficient C and kernel function parameter
S. Inadequate parameter optimization ability and poor local search capabilities can result
in convergence on local optima, leading to low prediction accuracy. The SSA-KELM
model optimizes the regularization coefficient C and kernel function parameter S using the
sparrow search algorithm, enhancing the model’s predictive capability. To further select
the regularization coefficient C and kernel function parameter S, the fitness function is
designed as the training set’s mean squared error (MSE):

MSE =
1
n∑n

i=1(y− x)2 (11)

f itness = argmin
(

MSEpridect

)
(12)

where x is the estimated value, y is the measured value, and n is the number of samples.
The fitness function selects the post-training MSE. A smaller MSE indicates a higher

alignment between predicted and original data. The final optimization yields the best
regularization coefficient C and kernel function parameter S. Using these optimized values,
the network is trained on the testing dataset [20]. The flowchart of the SSA-KELM algorithm
is shown in Figure 3.
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2.7. Experimental Comparison Methods
2.7.1. Coefficient of Variation Method

The coefficient of variation method was selected as the comparison method of the
CRITIC weight method. The coefficient of variation method is based on the evaluation
of the degree of variation of the indicator value reflected in the amount of information to
determine the weight of the indicator. That is, the weight of the indicator with the changes
in the value of the indicator changes is a dynamic and objective method of assigning
weights, and the results of its ascertainment of the weight are not subject to the influence
of the outline [36]. In this study, the coefficient of variation method was used as the
comparison method of the CRITIC weight method, and the weights of LAI, SPAD, and VH
were determined to be A, B, and C, respectively, and a comprehensive growth monitoring
indicator CGMICV was established.

(1) The data normalization process is the same as the CRITIC weight method;
(2) Calculation of the coefficient of variation.

X j =
1
n

n

∑
i=1

Xij (13)

Sj =

√
∑n

i=1
(
Xij − X j

)2

n− 1
(14)

Vj =
Sj

X j
(15)
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where X j denotes the mean value of the jth indicator, Sj denotes the standard deviation
(mean square error) of the jth indicator, and Vj denotes the coefficient of variation of the
jth indicator.

(3) Calculation of Indicator Weights

Wj =
Vj

∑P
i=1 Vj

(16)

where Wj denotes the weight of the jth indicator in the whole evaluation system and
P denotes the number of indicators.

(4) Comprehensive Growth Monitoring Indicator CGMICV

The coefficient of variation method was used to derive A, B, and C as 0.440, 0.202,
and 0.358, respectively, and the comprehensive growth monitoring indicator CGMICV was
constructed, and the expression of CGMICV is as follows:

CGMICV = 0.440U1 + 0.202U2 + 0.358U3 (17)

where U1 is the normalized LAI value, U2 is the normalized SPAD value, and U3 is the
normalized VH value.

2.7.2. Partial Least-Squares Regression (PLSR) Method

PLSR is a technique aimed at identifying the optimal fitting function for a dataset by
minimizing the sum of squared errors. It blends statistical methods like correlation analysis,
principal component analysis, and multiple linear regression, effectively addressing issues
related to data covariance [37]. Xie P et al. [38] used PLSR and PSO-SVM algorithms to com-
pare and establish a hyperspectral quantitative inversion model of soil selenium content. Fu
HY et al. [39] used PLSR, SVM, RF, and other modeling methods to construct the estimation
models of relative chlorophyll content, leaf area index, and leaf relative water content of
ramie, respectively, and proposed a more suitable dynamic monitoring method for physical
and chemical traits of ramie in the field. In comparison to multivariate linear regression
algorithms, PLSR can establish a multivariate linear model when the independent variables
have multicollinearity and a limited number of sample points, ensuring predictive accuracy.
In contrast to principal component analysis, partial least squares not only absorb the idea of
extracting information from the explanatory variables in principal component analysis but
also pay attention to the problem of explaining the dependent variable by the independent
variables, which is ignored in the principal component analysis [40].

2.8. Model Evaluation Methodology

In the study, three indicators, coefficient of determination (R2), root mean square error
(RMSE), and mean relative error (MRE) were used to judge the prediction effect of the
model, and the specific formulas are shown below. R2 indicates the degree of fit between
the predicted value and the measured value, and RMSE reflects the degree of deviation
between the predicted value and the measured value. The more R2 tends to be close to 1,
the smaller RMSE is, indicating that the model predicts better. MRE is used to describe
the error between the model prediction result and the actual value to evaluate the model
stability. The smaller the MRE is, the more stable the model is.

R2 =
[∑n

i=1 (x− x)(y− y)] 2

∑n
i=1(x− x)2∑n

i=1(y− y)2 (18)

RMSE =

√
∑n

i=1(x− y)2

n
(19)
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MRE =
∑n

i=1|x− y|
ny

(20)

where x denotes the predicted value, x denotes the mean of the predicted value, y denotes
the measured value, y denotes the mean of the measured value, and n denotes the number
of samples.

3. Results and Discussion
3.1. Correlation Analysis of Different Vegetation Indices with Combined Growth Indicators and
Single Growth Indicators

The Pearson significance test was chosen to correlate the composite growth monitoring
indicators CGMICV, CGMICR, and the individual growth indicators that make up the
composite growth monitoring indicators with the eight vegetation indices in turn. The
correlations are shown in Table 2.

Table 2. The correlation of vegetation indices with growth indicators.

Vegetation Indices LAI SPAD VH CGMICV CGMICR

GRVI 0.630 ** 0.540 * 0.701 ** 0.552 * 0.656 **
GOSAVI 0.652 ** 0.567 ** 0.704 ** 0.575 ** 0.674 **

VIopt 0.648 ** 0.564 ** 0.707 ** 0.573 ** 0.673 **
NDVI 0.776 ** 0.590 * 0.735 ** 0.605 ** 0.704 **
GDVI 0.608 ** 0.536 * 0.654 ** 0.528 * 0.626 **
RVI 0.589 ** 0.517 * 0.663 ** 0.514 * 0.616 **

GNDVI 0.687 ** 0.589 ** 0.798 ** 0.612 ** 0.714 **
CCCI 0.630 ** 0.601 ** 0.743 ** 0.616 ** 0.710 **

Note: ** indicates a significant correlation at the 0.01 level; * indicates a significant correlation at the 0.05 level.

All the growth indicators showed a positive correlation with each vegetation index.
Comparing and analyzing the single growth indicators, the correlation between the growth
indicator VH and the vegetation index was the strongest. All of them were significantly
correlated at the 0.01 level, and the correlation coefficients r were all greater than 0.6. The
correlation between the SPAD indicator and the eight vegetation indices was generally low,
and the correlation with the vegetation index CCCI was the highest, reaching 0.601.

In constructing the comprehensive growth monitoring indicators, the correlation
between the comprehensive growth monitoring indicators CGMICV and CGMICR and the
vegetation index was generally lower than that of the VH indicators due to the simultaneous
consideration of the three single growth indicators and the assignment of weights to each of
them, with the lower correlation between the SPAD indicators and the vegetation index. For
the composite growth monitoring indicator CGMICV, the vegetation indices GOSAVI, VIopt,
NDVI, GNDVI, CCCI, and CGMICV were significantly correlated at the 0.01 level, whereas
GRVI, GDVI, RVI, and CGMICV were significantly correlated at the 0.05 level, and the
correlation coefficients r were all greater than 0.5. For the comprehensive growth monitoring
indicator CGMICR, the correlation coefficients between the eight selected vegetation indices
and CGMICR were all greater than 0.6, which is a strong correlation, and all of them were
significantly correlated at the 0.01 level.

3.2. Construction and Testing of the CGMI Model for Comprehensive Growth
Monitoring Indicators
3.2.1. Construction and Testing of the CGMICV Monitoring Model

The PLSR and SSA-KELM algorithms combined with eight vegetation indices were
used for model construction and prediction analysis of the comprehensive growth mon-
itoring indicators CGMICV and CGMICR. The effect of the prediction model of CGMICV
built based on PLSR and SSA-KELM is shown in Table 3, and the linear fitting comparison
between its predicted and measured values is shown in Figure 4.
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Table 3. Comparison of results from CGMICV prediction models based on PLSR and SSA-KELM.

Algorithm Model
Training Validate

R2 RMSE R2 RMSE

PLSR 0.820 0.043 0.816 0.048
SSA-KELM 0.865 0.040 0.871 0.045
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For the PLSR model, the R2 of the training set was 0.820, the RMSE was 0.043, the
validation set decreased by 0.004, the RMSE increased by 0.005 from the prediction set R2,
and the prediction effect decreased slightly. For the SSA-KELM model, the training set has
an R2 of 0.865 and an RMSE of 0.040, and the validation set has an increase of 0.006 and
an increase of 0.005 in the RMSE over the prediction set, with a small increase in accuracy
but an increased in prediction error. Overall, the SSA-KELM model increased the R2 of
the training set by 0.045 and decreased the RMSE by 0.003 compared to the PLSR model,
while the validation set increased the R2 by 0.055 and decreased the RMSE by 0.003. The
prediction of both the training set and validation set of the SSA-KELM model is better than
that of the PLSR model.

3.2.2. Construction and Testing of the CGMICR Monitoring Model

The prediction results of the CGMICR prediction model based on PLSR and SSA-KELM
are shown in Table 4, and the linear fit comparison of its predicted and measured values is
shown in Figure 5.

Table 4. Comparison of results from CGMICR prediction models based on PLSR and SSA-KELM.

Algorithm Model
Training Validate

R2 RMSE R2 RMSE

PLSR 0.839 0.084 0.840 0.084
SSA-KELM 0.885 0.056 0.889 0.058
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For the PLSR model, the RMSE was 0.084 for both the training and validation sets,
and the validation set had an increase of 0.001 in R2 over the training set, with essentially
the same prediction effect. For the SSA-KELM model, the R2 of the training set was 0.885,
the RMSE was 0.056, and the validation set had an increase of 0.004 in R2 and an increase
of 0.002 in RMSE compared to the training set, with a decreased in the fitting effect but
a smaller overall difference. In summary, the model built by SSA-KELM increased R2

by 0.046 and decreased RMSE by 0.028 for the training set and increased R2 by 0.049 and
decreased RMSE by 0.026 for the validation set compared to the PLSR model. The prediction
effect of both training and validation sets of the SSA-KELM model is better than the
PLSR model.

Comparing and analyzing the comprehensive growth monitoring indicators CGMICV
and CGMICR, the prediction effect of the CGMICR model is better than that of the CGMICV
model because of the CRITIC weighting method, compared with the coefficient of variation
method, not only takes into account the fluctuation of each evaluation index, but also
involves the conflict between different indexes, and it can more realistically reflect the
crop’s growth situation.

3.3. Stability Analysis of the Comprehensive Growth Monitoring Indicator Model

When constructing a nonlinear model, the presence of multicollinearity among inde-
pendent variables can significantly undermine the reliability of model testing and yield
unstable analytical outcomes. To assess the stability of the CGMI monitoring model, train-
ing and validation sets mirroring the modeling proportions were meticulously chosen.
Subsequently, the CGMICV and CGMICR regression models, constructed using PLSR and
SSA-KELM methodologies, respectively, underwent rigorous testing in 100 random runs.
The average mean relative error (MRE) across the 100 prediction results were calculated.
The results are shown in Figure 6.

The fluctuation range of the average relative errors of the CGMICV models constructed
by different algorithms varies less, and the fluctuation range of the average relative error
of the PLSR-CGMICV model is from 8.2% to 24.0%, with a median of 17.4% and a mean of
17.3%. The fluctuation range of the average relative error of the SSA-KELM-CGMICV model
is from 6.5% to 22.1%, with a median of 12.7% and a mean of 12.9%. The overall average
relative error is smaller than PLSR-CGMICV, which indicates that the SSA-KELM-CGMICV
model is more stable.
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The PLSR-CGMICR model’s average relative error fluctuates from 6.8% to 20.0%, with
a median of 12.8% and a mean of 13.0%. The SSA-KELM-CGMICR model’s average relative
error fluctuates from 2.7% to 11.9%, which is reduced compared to that of PLSR-CGMICR,
with a median of 7.2% and a mean of 7.1%, which likewise indicates the greater stability of
modeling using SSA-KELM.

3.4. Discussions
3.4.1. Comparative Analysis of the Predictive Effects of Different Growth Indicators

To verify the effect of the prediction model for the comprehensive growth monitoring
indicators, the prediction model was constructed using PLSR and SSA-KELM methods
for leaf area index (LAI), relative chlorophyll content (SPAD), and plant height (VH)
sequentially, and the results of the model prediction are shown in Table 5.

Table 5. Comparison of all growth indicator prediction models based on PLSR and SSA-KELM.

Growth Indicator PLSR SSA-KELM

LAI 0.821 0.906
SPAD 0.723 0.837

VH 0.834 0.902
CGMICV 0.820 0.865
CGMICR 0.839 0.885

For all growth indicators, the R2 of the SSA-KELM model is greater than that of the
PLSR model. Among all the models constructed using a single growth indicator, the
SSA-KELM-LAI model had the best prediction effect, with an R2 of 0.906, which is 8.5%
higher than that of PLSR-LAI. The R2 of the SSA-KELM-VH model is 0.902, which is 6.8%
higher than that predicted by PLSR-VH. The accuracy of the SSA-KELM-SPAD model is
low, and the R2 is 0837, which is 10.5% higher than that predicted by PLSR-VH. Among
all the models constructed using the comprehensive growth monitoring indicators, the
CGMICR monitoring model was better than the CGMICV monitoring model, with SSA-
KELM-CGMICR achieving the best monitoring effect (R2 = 0.885). The reason is that when
constructing the comprehensive growth monitoring indicators, the CRITIC weighting
method, compared with the coefficient of variation method, not only takes into account
the influence of the volatility of the evaluation indicators on the weights but also involves
the conflicting nature between different indicators. Therefore, the weights of LAI and
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VH are appropriately reduced, and the weight of SPAD is increased, which improved
the prediction effect of the constructed CGMICR model compared with that of CGMICV.
However, the sensitivity of SPAD to multispectral information is relatively weak in this
stage, and increasing the weights of SPAD also weakened the monitoring ability of CGMICR.

3.4.2. Stability Analysis of Predictive Models for Different Growth Indicators

The PLSR and SSA-KELM methods were used to test the regression model of a single
growth indicator for 100 random runs in sequence, and the average relative error (MRE)
of the 100 prediction results was counted and analyzed in comparison with the stability
of the CGMI monitoring model. Since the modeling effect of all indicators using the
PLSR algorithm is lower than the modeling effect of the SSA-KELM algorithm, only the
stability of SSA-KELM algorithm modeling is discussed this time. The stability results of
the predictive models constructed based on SSA-KELM for all the growth indicators are
shown in Table 6.

Table 6. Stability comparison of all growth indicator prediction models constructed based
on SSA-KELM.

Growth Indicator Error Fluctuation Range Median Error Mean Value of Error

CGMICV 6.5~22.1% 12.7% 12.9%
CGMICR 2.7~11.9% 7.2% 7.1%

LAI 9.7~42.5% 22% 23.4%
SPAD 1.3~5.9% 3.9% 3.8%

VH 4.8~22.2% 14.8% 14.6%

Compared with the monitoring models of single growth indicators constituting CGMI,
the stability of the CGMICV and CGMICR models is smaller than that of the SPAD model,
mainly because the error fluctuation range of the LAI indicator is large, which leads to the
larger error fluctuation range of CGMICV and CGMICR. The stability of the CGMICV and
CGMICR models was greater than that of the LAI and VH models because a single growth
indicator has limitations and can only simply reflect a certain physiological information
of the crop, which is essentially a ‘point’ of data and cannot uniformly reflect the overall
characteristics of the crop. Zhai LT et al. [41] inverted the nitrogen content, chlorophyll
content, and water content of winter wheat based on the PLSR model, the R2 of single index
inversion was 0.72, 0.31, 0.61, respectively, and the R2 of comprehensive index inversion
was 0.75. The results showed that the inversion effect of the comprehensive index model
was better than that of a single index, and the results of this study were similar to the present
study. In summary, compared with the single growth indicator, the comprehensive growth
monitoring indicator has a better prediction effect. Compared with the comprehensive
growth monitoring indicator CGMICV and CGMICR, the error fluctuation range, median
error and mean value of the error of the CGMICR model are smaller than those of the
CGMICV model, which indicates that the comprehensive growth monitoring indicator
CGMICR has better stability.

However, this experiment only discussed the growth of maize at the jointing stage,
which is a more vigorous stage of maize growth and development, and also the stage of
low crop cover, which will have a certain impact on the results of the experiment. As the
growth cycle progresses, further research and analysis are needed to monitor the growth
of maize plants during different growth stages, such as the staminate stage, silking stage,
and grouting stage after the jointing stage, to achieve more accurate monitoring of maize
plant growth.

4. Conclusions

In the study, modeling prediction analysis of comprehensive summer maize growth
was conducted based on UAV multispectral image data, and the main conclusions are
as follows:
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(1) The comprehensive growth monitoring indicators CGMICV and CGMICR constructed
using the coefficient of variation method and the CRITIC weighting method were both
positively correlated with the vegetation index. The correlation coefficients between
CGMICR and the vegetation index were both greater than the correlation coefficients
between CGMICV and CGMICR.

(2) A comprehensive growth monitoring indicator model based on SSA-KELM was
established. For CGMICV, the model R2 was 0.871, and the RMSE was 0.045; for
CGMICR, the model R2 was 0.889, and the RMSE was 0.058, which shows that the
model built by SSA-KELM-CGMICR is more stable and more effective.

(3) Based on the CGMICV and CGMICR monitoring models built by PLSR, the monitoring
effect of the PLSR-CGMICV model is lower than that of the PLSR-CGMICR model, and
both of them are lower than that of the model constructed by SSA-KELM. In summary,
the model constructed based on SSA-KELM has a better monitoring effect.
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