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Abstract: To address the cost issue associated with pixel-level image annotation in fully supervised
semantic segmentation, a method based on semi-supervised semantic segmentation is proposed for
extracting winter wheat planting areas. This approach utilizes self-training with pseudo-labels to
learn from a small set of images with pixel-level annotations and a large set of unlabeled images,
thereby achieving the extraction. In the constructed initial dataset, a random sampling strategy is
employed to select 1/16, 1/8, 1/4, and 1/2 proportions of labeled data. Furthermore, in conjunction
with the concept of consistency regularization, strong data augmentation techniques are applied
to the unlabeled images, surpassing classical methods such as cropping and rotation to construct a
semi-supervised model. This effectively alleviates overfitting caused by noisy labels. By comparing
the prediction results of different proportions of labeled data using SegNet, DeepLabv3+, and U-Net,
it is determined that the U-Net network model yields the best extraction performance. Moreover, the
evaluation metrics MPA and MIoU demonstrate varying degrees of improvement for semi-supervised
semantic segmentation compared to fully supervised semantic segmentation. Notably, the U-Net
model trained with 1/16 labeled data outperforms the models trained with 1/8, 1/4, and 1/2 labeled
data, achieving MPA and MIoU scores of 81.63%, 73.31%, 82.50%, and 76.01%, respectively. This
method provides valuable insights for extracting winter wheat planting areas in scenarios with
limited labeled data.

Keywords: semi-supervised classification; sematic segmentation; winter wheat; self-training;
data augmentation

1. Introduction

Semantic segmentation is a fundamental task in the field of computer vision, and
it has made significant progress in many application areas [1–3]. Fully supervised se-
mantic segmentation learns to assign pixel-level semantic labels by generalizing from a
large number of densely annotated images. Despite rapid progress, the cost of manually
annotating pixels is much higher compared to other visual tasks such as image classifica-
tion and object detection. Reliable pixel-wise segmentation annotations are typically only
available for a few classes and images, making fully supervised semantic segmentation
challenging for tasks involving diverse objects. To further simplify the process of acquiring
high-quality data, semi-supervised semantic segmentation has been proposed, which learns
models from a small number of labeled images and a large number of unlabeled images
to achieve the final segmentation goal. Many researchers have applied semi-supervised
semantic segmentation to crop extraction. Casado-García et al. [4] used a pseudo-label
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semi-supervised learning method combined with a semantic segmentation network to
segment natural color images of vineyards captured by cameras for plant yield monitoring.
Zheng et al. [5] improved segmentation accuracy with a small number of labeled data by
using a semi-supervised adversarial semantic segmentation network for building extraction
on three different resolution datasets (WBD, MBD, and GID). Mukhtar et al. [6] proposed
a semi-supervised method based on cross-consistency for semantic segmentation of RGB
images captured by drones and further counted the extracted plant clusters, providing
insights for studying other crops (such as rice and maize) using a small number of labeled
images. In the field of semi-supervised semantic segmentation, two widely used forms of
semi-supervised methods are entropy minimization and consistency regularization [7].

Self-training [8,9], also known as self-supervised learning, is a semi-supervised learning
technique where a model iteratively generates pseudo-labels for unlabeled data and then
uses these pseudo-labeled samples to retrain itself. It aims to improve the model’s accuracy
by iteratively refining its own predictions, often by considering high-confidence predictions
as pseudo-labels. Zhu et al. [10] achieved optimal performance with less supervision using
the self-training semi-supervised method on the Cityscape, CamVid, and KITTI datasets.
Feng et al. [11] proposed a dynamic self-training and class-balanced curriculum algorithm for
semi-supervised semantic segmentation. They achieved robustness to pseudo-label noise in
self-training by weighting the pixel-wise loss based on predicted confidences and providing a
pseudo-label curriculum to gradually label all unlabeled data, demonstrating good perfor-
mance on PASCAL VOC 2012 and Cityscapes. Zoph et al. [12] compared self-training with
ImageNet pre-training and revealed the universality and flexibility of self-training. These
studies serve as typical examples of self-training methods. However, this approach also has
certain limitations. If the teacher model trained based on labeled data contains errors, it can
lead to erroneous results in the subsequent student model.

Recently, methods based on consistency regularization have been proposed, which
rely on the fact that unlabeled and labeled data share the same distribution. Therefore, these
methods aim to train models that have consistent and reliable predictions for both labeled
and unlabeled data. One widely researched approach is to use different unlabeled images
under different transformations as inputs to the model and enforce consistency loss on the
predicted masks. In consistency regularization methods [13,14], consistency is enhanced by
augmenting input images, feature representations, and networks to ensure consistency with
various perturbations, such as input perturbations, which involve perturbing unlabeled
data [15,16]. Based on the clustering assumption, data points with different class labels are
separated from each other, while similar data points have similar outputs. Therefore, if
an unlabeled data point is perturbed and consistency constraints are enforced on the pre-
dicted masks of the perturbed images, the predicted results should not change significantly.
Common transformations include data augmentation techniques such as adding noise,
cropping, and scaling [17], as well as methods like CutMix [18] and ClassMix [19]. These
form the basis of consistency-based methods and many self-supervised learning methods,
all of which focus on leveraging unlabeled data. For example, the Π-model parameterizes
input samples with different noises and adds a regularization term to reduce the differ-
ence between the outputs of the perturbed samples and the original inputs. Temporal
ensembling [20] and mean teacher [21] involve ensemble learning, using exponentially
moving average (EMA) weights to improve the quality of labels for perturbed samples.
CCT (cross-consistency training) [22] is a semi-supervised semantic segmentation method
based on cross-consistency, which applies perturbations to the input of the encoder instead
of directly perturbing the input, exploring the application of perturbations at different net-
work layers in the segmentation network. Interpolation consistency training (ICT) achieves
a modification in the perturbation method by using a mixture with another unlabeled
sample instead of adding random noise, which is considered more effective in dealing with
low-margin unlabeled points. Berthelot et al. [23] further propose sharpening artificial
labels for unlabeled data and using MixUp to mix labeled and unlabeled data.
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Generative adversarial networks (GANs) are generally utilized for tasks related to
generative modeling, where they generate data that are similar to the training data. They
indirectly might benefit semi-supervised learning but not as a direct supervision signal, are
not easy to optimize, and may encounter mode collapse issues [24]. Pseudo-labeling [25]
is a combination of entropy minimization and consistency regularization, which relies on
the assumption that pseudo-labels generated by a teacher model can benefit the training
of a new model. FixMatch [26] achieves consistency training by applying strong data
augmentation (Cutout, CTAugment, and RandAugment) to the unlabeled loss and input
for pseudo-label generation, encouraging the outputs of two augmented inputs to remain
consistent. As an extension of FixMatch, PseudoSeg [27] uses weak and strong augmen-
tations on an unlabeled image and uses the predictions of the weakly augmented image
as pseudo-labels for the strongly augmented image. This method generates pseudo-labels
using only the image itself.

In conclusion, semi-supervised learning offers a significant reduction in the annotation
process, resulting in resource savings in terms of manpower and materials. Nevertheless,
it can be found that the performance of these semi-supervised semantic methods can be
limited by the quality and quantity of the labeled data available. Inaccurate or inconsis-
tent annotations can hinder the learning process and result in suboptimal segmentation
performance. In addition, some methods may require complex architectures or training
procedures, which can make them computationally expensive and difficult to implement
in real-world applications. It is necessary to reduce the reliance of segmentation methods
on high-quality pseudo-labels while simultaneously minimizing the number of iterative
rounds required to generate such labels. Currently, most related studies have focused
on publicly available datasets, with limited research on remote sensing crop extraction.
This paper aims to extract winter wheat planting areas using a semi-supervised semantic
segmentation method that combines entropy minimization and consistency regularization.
The proposed approach utilizes a deep learning semantic segmentation network to achieve
the desired results. By eliminating the need to filter high-quality pseudo-labels and gener-
ating them only once for unannotated images, significant reductions in training time can
be achieved.

2. Materials and Methods
2.1. Study Area

The selected study area (Figure 1) is Zhengding County and Zengcun Town, Gaocheng
District, Shijiazhuang City, Hebei Province, China, located at approximately 37◦51′~38◦18′ N,
114◦39′~114◦59′ E. The study area has a temperate semi-humid to semi-arid continental
monsoon climate, with distinct seasons in most regions. The annual average temperature is
12.9 ◦C, and the annual average precipitation is 550 mm. Cultivated land is the predominant
land use type in this region, with winter wheat being one of the major food crops.

2.2. Data Preprocessing and Label Generation

Based on the phenological characteristics of winter wheat, during the grain filling stage,
its growth is more advanced compared to other crops, which are either not yet sown or have
just been sown. At this stage, there is a significant difference between winter wheat and
other land cover types, enabling the high-precision segmentation and extraction of wheat
planting areas. Therefore, in this study, remote sensing imagery data were acquired during the
milk-ripe stage of winter wheat, around mid-to-late May. A Landsat-8 OLI (operational land
imager) image was acquired, and data preprocessing was also performed. After finishing the
geometric and radiometric corrections, the image fusion with 15 m panchromatic and 30 m
multispectral bands was carried out using the high-pass filtering fusion.

Subsequently, the labeled data were generated using the preprocessed image. Firstly,
the remote sensing imagery was opened using ArcGIS Desktop 10.8 software. The wheat
area was delineated on the original image, and a vector was generated to create labels
in PNG format. In the labels, wheat areas were represented by white color with a pixel



Agronomy 2023, 13, 2868 4 of 16

value of 1, while non-wheat areas (background) were represented by black color with a
pixel value of 0. Simultaneously, the original remote sensing imagery was saved as JPG
format output. Both the original imagery data and label data were randomly cropped to
256 × 256 pixels. The file names of the original imagery data corresponded to the label
data. Data augmentation operations were performed, including rotation, mirror operations,
brightness adjustment, and adding noises (Gaussian noise, salt and pepper noise).
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2.3. Data Augmentation

Self-training, relying on an initial model trained with labeled data, does not attempt
to address the negative impact of noisy pseudo-labels and is not well-suited for the sparse
labeling mechanism in semi-supervised learning. Specifically, when iteratively overfitting
to incorrect supervision, errors in pseudo-labels accumulate and significantly degrade the
performance of the student model. Additionally, in this self-learning process, the introduced
information during training is insufficient, resulting in a severe coupling problem between
the teacher model and the retrained student model. As the predicted pseudo-labels in
the second stage may still contain a considerable amount of noise, directly retraining on
these images and labels containing noise can easily lead to overfitting to the noisy labels.
Specifically, the student model is forced to learn the pseudo-labels from the teacher model
in a supervised manner during retraining. However, due to the same network structure
and similar initialization of the teacher and student models, they tend to make similar true
and false predictions on unlabeled images, making it difficult for the student model to
learn additional information beyond minimizing entropy during training.

To address the above issues, namely overfitting to noisy labels and the prediction
coupling between the student and teacher models, data augmentation is applied to the
unlabeled images during the retraining stage to propose more challenging optimization ob-
jectives for the student model. Data augmentation is an effective regularization technique,
with basic strategies such as random flipping and cropping commonly used in training
visual models. Classic augmentation perturbations, such as cropping, scaling, and rotation,
were also used on the original images in the data set construction, and these basic pertur-
bations as weak data augmentation are difficult to confuse output categories. Therefore,
stronger and more diverse augmentations were used on the unlabeled images in semi-
supervised semantic segmentation. Color transformation data augmentation was used,
including Grayscale, Colorjitter, Blur, and RandomInvert, as well as spatial transformation
using Cutout [28] (Figure 2).
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2.4. Experimental Environment and Parameter Setting

The experimental setup consisted of an Intel Xeon Gold 6248R processor, 192 GB of
memory, an NVIDIA Quadro P4000 graphics card, and the GPU acceleration library CUDA
10.0 with the PyTorch deep learning framework. For model training, the SGD optimizer
was chosen as the parameter optimizer, with a base learning rate of 0.001, 80 training
iterations, and a step size of 8. Weak data augmentation techniques, such as rotation,
mirroring, and noise addition, were applied as discussed in the previous section. Strong
data augmentation techniques on unlabeled images were implemented with the following
settings: Grayscale random probability p was set to 0.5; Colorjitter had brightness, contrast,
and saturation values of 0.5 and a hue value of 0.25; Blur had a sigma value range of
(0.1, 2.0); RandomInvert had a random probability p of 0.5; and Cutout had a size value
range of (0.02, 0.4).

2.5. Methodology
2.5.1. Entropy Minimization

Entropy minimization [29] is an effective semi-supervised approach for achieving
clustering assumptions, as it encourages more confident predictions for unlabeled data
by forcing the classifier to make low-entropy predictions. Under the assumption that
the majority of data points are far from the decision boundary, this method prevents the
decision boundary of the network from being close to the data points; otherwise, it would
be forced to produce less reliable predictions. This approach can be achieved by adding a
loss term for predictions, as follows:

L = −
c

∑
k=1

fθ(x)k log fθ(x)k (1)

where k is the number of classes and fθ(x)k is the model’s confidence in predicting whether
x belongs to class k. The sum of confidence for all classes is 1, meaning that when the
prediction value for one class is close to 1, the prediction values for other classes are close
to 0, resulting in minimized entropy.

Self-training is a form of entropy minimization in semi-supervised learning. Its main
idea is to collect both labeled and unlabeled data, but only use the labeled data to train an
initial teacher model. This model is then used to construct pseudo-labels for the unlabeled
data, which are combined with the labeled data for joint training to obtain a new student
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prediction model. However, self-training also has certain limitations. For example, the
pseudo-labels generated based on the teacher model can be erroneous and unreliable,
leading to a deterioration in the performance of the student model during iterative training.
Therefore, in recent years, researchers have been exploring ways to improve the feasibility
of self-training in order to enhance the accuracy and reliability of the model. One approach
is to set a probability threshold, where pseudo-labels are only generated for unlabeled data
when the prediction probability exceeds the threshold. Another approach is to use iterative
training, where, after generating pseudo-labels for unlabeled data, a new supervised model
is trained by combining the pseudo-labels and labeled data. This new model is then
used for further predictions, allowing for iterative updates to correct previous erroneous
pseudo-labels. Alternatively, training multiple teacher models can be employed, where
only pseudo-labels recognized by the majority of teacher models are successfully generated.

2.5.2. Consistency Regularization

In the realm of semi-supervised semantic segmentation algorithms, the concept of con-
sistency regularization has been widely employed to enhance segmentation accuracy [30].
By perturbing unlabeled data, the current optimization model is compelled to produce
stable and consistent predictions for the same unlabeled data under different perturbations,
such as variations in shape and color. Leveraging the assumption of clustering, the addition
of perturbations does not significantly affect the actual output results. This approach does
not require specific label information, making it suitable for semi-supervised learning. By
constructing an unsupervised regularization loss term between the predictions obtained
from perturbed and unperturbed versions of unlabeled data, the model’s generalization
ability is improved. Mathematically, the formulation is as follows:

D[pmodel(y|Augment(x), θ), pmodel(y|Augment(x), θ ] (2)

where D represents a metric function, typically utilizing KL (Kullback–Leibler) divergence
or JS (Jensen–Shannon) divergence, and can employ cross-entropy or mean squared error;
Augment(·) denotes a data augmentation function that introduces noise perturbations, and
θ represents the model parameters.

To mitigate the potential errors and unreliability of pseudo-labels generated by the
teacher model, methods to improve the quality of generated labels can be employed. There
are two approaches to enhance label quality: rational selection of the teacher model and
appropriate choice of input perturbations. In the study [21], the mean teacher architecture was
utilized, which is a consistency regularization method based on the assumption of smoothness.
By perturbing unlabeled data using CutMix, the overfitting problem of neural networks is
reduced. This allows the model to consistently predict both the given unlabeled data and
its perturbed versions. By combining labeled data and pseudo-labels, the student model’s
parameters are updated through backpropagation. The student model’s parameters are
exponentially moving and averaged to serve as the teacher model’s parameters, continuously
iterating to shape an improved teacher model. Consequently, the quality of the student model
is continuously enhanced, resulting in improved segmentation accuracy.

CCT is a semi-supervised semantic segmentation method based on cross-consistency
that achieves prediction consistency through various forms of perturbations applied to
the encoder outputs [22]. By training a shared encoder and a main decoder with labeled
data, multiple auxiliary decoders are trained to leverage unlabeled data. The different
perturbed versions of the shared encoder’s output are used as inputs, and consistency is
enforced between the predictions of the main decoder and the auxiliary decoders. The
encoder’s representation is strengthened by training signals extracted from unlabeled
data. Perturbations such as Cutout are applied to unlabeled images, resulting in higher
segmentation accuracy on the PASCAL VOC 2012 dataset.

PseudoSeg continues the exploration of consistency regularization by applying differ-
ent perturbations to images [27]. PseudoSeg employs two types of data augmentation on
input images: weak augmentation (random cropping and flipping, for instance) and strong
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augmentation (color jittering). Both augmented images are fed into the same network,
producing two distinct outputs. Due to the stability of training under weak augmentation,
confidence vectors are constructed from the outputs generated by weakly augmented
images to generate pseudo-labels. Finally, the loss is computed using the pseudo-labels
and the vectors obtained from strongly augmented images.

2.5.3. Self-Training Algorithm

Semi-supervised semantic segmentation [31] aims to generalize from a combination of
pixel-labeled images of Dl = {(xi, yi)}M

i=1 and unlabeled images of Du = {ui}N
i=1, where,

in most cases, N � M, and the overall optimization objective is formalized as follows:

L = Ls + λLu (3)

Here, λ is the weight between labeled and unlabeled data. The unsupervised loss
is represented as Lu, while the supervised loss Ls is the cross-entropy loss between the
predicted and manually annotated masks.

It involves three steps and does not require iterative training (Algorithm 1):

(1) Supervised learning: Train a teacher model T using the cross-entropy loss on a labeled
dataset of Dl .

(2) Pseudo-labeling: Use the trained teacher model T to predict one-hot pseudo-labels on
an unlabeled dataset of Du, resulting in D̂u = {(ui, T(ui))}N

i=1.
(3) Retraining: Combine the labeled and pseudo-labeled data of Dl ∪ D̂u and retrain a

student model S for final testing.

Here, the unsupervised loss Lu can be expressed as follows:

Lu = H(T(x), S(Aw(x))) (4)

Here, x represents the input image, and T and S map the image x to the output space.
Aw applies random, weak data augmentation to the original image. H minimizes the
entropy between the student and teacher.

Due to the random, strong data augmentation applied to each unlabeled image before
feeding it into the network model, it is highly beneficial for decoupling predictions of the
same input and mitigating overfitting to noise pseudo-labels. In other words, although the
images are the same, the inputs from different training batches are constantly changing. In
this scenario, the model is less prone to overfitting the noise from pseudo-labels. Addition-
ally, compared to the teacher model, the student model can obtain more comprehensive
representations. Moreover, the randomly augmented images are supervised by the same
pseudo-label, which means that consistency regularization is applied to the same unlabeled
image across different training batches. Therefore, the self-training approach with strong
data augmentation combines two methods: entropy minimization and consistency regu-
larization, commonly used in semi-supervised learning. At this point, the unsupervised
objective can be formalized as follows:

Lu = H(T(x), S(As(Aw(x)))) (5)

where As denotes the application of strong data augmentation to the unlabeled data.
The approach employed in this study eliminates the need to select high-quality pseudo-

labels based on a threshold. Moreover, it only requires the construction of pseudo-labels
once for the unlabeled images, without the need for iterative regeneration of pseudo-labels
by the student model. This enables training to proceed in a fully supervised manner,
saving training time. The pseudocode for the semi-supervised self-training is presented in
Algorithm 1 [31], while the segmentation process is illustrated in Figure 3.
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Algorithm 1 Self-training pseudocode

Input: Labeled training set Dl = {(xi, yi)}M
i=1

Unlabeled training set Du = {ui}N
i=1

Weak/Strong data augmentations Aw/As

Teacher/Student model T/S
Output: Student model S
Train T on Dl with cross-entropy loss Lce

Obtain pseudo labeled D̂u = {(ui, T(ui))}N
i=1

Over-sample Dl to around the sized of D̂u

for minbatch {(xk, yk)}B
k=1 ⊂ (Dl ∪ D̂u) do

for k ∈ {1, · · ·, B} do
if k ∈ {1, · · ·, B} then

xk, yk ← As(Aw(xk, yk))
else

xk, yk ← Aw(xk, yk)
ŷk = S(xk)

Update S to minimize Lce of {(ŷk, yk)}B
k=1

return S
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2.6. Evaluation Metrics and Comparative Methods

Semantic segmentation is considered a multi-classification problem, with mean pixel
accuracy (MPA) and mean intersection over union (MIoU) serving as the evaluation metrics
for wheat segmentation [32]. A higher value for these metrics indicates better segmentation
performance for the model. Let k denote the number of object categories that can be
segmented in the dataset, with a total of k + 1 categories, where 1 represents the background.
This experiment includes two categories: wheat and background. Let pij denote the number
of pixels belonging to category i that are incorrectly classified as category j, pii denote the
number of pixels correctly classified as category i, and pjj denote the number of pixels
correctly classified as category j.

Pixel accuracy (PA) is the ratio of correctly classified wheat and background pixels
to the total number of pixels in the image. Mean PA (MPA) is an improved version of PA
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that calculates the prediction accuracy of wheat and background pixels separately, taking
the average of the two to better reflect the overall semantic segmentation accuracy of the
model. It is defined as follows:

MPA =
1

k + 1
×

k

∑
i=0

pii
k
∑

j=0
pij

(6)

MIoU is a commonly used metric for evaluating the effectiveness of image semantic
segmentation. It calculates the ratio between the intersection and union of the true and
predicted values, measuring the degree of similarity between the predicted result and the
ground truth. A value closer to 1 indicates a more accurate prediction. It is defined as follows:

MIoU =
1

k + 1

k

∑
i=0

Pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(7)

To provide a comparative analysis with fully supervised semantic segmentation, three
segmentation networks, namely SegNet [33], U-Net [34], and DeepLabv3+ [35], were
selected for evaluating the results. SegNet is a deep, fully convolutional neural network
architecture for semantic pixel-wise segmentation, which consists of an encoder network
and a corresponding decoder network, followed by a pixel-wise classification layer. The
fundamental concept of U-Net lies in the integration of skip connections, resulting in a
substantial enhancement in image segmentation accuracy, which comprises three primary
components: the decoder, encoder, and bottleneck layer. In contrast to SegNet and U-
Net, the primary distinguishing feature of DeeplabV3+ lies in its incorporation of dilated
convolutions. This augmentation, without compromising information integrity, expands
the receptive field, enabling each convolutional output to encompass a broader range of
information. This facilitates the extraction of multiscale information, thus enhancing the
model’s semantic segmentation capabilities. All three models were trained and tested using
the same data, and the evaluation metrics employed were MPA and MIoU.

3. Results
3.1. Comparison of Segmentation Accuracies

The experimental training data consisted of remote sensing images from Zhengding
County captured by Landsat-8 OLI. A random sampling strategy was employed to ex-
tract 1/16, 1/8, 1/4, and 1/2 proportions of labeled data, resulting in datasets with
312, 625, 1250, and 2500 original images, respectively. The remaining 4688, 4375, 3750, and
2500 images were used as unlabeled data. Initially, the labeled data in different proportions
were fed into the segmentation networks to train the teacher models. Subsequently, pseudo-
labels were generated for the unlabeled data using the teacher models, and a dataset
combining pseudo-labeled and labeled data was created for training the student models.
This process was repeated for each of the four datasets with different proportions of labeled
data. Finally, the student models were trained using the semi-supervised approach. To
reduce the error caused by manual labeling, random sampling of 1/16, 1/8, 1/4, and 1/2
proportions of the labeled data was performed three times on the original 5000 images, and
the average results of the three runs were reported. The test set for all experiments was
the Zengcun town image in Gaocun, Dingxing County, captured by Landsat-8 OLI. The
evaluation metrics for the three segmentation networks in the semi-supervised setting are
presented in Table 1.
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Table 1. Comparison of the semi-supervised classification effects of different methods.

Method Indicator 1/16(312) 1/8(625) 1/4(1250) 1/2(2500)

Fully supervised SegNet with
only the labeled data

MPA/% 61.82 68.87 76.95 78.17
MIoU/% 50.26 62.52 68.19 70.18

Semi-supervised SegNet MPA/% 66.01 73.77 79.66 80.51
MIoU/% 54.81 66.46 72.28 73.48

Fully supervised DeepLabv3+
with only the labeled data

MPA/% 78.29 79.33 81.14 82.27
MIoU/% 71.82 72.48 73.39 74.49

Semi-supervised DeepLabv3+ MPA/% 79.25 80.60 82.13 82.50
MIoU/% 73.45 74.29 75.30 75.74

Fully supervised U-Net with
only the labeled data

MPA/% 81.63 82.88 83.99 84.62
MIoU/% 73.31 74.11 75.73 76.45

Semi-supervised U-Net MPA/% 82.50 84.60 84.27 85.52
MIoU/% 76.01 76.84 77.52 77.83

3.2. Visualization Effects Using Different Models

This paper presents a semi-supervised approach that combines self-training with unla-
beled data augmentation to analyze the experimental results of three semantic segmentation
networks: SegNet, DeepLabv3+, and U-Net. Initially, only 1/16, 1/8, 1/4, and 1/2 of the
labeled data are used to train the SegNet, DeepLabv3+, and U-Net segmentation networks in a
fully supervised manner, resulting in the experimental results shown in Figure 4, Figure 6 and
Figure 8, and Table 1 (annotated as the fully supervised section). The remaining unlabeled data
are then used for self-training in a semi-supervised manner using the SegNet, DeepLabv3+,
and U-Net segmentation networks. Two representative result images are selected: one with a
higher density of wheat and another with a lower density, along with a higher presence of
buildings and bare soil areas. The fully supervised and semi-supervised prediction results of
SegNet with different proportions of labeled data are shown in Figures 4 and 5, respectively.
The fully supervised and semi-supervised prediction results of DeepLabv3+ with different
proportions of labeled data are shown in Figures 6 and 7, respectively. The fully supervised
and semi-supervised prediction results of U-Net with different proportions of labeled data are
shown in Figures 8 and 9, respectively. From the prediction results, it can be observed that
as the proportion of labeled data increases, the model learns better, and the predicted result
images show superior performance.
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Overall, this study demonstrates the superiority of the semi-supervised self-training
method, which incorporates unlabeled data with strong data augmentation, over fully
supervised learning methods when training models with different proportions of labeled
data. Particularly, the effectiveness of the semi-supervised approach is more pronounced in
scenarios with limited labeled data, such as when only 1/16 of the data are labeled. For
SegNet, the fully supervised prediction model achieves an MPA of 61.82% and an MIoU of
50.26%, while the semi-supervised prediction model achieves an MPA of 66.01% and an
MIoU of 54.81%. For DeepLabv3+, the fully supervised prediction model achieves an MPA
of 78.29% and an MIoU of 71.82%, while the semi-supervised prediction model achieves an
MPA of 79.25% and an MIoU of 73.45%. For U-Net, the fully supervised prediction model
achieves an MPA of 81.63% and an MIoU of 73.31%, while the semi-supervised prediction
model achieves an MPA of 82.50% and an MIoU of 76.01%. Comparing the semi-supervised
results with the fully supervised results, both the MPA and MIoU show improvement,
enabling the attainment of superior solutions even with insufficient labeled data.
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3.3. Mapping Wheat Planting Areas Using the Semi-Supervised U-Net

Based on the analysis of experimental results, the semi-supervised method employed in
this study demonstrates improvements in training with labeled data proportions of 1/16, 1/8,
1/4, and 1/2. Furthermore, this method is applicable to three different semantic segmentation
networks: SegNet, DeepLabv3+, and U-Net. Among these networks, U-Net exhibits superior
overall prediction performance in semantic segmentation. Figure 10 illustrates the overall
results of semi-supervised prediction using different proportions of labeled data for the
Landsat-8 OLI image in the rural area. It can be observed from the figure that when only
1/16 of the data are labeled for fully supervised segmentation, a significant portion of the
wheat areas remain unidentified. However, with the application of semi-supervised semantic
segmentation, there is a noticeable improvement in wheat segmentation.
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4. Discussion
4.1. Analysis of Training Ratios of Labeled Data for Different Models

In the case of SegNet, when the labeled data are scarce, the segmentation results
are poor, with most wheat areas remaining unrecognized, especially in areas with fewer
wheat crops. Even with only 1/16 of the labeled data used for training, the generated
prediction model is almost unable to identify the wheat areas. However, as the proportion
of labeled data increases, the segmentation improves. From the experimental results, it
can be seen that the semi-supervised approach improves the segmentation results for
different proportions of labeled data, with a significant increase in the predicted area.
In the case of DeepLabv3+, when the labeled data are scarce, the wheat areas are often
connected in large clusters, making it difficult to distinguish them from other non-wheat
areas and resulting in misclassifications. By comparing the fully supervised prediction
results of 1/16 and 1/2 labeled data, it can be observed that increasing the amount of
labeled data partially alleviates the issue of connected prediction regions. In contrast, the
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semi-supervised approach, based on the fusion of labeled and unlabeled data, effectively
mitigates the problem of connected prediction regions caused by limited labeled data and
performs better in terms of prediction accuracy compared to using only labeled data [36].
U-Net performs better than SegNet and DeepLabv3+ in predicting wheat planting areas.
Comparing the results with fully supervised learning, a smaller amount of training data
leads to less information learned by the model. The semi-supervised self-training method
used in this paper improves performance in various proportions of labeled data compared
to fully supervised learning.

4.2. Influence of Spatial Resolution on Remote Imagery

The spatial resolution of remote sensing imagery plays a crucial role in object segmen-
tation and extraction [37]. Higher spatial resolution allows for the identification of smaller
objects in an image. Fine details and intricate features of objects can be captured more accu-
rately with higher spatial resolution imagery. This is particularly important when dealing
with small and closely spaced objects, such as individual trees in a forest or vehicles in an
urban area. Spatial resolution also affects the ability to accurately delineate the boundaries
of objects. Higher spatial resolution imagery provides sharper and better-defined edges,
enabling more precise and accurate object segmentation. This is particularly important
when dealing with objects that have complex or irregular shapes, such as rivers, coastlines,
or land-use boundaries.

Nevertheless, it is not necessarily better to have a higher spatial resolution in remote
sensing imagery. On the contrary, it is important to consider the distribution range, spatial
aggregation characteristics, area coverage, and contrast with the background features of
the objects to be segmented and extracted in the image [38]. Sometimes, it is necessary to
consider the efficiency of object extraction as well as the cost of acquiring the imagery. Since
the selected experimental data are based on Landsat-8 OLI imagery with a resolution of
15 m, the wheat labeling map reveals that manually annotated wheat areas often appear as
small, fragmented patches, especially in areas where wheat is interspersed with buildings
or bare soil. For instance, in the upper right corner of Figure 10b, the labeling is not
well defined, which may lead to biased predictions and instances of missed segmentation.
Nevertheless, this approach helps to reduce the cost of acquiring high-resolution remote
sensing imagery. Overall, the wheat areas show minimal deviation in terms of their spatial
distribution, thereby validating the reliability of the prediction results.

5. Conclusions

The study combines entropy minimization and consistency regularization to perform
semi-supervised learning. Three mainstream segmentation networks, namely SegNet,
DeepLabv3+, and U-Net, are employed to comparatively identify wheat planting areas
using semi-supervised semantic segmentation. The labeled data are randomly sampled
at proportions of 1/16, 1/8, 1/4, and 1/2, and both fully supervised and self-training
semi-supervised methods are employed to train models. A comparative analysis is con-
ducted on the same test set, validating the effectiveness of the semi-supervised approach
for different proportions of labeled data and different semantic segmentation networks.
The segmentation evaluation metrics, MPA and MIoU, demonstrate varying degrees of
improvement, mitigating to some extent the challenge of inadequate labeled data leading
to subpar segmentation results. In future research, we will delve into the realm of unsu-
pervised semantic segmentation methods, aiming to automatically extract label data and
classification features from the original input imagery for model training purposes.
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