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Abstract: OpenToolFlux 1.0 is an open-source software designed to estimate soil gas fluxes from gas
concentration time-series data generated by automatic chamber systems. This paper describes the
physical equipment used as well as the software design and workflow. The software is a command-
line application that imports tabular time-series data from the analyzer following the instructions
specified in a configuration file by the user, performs configurable data-cleaning operations, and
outputs a data file with volumetric flux estimates as well as diagnostic plots. The software can be
configured according to the specifics of the physical equipment and experimental setups, and it is,
therefore, applicable to a wide range of studies.
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1. Introduction

Emissions of greenhouse gases (GHG) from soils are an important contributor to
climate change [1–3], with the food system responsible for a third of the total anthropogenic
GHG emissions [4] in the form of N2O, CH4, and CO2. Despite considerable empirical
research on soil GHG emissions, there are still major uncertainties about the dynamics
and processes that occur in the soil between its different components. These emissions
are the result of microbiological processes strongly dependent on soil biogeochemical
conditions [5,6], such as N and C availability [7,8] and soil water content [9,10], as well as
other environmental and anthropogenic factors such as weather conditions, topography,
land use, and vegetation [11,12]. The combination of these factors results in high temporal
and spatial variability, usually with hot spots and hot moments regarding fluxes, with
minimum and maximum values strongly fluctuating during the day depending on the
area [13,14]. This spatial and temporal variability complicates accurate field-scale estima-
tions and adds uncertainties depending on the measurement techniques used or the design
of the experiment. This leads to imprecise empirical estimations when upscaled to a global
scale (e.g., global inventories) and could lead to ineffective policy strategies [15].

Automatic chambers are a useful technology to measure GHG fluxes that help re-
duce some of the uncertainties compared to low-frequency methods such as static manual
chambers. Automatic chamber systems take measurements continuously over a given
period of time, making it possible to capture temporal variability and fluctuations, resolv-
ing an important source of uncertainty and improving data collection [13,16]. Although
static manual chambers are the most common methodology with economic and logistic
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advantages (since they are cost-effective and easy to use) compared to automatic systems,
they also present limitations that can lead to under- or overestimations when measuring
GHG. Unlike automatic chambers, manual chambers typically are used to sample once
a day at most [15–17]. In contrast, automated systems with a higher frequency sampling
allow one to address the response of GHG emissions to weather conditions, rainfall events,
irrigation, and N fertilization [13,18], and to capture diurnal fluctuations [19], which is not
practically possible with manual chambers. The use of automatic systems could, therefore,
optimize the estimation of GHG emissions, thereby contributing to improving mitigation
strategies and offering greater and more precise insight into the dynamics that rule GHG
emissions [20,21]. Currently, a wide range of technologies that measure automatically
and on a continuous basis have been developed and implemented and are widely used
for exhaustive studies. Some of the most commonly used and tested in the literature are
infrared gas analyzers and trace gas analyzers [17], which are useful when measuring CO2
emissions and are usually also combined with a cavity ring-down spectrometer [22,23].
Another type of approach not covered here is micrometeorological technologies such as
eddy covariance stations, which are also convenient for estimating, e.g., CO2 in open fields
and at higher spatial resolution [24].

One of the challenges in estimating gas fluxes using automatic chambers is the con-
version of large time series of concentration values into estimated fluxes [17,22,25]. The
raw data outputs from the gas analyzers in automatic systems are concentration time series
that need to be transformed in several steps. Before the flux can be estimated, these time
series may need to be cleaned, filtered, and cut into segments corresponding to single
measurements and excluding failed measurements. The conversion to gas flux depends
on the equipment characteristics, which can be very different depending on the user and
will determine the complexity of the transformation. Chamber size, shape, and number;
gas flow rate to the analyzer; and proximity of the chambers to the analyzer all directly
influence the conversion. To address this challenge, we built flexible software compris-
ing the key steps required to transform such raw data into numerical and graphical gas
flux estimations.

In this paper, we present OpenToolFlux, open-source software created to process
data generated by automatic chamber systems and transform them into gas fluxes (https:
//github.com/rasmuse/opentoolflux accessed on 10 September 2023). In the following
sections, we introduce OpenToolFlux, present the type of physical equipment for which
we designed the software, and describe its main components and workflow. To provide a
better picture of how the software functions, an experimental example is shown to illustrate
its potential uses for high-frequency GHG measurements and to underline the potential
adaptations to similar systems as well as the limitations it may present. In addition, a
complete example of configuration files, input data, and output data is published along
with the software.

In summary, this article aims to describe a methodology for processing the data series
of gas concentrations in automated chambers and transforming them into volumetric flows.
It provides a purely illustrative description of the equipment used, without intending to
delve into the details of the equipment or experimental design.

2. Materials and Methods

OpenToolFlux is an open-source software designed to estimate gas fluxes from soil
using time-series data from automatic chambers. It is built in the Python 3.8 programming
language and works in Python 3.8 and later versions. It was initially constructed to analyze
data from the Picarro brand of equipment (details below) but is designed with flexibility so
as to accept data from other equipment producing similar raw data.

2.1. Overview of Physical Equipment and Measurement Data

OpenToolFlux was developed to process data from an automatic system formed
by three main components: (1) chambers that open and close; (2) a two-part multiplexer
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sequentially opening and closing chambers while redirecting a gas stream from the currently
closed chamber to the gas analyzer; and (3) the gas analyzer, connected to a computer,
continuously measuring gas concentrations and saving the output.

OpenToolFlux assumes a setup without recirculation of the sampled gas. Sampled gas
is drawn from the chamber to the analyzer while the air from the outside enters passively
through a small inlet tube that maintains pressure equilibrium between the chamber and
ambient air.

In our specific setup, the gas analyzer is a Picarro G2308 (Picarro, Santa Clara, CA,
USA) Gas Concentration Analyzer, a cavity ring-down spectroscopy (CDRS) instrument,
with a sampling frequency of around 1 Hz. This analyzer measures concentrations of N2O,
CH4, and CO2 in volumetric parts per million (ppmv). The analyzer has built-in water
correction software so that concentrations are automatically reported on a dry gas basis. In
our case, the chambers are opened and closed using pneumatic actuators connected to an
air pump through the multiplexer. Figure 1 shows all the equipment and how all the parts
are assembled.
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Figure 1. (a) Schematic view of the setup. Chambers are connected to a two-part multiplexer that
carries the sample to the analyzer and opens and closes the chambers. A vacuum pump provides the
analyzer with the pressure and temperature required for it to start measuring. Arrows indicate the
direction of the air flow. (b) Photograph of the chambers closed and open, and the analyzer with the
two-part multiplexer and all the chambers connected. Source: own elaboration.

The sampling rate and gas species are in principle irrelevant, as long as the gas analyzer
has a sufficiently high sampling frequency to allow fitting a concentration curve over time
during the closure. OpenToolFlux also assumes that the concentrations are reported in
volumetric fractions (e.g., ppmv) and that water content corrections or similar corrections
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have been made if necessary. The software further assumes a multiple-chamber system
with the chambers opening and closing one at a time, in any order, and that one column
of the tabular input data to OpenToolFlux indicates the currently active chamber, i.e., the
chamber currently closed and from which gas is sampled. Moreover, OpenToolFlux is
based on the assumption of the no-recirculation configuration as described above. The
following sections define a mathematical model of the system and specify in greater detail
the input data needed by the software.

2.2. Flux Calculation (from Concentrations to Fluxes)
2.2.1. Assumptions and Known Parameters

The automatic system used and the conditions of the experiment determine the method
used to estimate gas fluxes from soil. This section describes a method based on the
assumptions determined by our context.

Since N2O is rather nonreactive in the presence of other air constituents and with the
chamber materials, and the time scale of the measurement is short (in our case ca. 20 min),
the gases are assumed to be chemically unreactive. Consequently, the concentration of the
gas that goes into the analyzer equals the concentration in the chamber, adjusted only for
the time delay introduced by the tube between the chamber and the analyzer.

Depending on the dimensions of the chambers, and the dimension and depth of the
frames inserted in the ground, we calculate a known total volume (V) and a known area
that the chamber occupies on the soil (A). The unknown soil gas flux being estimated (N2O
in our example) is assumed to be a constant volumetric net flux from the soil into the
chamber (F). A negative flux is possible and would mean that the soil is a net sink for the
given gas.

During chamber closure, a constant and known volumetric gas flow (Q) is pumped
from the chamber to the analyzer. While the chamber is closed, we assume a constant
volumetric flow (Q′) of ambient air into the chamber through the inlet vent, replacing the
sampled outflow. The soil may also have a net volumetric exchange with the chamber,
but the net size of these exchanges is very small compared to Q, so that Q′ ≈ Q. In other
words, almost all the air drawn into the chamber to replace the sample comes from the
ambient atmosphere.

When the chamber is open, ambient air mixes into the chamber until the concentration
of the gas being analyzed (e.g., N2O) inside the chamber equals the constant ambient air
concentration (c0). When the chamber closes the next time, the initial concentration is
therefore c0. During chamber closure, the concentration starts to change as a function of
time, c(t), due to the mixing of ambient air inflow and the net flux from the soil. We assume
here that the air in the chamber is mixed well during closure so that the concentration c(t) is
uniform in the chamber (Figure 2). The parameters that need to be known in the estimation
(see below) are A, Q, and V. To later convert volumetric fluxes to molar fluxes, the pressure
P and temperature T are needed, but the software does not make this transformation.
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Figure 2. Schematic representation of the dynamics in the chambers showing the main parameters
that are used to calculate the fluxes. V = volume of the chamber, A = area of the soil occupied by
the chamber, F = constant volumetric net flux from the soil into the chamber, Q = volumetric gas
flow pumped from the chamber to the analyzer, Q′ = volumetric gas flow entering the chamber,
c0 = constant ambient gas concentration, c(t) = change of the gas concentration inside the chamber in
time. Green arrow represents the air leaving the chamber and blue arrows represent the air entering
the chamber.

2.2.2. Estimating the Flux from Concentration Time Series

The flux estimation method used in OpenToolFlux is the accumulation method, widely
used for non-steady state methodology [26,27]. The principle of the calculation is to derive
and solve a differential equation based on the above description and the mass conservation
criterion input = output + accumulation, and then fit the parameters of the solution to the
concentration time series.

The solution to the differential equation (see Supplementary Materials) gives the time
evolution of the concentration c(t) inside the chamber as follows:

c(t) = c0 + F
A
Q

(
1− e−

Q
V (t−t0)

)
,

where t0 is the time of closure. Note that at closure, the gas concentration inside the chamber
is the same as in ambient air: c(t0) = c0.

Note that this can also be written as follows:

c(t) = b0 + b1 g(t)

where b0 = c0, b1 = F, and

g(t) =
A
Q

(
1− e−

Q
V (t−t0)

)
Since c(t) is the measurement data and g(t) is calculated from known parameters, c0

and F can now be estimated using a linear regression with c(t) as the dependent variable
and g(t) as the independent variable. The fit is linear with respect to g(t), but when results
are back-transformed, the solution shows a slight curvature as we obtain an exponential
model (Figure 3).
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and panel (b) shows the same result back-transformed to the time domain.

2.2.3. Adjusting Concentration Data for Tube Delay

So far, we have assumed that the time t0 is a known parameter. However, knowing
when the chamber is closed is not sufficient information since the tube between the chamber
and the gas analyzer introduces a delay between chamber closure and gas arrival to the
analyzer. The analyzer takes the sample from the chamber from the moment it closes, but
due to the length of the tube that carries the sample, the beginning of a data segment labeled
as belonging to a given chamber is still analyzing gas concentrations from gas that has been
stagnant in the tube system and thus should be discarded in the data analysis. This delay
can be substantial depending on tube length. After this tube delay time, the concentration
values rapidly change, corresponding to the first gas sampled from the present chamber
just after closure. This is what should be taken as t0 in the data analysis when analyzing a
time series collected during the closure of one chamber; therefore, OpenToolFlux discards
data corresponding to the tube delay as estimated by the user (6 min in the example),
plus a margin (e.g., 2 min) in case the delay is underestimated (Figure 4). The software
allows setting the tube delay equal for all chambers or different for each one, corresponding
to different tube lengths. The remaining part of the data must be long enough to fit the
regression model corresponding to the chamber studied.
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2.3. Overview of the OpenToolFlux Software

This section describes how the OpenToolFlux software is used to carry out the calcu-
lation steps mentioned above. The software is a command-line application with several
commands for different steps. The workflow can be divided into four main steps: (1) config-
uration of the software’s input data and parameters in a configuration file, (2) data import
from raw data files using the import command; (3) partitioning of time-series data into data
segments corresponding to chamber closures and flux estimation from concentration time
series using the fluxes command; (4) visualization of the results using the plot command.
There is also a complementary command info that gives information on the input data. The
software also has built-in documentation for each subcommand that can be accessed using
the flag–help.

Instructions for installation and use, and a full example including input data, config-
uration, and output data, are distributed along with the software (https://github.com/
rasmuse/flux-estimation-example accessed on 10 September 2023). In this section, we pro-
vide an overview of the functioning of the three main commands needed, as summarized
in Figure 5.
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Figure 5. Schematic figure of the steps to follow when using the software. First, the configuration
file is adapted to the input data and physical equipment. Second, the import command incorporates
the input data into an internal database. Third, fluxes are estimated using the fluxes command.
Fourth, visualizations of each curve fit can be generated using the plot command. There is an
additional command, info, which provides a summary of the information about the internal database
for diagnostics.

2.3.1. Configuration

The software is configured in a configuration file in TOML language. This file allows
the user to specify the particular features of the input data and physical equipment used,

https://github.com/rasmuse/flux-estimation-example
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including the path to raw data, data format details, chamber volume and area, gas sample
flow rate, tube delay time, and several settings for how to filter data to deal with occasional
failures or incomplete measurements (details below). The software looks for this TOML file
in the working directory and then the use of the other commands will be available.

2.3.2. Data Import

Once the configuration file is in place, the input data can be imported using the import
command in the command line. The software reads tabular input data from delimited text
files, such as .csv files, into a Feather file. In the tabular input files, each row corresponds
to one sample. One or more columns specify the concentration of each gas measured, one
column contains time stamps for each sample, and another column specifies the chamber
that is currently taking the sample. The columns the user wants to import are set in the
configuration file. When using the import command, a new database is created, or new
data are added to a previous one, and stored in the same directory as the configuration
file. The software will not modify or remove the source data, but the data imported can be
replaced or changed by overwriting the Feather file. The data import step can optionally be
replaced by providing a finished database in Feather format (e.g., prepared using a custom
script or copying a pre-existing database).

2.3.3. Flux Estimation

Once the database is imported, the software uses the imported database and the config-
uration to perform the following steps: filtering the database (discards data following filter
settings configured in step 1 above), cutting data into segments for each chamber closure,
discarding segments that are too long or short (configured in step 1 above), estimating the
flux for each of them, and finally writing all the volumetric flux estimates to a .csv file that
can be opened using other software (e.g., Excel or R) for further processing.

The filtering of data, cutting into segments, and optional discarding of segments that
are too long or too short are key data-cleaning operations that are, in our experience, almost
always necessary to deal with occasional equipment failures and partial measurement
segments generated during equipment startup and shutdown. While more complicated
error modes are conceivable and may require specialized pre-processing, our experience
is that the data-cleaning operations built into OpenToolFlux are very useful for typical
use cases.

2.3.4. Plotting the Results

An optional output of the software is a visualization of the curve fit used for each
flux estimate. This visualization shows the estimated curve fit calculated for each gas and
chamber during the closing period, with additional marks to show the tube delay setting.
These figures are useful diagnostic tools to identify potential errors at a glance and to
possibly discard the measurements in further calculations.

3. Results

A field experiment to estimate gas fluxes from agricultural soil carried out in 2020–2021
where OpenToolFlux was applied serves as a full-scale example to illustrate the functioning
of the software and the results it provides.

In addition, a smaller example including the input data, configuration files, and output
data is provided at https://github.com/rasmuse/flux-estimation-example (accessed on 10
September 2023).

The experiment began in December 2020 at the Centro Nacional de Tecnología de
Regadíos in Madrid (Spanish Ministry of Agriculture, MAPA, Madrid, Spain). It consisted
of a split-plot experiment with three different cover crops (vetch, barley, and fallow) and
two different soil treatments (tillage and no tillage). Fifteen automatic chambers were
displayed on the field, each of them closed for 24 min with three measurements per day for
each chamber, in a serial sequence, with the farthest chamber 55 m away from the analyzer.

https://github.com/rasmuse/flux-estimation-example
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The closure time here is only indicative; in this experiment, it was designed this way so
that each chamber would take measurements at the same time every day, depending on the
requirements of each experiment and the operator’s needs. The experiment lasted 1 year
with GHG measurements taken daily and every second, ending with approximately 34 GB
of output files from the analyzer in files corresponding to 1 h blocks.

To illustrate the process when calculating fluxes with OpenToolFlux, a month of the
resulting data (about 3 GB) is used in this section and the detailed configuration and
command outputs are included in the Supporting Information files.

3.1. Configuration

Once the data from the analyzer is in the computer (Figure 6), it is possible to launch
the software. The first step is to specify the settings in the configuration file: (1) the file
paths for the input data, (2) selected columns and names (Table 1), (3) timestamp filters
(range of dates from the input data, from 1 January 2021 to 31 January 2021 in this case),
(4) alarm filters (filter excluding all the alarms except the water alarm, which is already
corrected by the Picarro analyzer software (Picarro, Santa Clara, CA, USA)), (5) separation
into measurements with a given duration (chamber_col identifies the number of the current
valve, and the maximum and minimum duration of what is selected for measurement is
24 and 30 min), and (6) chamber labels (from RAS 1 to RAS 15).
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Figure 6. Fragment from one file of raw data from the analyzer containing about 37 columns in total.
Each of these files contains 1 h of data, 24 files per day.

Table 1. Imported data format and selected columns with the original column names in the raw data.
We discarded most of the data that were not useful for the calculations, and we kept six columns
from the previous 37. These settings are configured in the .toml file.

Selected Data Data Format

A timestamp of the sample: EPOCH_TIME float64

Current measuring chamber:
SOLENOID_VALVE float16

Type of alarm if raised: ALARM_STATUS int8

CO2 Concentration: CO2 float32

N2O Concentration: N2O_dry float32

CH4 Concentration: CH4_dry float32
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3.2. Data Import

Once the configuration file is ready, we can import the data selected to create our
database. The software filters the data and stores it in the Feather file (101.5 MiB), which can
be exported and transferred to any other computer. Table 1 shows the columns imported
into the software with the default name from the raw data.

3.3. Flux Estimation

The software now performs the calculations on the data to obtain the fluxes using
the defined parameters from the configuration file. In this case, the values for the flux
calculation parameters were those specified in Table 2. These values depend on the physical
equipment the user has. The units of the concentration input data will determine the units of
the resulting volumetric flux values. In our case, the volumetric flux becomes µm/s because
the concentration input data is in parts per million in volume (ppmv). We recommend
setting the values of A, V, and Q in SI units, although technically the only requirement is
that V/Q has a unit second (see the software README file for further details).

Table 2. Parameters, units, and values used in the calculations of the fluxes for this example. Chamber
size, volume, and air flow of the gas from the chamber to the analyzer are required and may vary
depending on the equipment.

Parameter Value and Units Meaning

A 0.25 m2 Area occupied by the chamber on the soil.

Q 4.17 × 10−6 m3/s
(0.25 L/min)

Air flow through the tube carrying the sample.

V 50 × 10−3 m3

(50 L)
Chamber volume

The output is a .csv file with the volumetric flux values per chamber, gas, and mea-
surement time. Table 3 shows the columns contained in the output file, with a timestamp,
number and label of the chambers, the specific starting time of the estimation fit, the name
of the gas, and the value for each measurement.

Table 3. Selected columns for the tabulated data.

Column Name Description

data_start The timestamp of the measurement’s first sample

chamber_value Current chamber being measured

chamber_label Name of the sampling point measuring

t0 Initial time for the estimation fit

gas Name of the gas measured

volumetric_flux Value of the gas flux measured at the time

3.4. Plotting the Results

Finally, the plot command creates image files with visualizations of flux estimations
as described above. Figure 7 shows N2O emissions from 1 January. The first three mea-
surements were taken the same day and show a normal pattern with accumulation of the
gases. The last one is from September and shows an atypical distribution, probably due
to a technical error during the sampling. These types of results, clearly visible, should be
reviewed and discarded manually as the software does not do it automatically.
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curve for each gas. At first glance, these three measurements seem to present a normal dynamic, but
the last image shows a different pattern indicating a potential error during the measurement.

3.5. Representation of the Resulting Molar Fluxes

The transformation from volumetric to molar flux, for which temperature and pressure
data are required, is out of the scope of the software and this paper. The intention of this
section is to show a possible use of the results obtained from the software, which in this
experiment were useful to evaluate the different crops and treatments described above.
Figure 8 shows the mean N2O emissions per day for each chamber during the month
processed. These results allow us to study the influence of different variables on GHG
emissions. In this experiment, factors such as the soil treatments applied, cover crops
selected, fertilization events, and meteorology may have effects on the emissions obtained.
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Figure 8. Daily mean N2O emissions per chamber during January 2021. To easily distinguish the
trends, only one repetition of each treatment is represented with the name “RAS” and its correspond-
ing number. The emissions over the month show a significant increase at the end, coinciding with a
rewetting event.

It is easy to see, for example, how the low temperatures and snow during a storm
occurring at the beginning of the month may have lowered the microbial activity in the
soil, and how the later melting of this snow probably caused a great increase in the N2O
emissions caused by a rewetting event. There is also a visible differentiation between the
treatments represented, some of them showing a considerable increase in the emissions
compared to others in which the soil treatment or cover crop applied seems to lower them.

The data analysis and further transformations of the results obtained from the software
can be performed in any other software preferred by the user.

4. Discussion: Potential Uses and Limitations
4.1. Potential Uses

The software was created to perform recurring data analysis tasks encountered while
working with data from our automatic chamber system. This loading, filtering, and
transformation of data follows a common pattern but needs to be adapted to specific
settings (e.g., timing and chamber configurations) that may vary with different experimental
setups. Streamlining and documenting this process is important to facilitate reproducible,
high-quality, and time-efficient analysis of experimental data.

The software is adaptable to other automatic systems (e.g., a different analyzer, number
of chambers, closing time, etc.) assuming that (1) there is no recirculation in the system and
(2) the raw data from the analyzer are tabular data files with a timestamp for each row.

Since OpenToolFlux is an open-source software, the users of Python programming are
free to make any further development to their liking.

4.2. Limitations and Sources of Uncertainty

Although OpenToolFlux can handle several input data formats and different exper-
imental setups, there are some limitations to the flexibility. As mentioned above, the
software assumes a no-recirculation system and the raw data files are tabular data files
where each row provides a timestamp, the current chamber, and the concentration of one
or more gases.

OpenToolFlux has a flexible mechanism to discard input data with measurement
values or error indicators outside specified bounds, as well as entire measurements that are
too long or short compared to specification, but these mechanisms cannot reliably detect all
kinds of problems or interruptions during the measurements, for example, if the chamber
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was not closed while the analyzer was measuring. Additional data quality checks should
be made by the user on raw data and/or program output.

Finally, it is necessary to point out that the accuracy of the model’s assumptions used
in the derivation of the flux estimation is outside the scope of this paper.

5. Conclusions and Further Development

Our aim herein was to develop a tool to streamline and document the process of
loading, cleaning, and transforming time-series data into fluxes. The software is broadly
applicable in GHG emissions research using automatic chambers, an essential technology
to obtain more precise estimations of global dynamics.

This paper documents the software and its underlying assumptions and is moreover
intended as a first guide when using the software, in addition to the more technical user
guide distributed with the software. In addition to the example discussed in this paper, the
software is provided along with a complete example of input data, configuration file, and
output data as a demonstration and a concrete guide to get started (https://github.com/
rasmuse/flux-estimation-example, accessed on 10 September 2023).

As open-source software, it is open for extension and refinement by us and/or by
other users who may have different needs. We hope that the software will be useful as is
and can also function as a base for further development in diverse scientific contexts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13112842/s1. Supplementary Materials S1: Solution to
the differential equation. Figure S1: Fragment of the output data after calculating the volumetric flux
with the fluxes command; S1 Code section: Configuration file settings used in the example with one
month of data (January 2021); S2 Code section: The commands in the command prompt for importing
and transforming data into fluxes in OpenToolFlux.
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