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Abstract: Natural resources including water, energy, and food have an increase in demand due to
the global population increases. The sustainable management of these resources is an urgent global
issue. These resources combined in a very vital nexus are called the water–energy–food (WEF) nexus.
The field of nanotechnology offers promising solutions to overcome several problems in the WEF
nexus. This review is the first report that focuses on the suggested applications of nanofibers in the
WEF sectors. An economic value of nanofibers in WEF sectors was confirmed, which was mainly
successfully applied for producing clean water, sustainable energy, and safe food. Biotechnological
solutions of nanofibers include various activities in water, energy, and food industries. These activities
may include the production of fresh water and wastewater treatment, producing, converting, and
storing energy, and different activities in the food sector. Furthermore, microbial applications of
nanofibers in the biomedicine sector, and the most important biotechnological approaches, mainly
plant tissue culture, are the specific focus of the current study. Applying nanofibers in the field of
plant tissue culture is a promising approach because these nanofibers can prevent any microbial
contamination under in vitro conditions, but the loss of media by evaporation is the main challenge
in this application. The main challenges of nanofiber production and application depend on the type
of nanofibers and their application. Different sectors are related to almost all activities in our life;
however, enormous open questions still need to be answered, especially the green approach that can
be used to solve the accumulative problems in those sectors. The need for research on integrated
systems is also urgent in the nexus of WEF under the umbrella of environmental sustainability, global
climate change, and the concept of one’s health.

Keywords: WEF nexus; wastewater treatment; food packaging; energy harvesting; medicinal;
pharmaceutical; biomedicine; nanoparticles

1. Introduction

Agriculture is the main source of our food, feed, fiber, and fuel. Fibers are one of the
important agro-productivity sources. Fibers can originate from two main sources, natural
and synthetic fibers. Natural fibers refer to the fibers obtained from plants, animals, and
minerals. Concerning plants, natural fibers may originate from leaves, seeds, bark, fruit,
and stalks as sources of fiber, whereas animal ones are derived from silk, wool, and hair as
well as mineral fibers like asbestos [1]. The main properties of natural fibers may include
renewable, safe, non-polluting, and legitimate sources of fiber, which could be employed for
the manufacturing of several composites in the future [1]. Several recent publications issued
on different applications of natural fibers, such as important sources for producing polymers
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(e.g., [1–3]). These applications may include the following fields, such as biomedicine [2],
4D printing technology [4], aerospace [5], filtration of water/wastewater [6], textiles [7],
additive manufacturing applications [8], the automotive industry [9,10], the construction
industry [11], thermal structure engineering [12], food packaging [13], harvesting and the
storage of energy [14]. The water–energy–food (WEF) nexus has a strong relationship with
nanofibers, which can support their components through mainly the following activities:
food packaging [15], energy processing [16], and water handling [17].

Nanofibers are a kind of fiber that can be in natural and synthetic nanoforms (less
than 100 nm). These fibers have several distinctive properties compared with natural fibers
such as high porosity, large specific surface area, and high size uniformity [6]. Apart from
natural fibers, nanofibers have been applied in many major sectors of our life, including
agricultural [18], pharmaceutical [19], biomedical [20], and industrial fields [21] of the
global water [22,23], energy [24], and food sectors [25]. Biotechnological applications
of nanofibers have gained sound interest from scientists and industrial workers due to
their promising roles in many fields such as delivering bioactive compounds [26], and
the biomedical field [27]. The suggested roles of nanofibers in the main sectors of water,
energy, and food are linked to the security of these sectors, and their nexus. Nanofibers
in the water sector were discussed in many publications focusing on water treatment [6],
water purification [28], and wastewater treatment [23]. Additional studies on energy
and food industry applications of nanofibers could be noticed, which mainly focused on
harvesting/storage of energy [24] or food packaging [25].

This study, as far as we know, is the first report discussing the relationship between
nanofibers and the WEF nexus. The biotechnological applications of nanofibers in WEF
and biomedical sectors also were included. This work was also designated to highlight the
promising applications of nanofibers in the field of plant tissue culture and other further
applications (e.g., mainly on a large scale in the industrial fields).

2. Nanofibers in Water, Energy and Food

What are the main properties of nanofibers? Nanofibers are polymeric fibers on a
nano-scale, which have certain properties and can be produced using both natural and
synthetic polymers. Plant natural fibers are the main sources for producing such fibers
along with animal and mineral sources, which depend on the used plant fraction such
as leaves, stems, stalks, and seeds (Figure 1). The most common plant fiber sources may
include seed fibers from cotton (Gossypium arboretum L.), fruit fibers from coconut (Cocos
nucifera L.), bark fibers from jute (Corchorus olitorius L.), leaf fibers from sisal (Agave sisalana
L.), and banana (Musa sp.). Synthetic or artificial polymers of nanofibers are widely used
due to their easy production, low cost, and higher mechanical properties, but they can
cause long-term environmental and human health problems due to their nonbiodegradable
disposal, toxic nature, and their persistence in the ecosystem for a long time [29]. Nanofibers
possess several desired properties such as extremely high porosity, low density, high specific
surface area, and a highly porous matrix. Nanofibers also have specific functionalities due
to their large specific area, which allow immobilizing nanoparticles (NPs), metal–organic
frameworks, and zeolites [29].

Due to the previous advantages, nanofibers have many applications such as drug
delivery systems [30], industrial building design [31], biomedicine [32,33], 4D printing in-
dustry [34], textile industry [35,36], and wastewater remediation [37]. Nanofibers could be
produced by electrospinning and non-electrospinning techniques (Figure 2). Several unique
properties of electrospun nanofibers are well-known compared with other bulk materials
such as adjustability of pore sizes, large surface area, and porosity, as well as the extracel-
lular matrix [26]. These production methods with advantages and disadvantages can be
presented in Figure 3. Microbial sources for producing nanofibers are considered an impor-
tant approach, which is applied to many fields such as bacterial cellulose nanofiber [38],
microbial fuel cells [39], microbial polysaccharides for controlled drug release [40], and
monitoring of food packaging [41]. These fields will be discussed in the following sections.
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The electrospinning method is the most widely used compared with other techniques
for producing electrospun fibers due to its efficiency, operational simplicity, practicality,
cost-effectiveness, and versatility [26]. The production of nanofibers is not only the main
limiting factor but also the properties of these fibers, which should be evaluated by scanning
electron microscopy (SEM) and other methods. Certain properties of nanofibers, which
are important for their functions, will be discussed in the next section including physico-
chemical, mechanical, and biological characteristics. On the microscopic level of nanofibers,
SEM images of the fabrics revealed that the enhancement in fiber strength can be attributed
to the formation of structures resembling bamboo nodes or wheat stem nodes within the
fibers (Figure 4). The production of nano-sized fibers and the use of these fibers to create
non-woven fabric was achieved by our lab (Nano Food Lab, Debrecen University, Debrecen,
Hungary). These nanofibers were applied as specialized filtering materials for gases (air)
and liquids, as well as for manufacturing functional filters. Several scientific attempts for
producing nanofibers in our lab were developed on different levels including a laboratory
scale, a pilot-scale device, and a full-scale manufacturing facility. Design, development,
and optimization of nanofiber formation using different parameters (e.g., flow rate, voltage,
electrode distance, surface, time, and solution concentration) were evaluated. Construction
of a full-scale manufacturing facility included design, implementation, test production,
and machine adjustment, as well as mass production of products, quality control, and
implementation of a quality assurance system.
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2.1. Nanofibers in the Water Sector

Nanofibers have certain properties that support their function including physico-
chemical, mechanical, and biological characteristics (Figure 5). These properties have a
great role during water filtration and wastewater treatment. They allow nanofibers to be
preferable for many water processes such as wastewater treatment [37], desalination [42,43],
removal of heavy metals [23], and eco-remediation of highly concentrated wastewater
streams [44]. Water-based nanofibers are considered attractive alternatives to organic
solvents, which are used during the electrospinning methods [45]. This kind of fiber can be
applied to nanofibers such as water-resistant polyvinyl alcohol nanofibers [46], modified
cellulose nanofibers [47], and cellulose succinate nanofiber [16]. Such hydrophilic cellulose
nanofiber as a separator has a high porosity (60%), and a hydrophilic surface, which can
enhance a strong electrostatic repulsion between facilitating ion transportation and fibrils
and increase negative surface charges [16]. Microbial nanofibers are considered a favorable
alternative to petrochemical-based membranes due to their higher flux rate, higher tensile
strength, flux recovery, and favorable stability ratios, as well as sustainable and eco-friendly
membranes [48].

For a long time, nanofibers synthesized using polymers synthetized from petroleum
caused several environmental problems because they are non-degradable and persistent
in the environment. So, green nanofibers are considered a promising approach on the
industrial and academic levels to produce plant-derived nanofiber polymers instead of
synthetic polymers derived from petroleum due to their sustainable, renewable, com-
pletely biodegradable, and eco-friendly nature [29,49,50]. More published studies on
green nanofibers are presented in Table 1. Along with green nanofibers, animal sources of
nanofibers were reported such as chitin from crab shells for coloring dyes [51], and wool
keratin nanofibers for the biomedical field [52]. It has also recently reported on developing
green tires using chitin nanofibers (from prawn shells), natural rubber, and carbon black as
a sustainable and circular economy approach [53]. Interestingly, a new green approach for
the wearable biosensors that can be used in monitoring the physiological metabolism in
biofluids (e.g., sweat, blood, saliva, urine, and tears) was reported by detecting glucose and
uric acid [54] or a non-green approach [55].
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Table 1. Studies on green nanofibers and their applications.

Nanofiber Type Plant Source The Main Findings Refs.

Cellulose nanofiber Cassava pulp
Nanofibers improved the mechanical properties of injectable
hydrogels for meniscus tissue engineering by promoting cell
viability, and physico-chemical properties

[56]

Green flexible nanofibers
(GNF) Rice straw Isolated GNF was used in combination with ZnO-NPs to prepare

flexible nano-paper films for electronic components [57]

Lignin-containing
cellulose nanofibers
(LCNFs)

Sugar cane bagasse
Sustainable and eco-friendly nanofibers for producing LCNFs
using microwave-assisted natural deep eutectic solvent with
high-performance

[58]

Lignin-based electrospun
nanofiber Bamboo pulp

This nanofiber membrane decorated with photo-Fenton
Ag@MIF-100(Fe) was with good wettability and high porosity as
a green, sustainable, and efficient membrane for methylene blue
dye removal and degradation (99%)

[37]

Starch-based green
electrospun nanofiber

Natural polymer of
pullulan

Green nanofibers as fast-dissolving nanofibers for delivery
bioactives (cumin) in food and pharmaceutical fields [59]

MXene–cellulose
nanofiber (CNF)
composites

Cellulose from
biomass (wood, cotton,
hemp, etc.)

Green nanofibers are low cost and have biodegradability,
process-ability, and a hydrophilic behavior, which leads to
acceptable dispersion in water treatment by using the
vacuum-assisted filtration

[60]
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Table 1. Cont.

Nanofiber Type Plant Source The Main Findings Refs.

Cellulose nanofibers Bamboo chips
Cellulose nanofiber-blended polylactic acid composite can be
produced from bamboo under high-pressure steam and
high-temperature for low-strength biodegradable polymer

[61]

Lignin-containing
cellulose
nanofiber/glycerol
composite

Poplar pulp
This nanofiber composite can be applied for engineering light
management, solar cells, food packaging, anti-glare film, and
flexible optoelectronic devices

[62]

Nano complexes-based
nanofibers

Cellulose extracted
from rice straw

Polyvinyl alcohol/NC/cellulose nanocrystals could be applied
for multi-functional water treatment and removing pathogenic
microorganisms and other pollutants

[63]

Nanofiber-hydrogel
composite

Dried chamomile
flower

A polyamide/Pistacia atlantica (P.a) gum nanofiber and
PEBAX/Polyvinyl alcohol/Ag hydrogel showed a high
anti-microbial activity towards the E. coli

[64]

Cellulose nanofibers
(CNFs) Sugar beet pulp

CNFs had higher hydrophilicity, and tensile strength properties,
whereas a decrease in air porosity when coated paper sheets after
hydrothermal-depectinated pulp coating

[65]

Cellulose nanofibers
(CNFs)

Salicornia ramosissima
waste

Produced nanofibers can be used as reinforcing agents of
polymeric composites, food packaging, pharmaceutical medical,
and cosmetic industries

[66]

Cellulose
nanofiber-polyvinyl
alcohol

Oil palm bunches
A good nanocomposite film has water vapor transmission rate
and transparent film layer (1294.82 and 1395.91 g/(m2 0.24 h),
resp. for gas barrier application on paper packaging

[67]

Cellulose nanofiber Artificial produced by
a company

Using basil essential oil and corn starch coated nanofiber to
prolong the shelf life of the mandarin orange by maintaining the
fruit quality, and reducing weight loss of the coated fruits

[68]

Stabilized cellulose
nanofibers From wood fiber

Coating nanofibers with chitosan NPs as edible coating for
maintaining fruit quality against antifungal activities (Rhizopus
stolonifera and Penicillium digitatum)

[69]

The 2D layered materials are called “MXenes”.

The microbial role in water treatment is noteworthy during water/wastewater process-
ing. Many studies indicated this potential approach of applying microbes as immobilized
carriers during wastewater treatment (e.g., [46,70,71]). Apart from microbial nanofibers,
the microbial immobilization of wastewater treatment has proved its efficiency in removing
and biodegradation of many types of wastewater pollutants for a low cost, highly efficient,
high surface area, chemically and physically stable carriers, and excellent biological compat-
ibility [72]. More concerns were focused on the microbial removal of emerging pollutants,
and the green catalysts using enzymes such as laccase during wastewater treatment [73].
Concerning the suggested mechanism of nanofibers during the water treatment, this is
presented in Figure 6, as well as the list of some suggested kinds of nanofibers as well.

Nanofibers have been used in the sector of water treatment as adsorbents, electrochem-
ical electrodes, photocatalytic materials, and membranes for removing specific pollutants
such as persistent organic pollutants, heavy metals, emerging pollutants, and oily molecules.
Electrospun nanofiber membranes have many advantages during water treatment, such
as a homogeneous pore distribution, high surface area to volume ratio, a wide variety of
polymers, ease of fabrication, high porosity, and high hydrophobicity [29]. Whereas, the
disadvantages may include high voltage, differential pore size and fiber thickness, and
toxic solvents. The mechanisms of removing pollutants (e.g., heavy metals and others)
from wastewater using nanofibers involve the photocatalytic process, adsorption, ion ex-
change, diffusion dialysis, electrostatic processes, and metal–organic framework crystal
or polymers [73]. The application of nanofibers as adsorbents mainly depends on their
functional groups in the polymeric matrix, which have high selectivity for removing the
target pollutants [29].
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2.2. Nanofibers in Energy Sector

The energy sector represents a crucial resource for our life. At all times, a global
urgent concern is needed for searching for new untraditional sources for producing and
maximizing energy production. This approach could be achieved by applying different
reliable agro-wastes as renewable, excellent, and affordable resources [74]. At the same
time, the accumulation of agro- and industrial waste causes harmful environmental issues,
which should be valorized into energy. The most important suggested approaches for
the energy crisis may involve microbial and green energy, as sustainable strategies for
producing energy apart from fossil sources. Microbial energy conversion or microbial en-
ergy technologies are sources where microbes can make fuels out of raw organic materials
and convert the chemical energy in the agro-biomass into chemical energy in the form
of hydrogen or ethanol through the bioenergy process (Figure 7) [75]. The main applica-
tions of nanofibers in the energy sector are lithium-ion batteries, solar cells of crystalline
silicon using nanofiber, dye-sensitized solar cells, supercapacitors for electrospun carbon
nanofibers, hydrogen storage using nanofiber membranes, and pressure-retarded osmosis
(Figure 8). Using biomass-based nanofibers in energy storage has many advantages such as
high specific surface area, unique porous structure, low cost, and easy availability [76].
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Concerning green energy, cellulose nanofibers (CNFs) in addition to wood and other
lignocellulose materials (e.g., agro-residues) are the most common renewable materials that
can be used for producing this kind of energy [77]. Green nanofibers have a specific surface
area, and high strength, and are lightweight, stiff, renewable, and biodegradable [59].
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CNFs can be applied in different fields such as membranes and polymer films [47,48],
reinforcing agents in plastic composites [56], wastewater treatment [21], food additives [15],
paper coatings [65], energy storage [16], medicines [78] and cosmetic products [66]. It is
worth mentioning that carbon nanofibers derived from nanocarbon materials have several
integrated advantages, such as reducing chemical functionalization [62], chemical and
structural flexibility [79], bulk production potential [80], better electrical conductivity [81],
and use during different electrochemical processes [74]. Furthermore, generated carbona-
ceous NPs from biomass have shown a significant potential for use in bioimaging, fuel
cells, medicinal delivery, catalysis, carbon fixation, and gas sensors [74]. Many kinds of
nanofibers could be listed and their application for energy harvesting is as follows:

1. Carbon nanofiber network-based Zn-ion capacitor delivers [82];
2. Three-dimensional electrospun porous nanofiber materials for energy storage [83];
3. SiO2 nanofiber-reinforced P-based microporous polymer electrolytes [84];
4. Electrospinning polyvinylidene fluoride nanofibers [85];
5. Carbon nanofibers decorated with copper–metal–organic frameworks [86];
6. Nanofiber-reinforced clay (montmorillonite)-based 2D nanofluidic for osmotic har-

vesting energy [87];
7. Electrospun nanofiber for electrochemical energy storage/conversion [88];
8. Electrospun metal–organic framework-derived nanofibers, as a next-generation tech-

nology for electrochemical energy storage [89];
9. BaTiO3:La embedded nanofiber membrane for wireless power transmission and

harvesting energy [90];
10. Electrospun organic piezoelectric nanofibers due to their biocompatibility, eco-friendliness,

flexibility, and biodegradability for energy harvesting and other bioapplications [91].

On the other hand, the biotechnological approach to energy can be found in microbial
fuel cells (MFCs), which are considered sustainable bioelectrochemical systems. In an
MFC system, electroactive microbes (e.g., bacteria or yeast) can be utilized in the biological
treatment of wastewater via biochemical reactions to convert directly chemical energy
into electrical energy [92]. The electricity can be generated in MFC systems through
biodegrading organic pollutants in water bodies to obtain a new eco-friendly energy
technology that has no biofouling, low operating cost, and a wide range of substrate
sewage treatments [93,94]. Several recent studies focused on microbial energy under
different conditions as presented in Table 2. These MFC systems used nanofibers, as
mentioned in many studies, with a focus on converting and storing energy [92,95–97].

Table 2. Studies on the role of nanofibers in improving microbial fuel under certain cases.

Nanofiber Type Method of Producing The Adapted and Used Nanofibers Refs.

Polyacrylonitrile
nanofibers Electrospun nanofibers Enhanced oxygen reduction upon Ag-Fe-doped

polyacrylonitrile@UiO-66-NH2 nanofibers [92]

Nitrogen-doped carbon
nanofiber Electrospinning N-doped carbon nanofiber (Co/CoP/Co2P@N-CNF,

Co/CoS2@N-CNF) [98]

Polyvinylidene fluoride
nanofibers Electrospinning Free molding polyvinylidene fluoride @Ag nanofiber [99]

Carbon
nanofiber-decorated
graphite rods

Electrospinning
An effective and low-cost anode using a polyvinylidene
fluoride electrospun nanofiber for industrial wastewater-driven
microbial fuel cells

[100]

Aligned
C-nanofiber-bacteria
hybrid

Electrospinning and
co-filtration method

This nanofiber has high-power output, low cost, facial
fabrication, high-performance, and cost-effective microbial fuel
cells in a large-scale

[101]

Carbon nanofiber on
(CoCu@N-CNFs)

Metal–organic
frameworks and
electrospinning

Bimetal Cu/Co-N-doped porous C-nanofibers have high
anti-bacterial capacity, inhibited the biofouling on the cathode
surface, and best electrochemical activities were exhibited when
Co to Cu was 1:1

[97]
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Table 2. Cont.

Nanofiber Type Method of Producing The Adapted and Used Nanofibers Refs.

Fe-Co bimetallic with
carbon nanofibers

Electrospinning and
metal–organic
framework

Enhances the bioelectrocatalysis activity and promotes the
direct electron transfer process of electroactive bacteria to
improve the sluggish extracellular electron transport process of
microbial fuel cell anode

[96]

Carbon nanofibers Electrospinning
Decorated electrospinning C-nanofibers can save more
exoelectrogens colonization, higher electrocatalytic activity, and
more efficient interspecies interactions in the microbial fuel cell

[92]

N-doped carbon
nanofibers Electrospinning

N-doped C-nanofibers embedded in vertical-grown nanosheets
improved the surface area of the material, preventing the
agglomeration of Co and Co-Fe alloy NPs as a new approach
for regenerating and conversion of the clean energy

[94]

Bacteria/electrospun
oriented C-nanofibers Electrospinning

These nanofibers have a self-supporting anode using filtration
strategy; electrospinning technology for bacteria colonization
and fully utilized interior surface area

[102]

Polymerized nanofiber
polyaniline

In situ oxidative
chemical
polymerization

Cystobasidium slooffiae JSUX1 yeast enhancing both hydrogen
production and bioelectricity from xylose in microbial fuel cells
by polymerized nanofiber polyaniline

[95]

2.3. Nanofibers in the Food Sector

The production, handling, preservation, and storage of global food are essential items
for the optimum management of food security. They need a suitable fiber or polymer
for improving and controlling the properties of food. Maintaining freshness and food
quality via food packaging has gained a great concern. As a multidisciplinary area, food
packaging involves several sciences in addition to food science, which includes mainly
food chemistry, food engineering, and food microbiology [103]. Recently, food packaging
has had great progress thanks to the use of nanofibers (Table 3). Several applications
of nanofibers in the food industry include three sectors: food analysis (antibiotics, food
compositions, pathogens, and pesticide residues), food production (beverage filtration and
delivery system for functional food), and food packaging (Figure 9). Using nanofibers in
food packaging is a major contributor in the food sector, which may include the following
applications, such as active packaging, edible packaging, gas sensors, food freshness
sensors, intelligent packaging, time–temperature indicators, moisture removal packaging,
and ethylene removal packaging [104]. In addition, pH indicators, functional bioactive
packaging, antibacterial (thymol, gallic acid, curcumin), antifungal (curcumin, essential
oils, etc.), and antioxidants (ascorbate, tocopherol, phenols) are common applications [105].

Table 3. Use of nanofibers in food packaging and multifunctional food packaging.

Nanofiber Type Functional Item The Outcome from Used Nanofibers Refs.

Gelatin/chitosan
nanofibers Curcumin

Electrospun nanofibers have the potential as multifunctional
packaging in protecting and monitoring the freshness of
protein-rich animal foods (e.g., seafood and meat)

[106]

Gelatin-based nanofibers Xanthan gum and propolis Nanofibers containing propolis showed a homogenous
morphology with high antibacterial and antioxidant activities [107]

Gelatin/zein-based
nanofibers Cinnamaldehyde/thymol

Used nanofiber films showed blocking for UV light, excellent
antioxidant, antibacterial, and reduced water
vapor permeability

[108]

Gelatin/pullulan
nanofibers Carvacrol/cyclodextrin

Studied nanofibers recorded the potential of carvacrol as a
promising antioxidant and antibacterial that accelerated
shelf-life test at 40 ◦C during active food packaging and as a
bioactive compound

[109]
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Table 3. Cont.

Nanofiber Type Functional Item The Outcome from Used Nanofibers Refs.

Carboxymethyl
chitosan/polyethylene
oxide nanofibers

Nisin from Lactococcus
lactis

Nanofiber had mechanical strength and good antibacterial
activity that extended the shelf life of packed bass fish from 9
days to 15 days as preserved aquatic product

[110]

Polyurethane nanofiber Polyurethane-enrolled
Fe3O4-NPs

Green synthesis of Fe3O4-NPs using food waste (molasses)
promoted packaging cheese as an antimicrobial and maintained
quality, freshness, and extended its shelf-life to 40 days

[111]

Ag-coated nanofiber Nitrite detection
Gluten/zein film-based Ag-coated nanofiber was effective for
rapid nitrite detection in food and the nitrite content ranged
from 10–1 to 10−4 mol L−1

[112]

Gluten/zein nanofibers Anise essential
oil/β-cyclodextrin

Suggested sustainable, antioxidant, antimicrobial-loaded
nanofibers against Staphylococcus aureus and Escherichia coli as a
promising tool for active food packaging

[113]

Sulfonated cobalt
phthalocyanine–
titanium dioxide
NPs

Ethylene scavenging
capability

Studied nanofiber inhibited antibacterial activity of both
Escherichia coli and Staphylococcus aureus (over 90%) and
ethylene removal during vegetable and fruit preservation

[114]

Lycium barbarum
polysaccharide
nanofibers

Eugenol–silk fibroin NPs
Studied nanofibers were antibacterial, thermal stable, and
encapsulated eugenol into silk fibroin NPs suppressed its
volatility and extended the needed time against bacteria activity

[115]

La2NiO4 functionalized
carbon nanofiber Vanillin

Studied nanofiber was applied for detecting the vanillin in
studied food samples (i.e., ice cream and chocolate), through a
promising electrochemical sensing strategy

[116]

Composite films of
cellulose nanofibers

Packaging film of
halochromic C-dots;
anthocyanin

The film had antimicrobial, antioxidant, and UV barrier
properties, as an intelligent and active food packaging by
changing color from red to colorless yellow during storage at 25
◦C for 48 h during storage of fish, pork, and shrimp

[117]

Poly (lactic
acid)/polyethylene
glycol nanofibers

Peppermint essential oil
This hydrophobic nanofiber enhanced strawberries’ shelf-life by
decreasing water vapor permeability, reducing weight loss after
5 days, and increasing firmness of fruits

[118]

Chitosan/cellulose
nanofiber γ-Cyclodextrin/curcumin

Coating film is used to extend the shelf-life of tomato, banana,
and cut apple slices by reducing water loss, and microbial attack
due to its excellent antimicrobial/antioxidative properties

[119]

Polycaprolactone/chito-
oligosaccharide
nanofiber-films

(EGCG)/2-(HP-β-CD)
This film had thermal stability as a good antibacterial agent for
post-harvest fruit packaging due to its antifungal nanofiber
membrane activities

[120]

Abbreviation: Epigallocatechin gallate (EGCG)/2-hydroxypropyl-β-cyclodextrin (HP-β-CD).

It is well-documented that the common methods for preparing nanofibers may include
centrifugal spinning, electrospinning, and solution blow spinning toward active food
packaging [121]. This active packaging of food is a crucial strategy for food maintenance,
extension of their shelf life, and ensuring integrity, freshness, and safety, to meet the
consumer demand for higher quality, healthier, and safer food [121]. What are the main
advantages of nanofibers for packaging food? Nanofibers have been applied in food
packaging because of their high porosity, specific surface area, and loading capacity of active
compounds. There are several kinds of nanofibers that can be applied in the food industry,
in general, and for food packaging, in particular, depending on the purpose, and which
bioactives are needed (Table 3). For intelligent food packaging, electrospun nanofibers are
considered to be promising tools due to their higher sensitivity and accurate pH labels [122].
In seeking sustainable and green approaches in the food sector, great progress in plant-
based natural fibers has been achieved in the sector of food packaging [13]. These natural
green fibers have several benefits compared with synthetic fiber, which includes lighter
weight, low density and cost, superior life cycle, biodegradability, and good mechanical
properties [123]. The main sources of natural nanofibers for food packaging involve
cellulose [15], chitosan from chitin [124], gelatin from collagen [107], and silk fibroin from
silkworms [125], and starch-based polymers can also be used to produce biodegradable
food packaging [126].
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2.4. Nanofibers in Water–Energy–Food Nexus

It is well-documented that by 2050, the global population will be around 9.7 billion,
which means greater demand for all the major resources of our lives. This demand rate differs
from sector to sector, for example, it increased by 70, 50, and 20–55% in the food, energy,
and water sectors, respectively [127]. Therefore, these main sectors of water, energy, and
food combine a crucial nexus (WEF) that requires urgent global management, as confirmed
by several studies discussing this nexus from different points of view (e.g., [128–130]). This
nexus has a very close relation to global climate change [131], the sustainable use of these
resources [132], the sustainability of desalination [133], the ecosystem [134], and rainwater
harvesting in arid zones [135]. This WEF nexus has a very closed relationship among all
its components (water, energy, and food), which the factors of each component depend on
each other, as well as it is impossible to secure any resource (e.g., food) without securing
the others (i.e., water and energy) and vice versa [129,136].

Several applications of nanotechnology have been globally added to new strategies for
improving and sustaining the components of this nexus, but still, environmental risks associ-
ated with this science need to be fully understood [128,137]. In the current study, nanofibers
are the nano-form that can be applied to the components of this WEF nexus (Figure 10).
Several research areas can be identified under the WEF nexus and apply nanofibers, such as
using nanofiber-based biosorbents for ecological remediation [22,37], applying the microbial
nanofibers for wastes and organic pollutants for remediation [138,139], the approach of pro-
ducing nanofibers from food waste by converting energy using microbial fuel cells [101],
and the general approach of how to use nanofibers in producing products of water–energy–
food in integrated system research. The microbial role in this nexus and its components are
very clear and involve several fields in all components such as biotechnological applications
in agriculture, healthcare, and energy [140]. Under the WEF nexus and toward integrated
system research, many investigations are needed including different relationships among
these resources, in addition to integrated nexus management for enhancing the resilience
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and sustainability of the whole nexus system [129]. More suggested research areas and
gaps are shown in Figure 11 in the entire nexus as well as in each one.
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Green technologies under this nexus (WEF) have great outputs, which can achieve
many goals of global sustainable development [141]. These green technologies are a hot
topic, which has spread in the water, energy, and food sectors. These technologies mainly
depend on plant species and their used part and/or microbe species (bacteria, fungi, or
yeast). This technology produced different kinds of nanofibers (green and microbial),
which have several excellent properties such as degradability, green, and biocompatibility,
in addition to their high porosity, and high specific surface area [142]. Under the WEF
nexus, green research is expected to include the following issues: green nanofibers for
water activities, green techno-food for all food industries, and green energy production
and handling. The main global issues including one health concept, sustainability, climate
change, and the environment can be managed by using microbial nanofibers. These
former questions are closely related to nanotechnology, whose nano-applications are a key
approach to solving many environmental problems [143]. This approach was confirmed
in many published studies such as the importance of environmental sustainability and
health systems/healthcare as one concept [144], nano-based smart farming [145], eco-
sustainability under nano additives for diesel engines [146], and waste management for
sustainable future [147].

3. Most Common Applications of Nanofibers

It is well known that natural fibers derived from plants have gained great concern as
a sustainable alternative to synthetic materials depending on plant species and the part
used. Several cultivated plants have been used in fiber production such as the stem of the
following plants Himalayacalamus falconeri [148], Lankaran acacia L. [149], Ficus benjamina
L. [150], Waltheria indica L. [151], Myriostachya wightiana [152], and Cyperus platystylis R.
Br. [153]. Chemical treatment is the main process for producing natural fibers, which may
involve alkaline, acetylation, benzoylation, peroxide, potassium permanganate, silane,
and stearic acid in addition to the surface treatments [6]. The biomedical sector has major
applications of nanofibers among other different sectors including water, energy, and food.
Enormous applications of nanofibers in biomedicine and therapy sectors are well-known
and shown in Figure 12. Nanofiber composites can be used to deliver drugs, genes, or other
biomolecules. Furthermore, they can be applied for engineering different tissues, from
the skin through the blood to neural tissues as summarized in Figure 12. The therapeutic
application of nanofiber composites is extensive, they can be used orally, transdermally, or
intravenously in different types of therapies (Figure 12).

These applications may involve the delivery of drugs [30], bionanocomposites [154],
and genes [155], as well as different applications in the field of tissue engineering for
many human organs including bone [156], tendon [157], skin [158], cartilage [159], skeletal
muscle [78], cardiac [160], vascular [161], and neural tissues [162]. Nanofibers exist in every
branch of the medical sector, which contributes to several fields such as tissue engineer-
ing [163,164], regenerative medicine [165], and sensing and biomedical approaches [166].
These applications may involve drug delivery carriers [30], wound dressing [167], and
facemasks [168]. These nanofibers are useful for tissue regeneration by mimicking a porous
topography, enhancing the adhesion cells, and improving physiological acceptability and
mechanical strength [169].



Agronomy 2023, 13, 2734 16 of 30Agronomy 2023, 13, x FOR PEER REVIEW 16 of 31 
 

 

 
Figure 12. List of suggested biomedical applications of nanofiber composites (A), and list of appli-
cations of nanofibers in the therapy sector (B). 

4. Further Applications of Nanofibers 
Nanotechnology is one of the fastest growing fields of advanced technology and has 

been proven to have an essential role in achieving significant development in agricultural 
systems and many different scopes of science and technology [170]. It has an extremely 
wide range of applications that could be employed for modern industry, agriculture as 
nanofertilizers [171], nanopesticides, the food sector, electronics, bioengineering, renewa-
ble energy, medicine, pharmacy, cosmetics, and sensor technology [172,173]. Nanotech-
nology has changed the delivery properties of metal elements into plant cells and has af-
fected the biological systems including plant survival, biosynthesis, antioxidant status, 
enzyme activity, growth, and development processes, and it has an active interference 
with the environment [174]. Nanoparticles (NPs) have proven to exhibit catalytic, optical, 
antibacterial, and antifungal properties [175,176]. With the advancement of nanotechnol-
ogy, numerous potential applications of nanoparticles have attracted considerable atten-
tion due to their unequaled physiochemical, non-toxic properties, and practical effects of 
their very tiny molecules as well as the low cost and stability at high temperatures [170]. 

Plant tissue cultures are the center of plant biology and play a significant role in the 
conservation of plant resources, mass propagation, genetic manipulation, bioactive me-
tabolites production, and plant improvement [177]. In recent years, plant tissue culture 
applications using nanotechnology, called plant nanobiotechnology, have become feasible 
and more popular [173]. The promising applications in plant tissue culture field include 
callus induction and proliferation [170,173–175], biodiversity preservation of plants by 

Figure 12. List of suggested biomedical applications of nanofiber composites (A), and list of applica-
tions of nanofibers in the therapy sector (B).

4. Further Applications of Nanofibers

Nanotechnology is one of the fastest growing fields of advanced technology and has
been proven to have an essential role in achieving significant development in agricultural
systems and many different scopes of science and technology [170]. It has an extremely
wide range of applications that could be employed for modern industry, agriculture as
nanofertilizers [171], nanopesticides, the food sector, electronics, bioengineering, renewable
energy, medicine, pharmacy, cosmetics, and sensor technology [172,173]. Nanotechnology
has changed the delivery properties of metal elements into plant cells and has affected
the biological systems including plant survival, biosynthesis, antioxidant status, enzyme
activity, growth, and development processes, and it has an active interference with the en-
vironment [174]. Nanoparticles (NPs) have proven to exhibit catalytic, optical, antibacterial,
and antifungal properties [175,176]. With the advancement of nanotechnology, numerous
potential applications of nanoparticles have attracted considerable attention due to their
unequaled physiochemical, non-toxic properties, and practical effects of their very tiny
molecules as well as the low cost and stability at high temperatures [170].

Plant tissue cultures are the center of plant biology and play a significant role in
the conservation of plant resources, mass propagation, genetic manipulation, bioactive
metabolites production, and plant improvement [177]. In recent years, plant tissue culture
applications using nanotechnology, called plant nanobiotechnology, have become feasible
and more popular [173]. The promising applications in plant tissue culture field include
callus induction and proliferation [170,173–175], biodiversity preservation of plants by
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cryopreservation [178], embryogenic callus formation and plant development via somatic
embryogenesis [172,179,180], and in vitro shoot multiplication and plant regeneration or
organogenesis [170,177,181–184].

Moreover, NPs have been used in plant tissue cultures to improve in vitro seed ger-
mination for commercial production of seedlings by nano-priming [185], antifungal nano-
composite [186], copper oxide nanoparticles [187], and iron nanoparticles [188]. NPs
also have been applied for enhancing root induction [170,182,186] and stimulating the
production of bioactive compounds as they can be used as elicitors in plant tissue cul-
tures [177,180,189–194]. On the other hand, NPs may induce or reduce the somaclonal
variation of in vitro cultured plants [177]. Genetic and phenotype variations that could be
stimulated in vitro by Ag-NPs are very desirable in breeding programs and plant improve-
ment [195]. Furthermore, nanoparticles could be utilized for the genetic transformation of
plants via gene delivery “Nanoparticles-based delivery technique” into the plant genome,
with the purpose of improving the quality and quantity of agricultural crops [196].

In addition to the direct actions of NPs on in vitro cultures, silver and cobalt nanoparti-
cles (Ag-NPs, Co-NPs) have been used to overcome leaf abscission and enhance the growth,
development, and survival rate of the in vitro propagated plantlets. They act as ethylene
inhibitors [197]. Ethylene could accumulate in culture vessels and negatively affect the
growth of the tissues by increasing the activity of hydrolytic enzymes leading to abnormal
phenomena of leaf abscission, yellowing, and hyperhydricity of some species accordingly,
which decreases the shoot quality [182]. Ag-NPs were successfully applied to reverse
hyperhydricity and regain the normal growth of in vitro shoots [198]. NPs were proven to
have the ability to enhance the tolerance of in vitro plants to abiotic stress. The application
of iron nanoparticles could significantly mitigate the harmful effects of salinity or drought
on the plant tissues cultured in vitro. This is an efficient method to produce plant materials
that are tolerant to various abiotic stresses [188,199,200].

Several in vitro studies reported the antimicrobial behavior of NPs. They have the poten-
tial use to reduce the fungal and bacterial contamination of tissue-cultured plants [176,186],
consequently ensuring aseptic environmental culture conditions. However, they should
be used at optimal concentrations, to avoid possible toxicity to plant tissues, due to the
cytotoxic behavior of the element itself (i.e., copper). CuO-NPs and Ag-NPs are considered
the most effective antimicrobials commonly used in plant tissue cultures mainly for in vitro
propagation of plants. They are applied by supplementing the culture media or as an
explant disinfectant by surface sterilization [186,197,201–203]. Titanium dioxide nanoparti-
cles (TiO2-NPs) showed potential for inhibition of bacterial growth in plant tissue culture
media [204].

Preliminary trials on the possible use of the nanofiber as an antimicrobial in plant tissue
cultures were carried out as reported in both Table 4 and Figure 13. These experiments
were performed in order to answer the following questions: what kind of nanofibers did
we apply? What is the main source of these nanofibers? What is the main target of this
application? What are the main results of these experiments? To what extent can we
use nanofibers in the plant tissue culture field? What are the main limitations and future
perspectives of this application? More justifications and validations can be extracted from
these experiments by answering the previous questions.

This study was carried out using the electrospinning method for preparing the
nanofibers produced by Dispomedicor Ltd. (Hajdúböszörmény, Hungary). The nanofiber
was between two melt-blown nonwoven PE layers. The nanofiber was used as a closure of
culture vessels. We aimed to determine whether nanofiber could be used to eliminate micro-
bial contamination in plant tissue culture media or not, and to what extent these nanofibers
allow good ventilation for enhancing the growth and quality of tissue-cultured plants as
well. The recorded observations for these initial experiments indicated that nanofibers are
promising tools and could be used efficiently to eliminate microbial contamination in the
culture medium but they need some more modifications in further studies to control the
high rate of evaporation from the medium, which may cause stress to the cultured tissues,
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and to keep the explants alive so they can grow and develop. Accordingly, obtain clean
and high-quality tissue-cultured plants. Therefore, future investigations are needed on
these kinds of nanofibers for more applicability. The future aim is to use these nanofibers
for closing the culture vessels, not only at a small scale in the scientific labs, but also in
the tissue culture companies that use big bioreactors, and/or in the nurseries of plant
propagation for commercial production in a large scale.

Table 4. Some trials on the possible application of nanofibers in the plant tissue technique.

The Trials and Their Details Observations

Trial 1: The plastic cover of the jar, which contained a sterilized
medium without plants, was replaced by nanofiber in one layer
and wrapped with plastic stretch and rubber.

After 10 days, the medium was very clean, where there was no
contamination noticed but the problem was that a part of the
medium was evaporated (Figure 13a).
After five weeks, the medium was nearly evaporated but still
clean, and the fiber started to decompose due to its exposure to
the dry air (Figure 13b).

Trial 2: To overcome the evaporation of the medium, the
nanofiber is used in two or double layers to cover the jar which
contains sterilized medium.

After 10 days, the medium evaporated but less than one layer,
however still without contamination (Figure 13c).

Trial 3: To decrease the evaporation of the medium, we reduced
the surface area of the nanofiber exposure to the dry air (we try
to modify the nanofiber to decrease the evaporation to a
minimum, after that we can try using plants. We made a
double-face nanofiber and made a hole in the plastic cover of
the jar.

After 10 days, the medium evaporated but still clean
(Figure 13d).

Trial 4: Double-layer nanofiber without modified plastic cover. The medium became dry after 10 days and the explants (Royal
Gala apple shoots) died (Figure 13e).

Trial 5: Double-layer nanofiber with modified plastic cover.
The medium evaporated partially after 10 days, and the
explants started to grow but the medium dried after a while and
the plants died (Figure 13f).
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nanofiber with less evaporation and without contamination. (d) Modified nanofiber (double face
with a hole in the plastic cover of the jar of sterilized medium). (e) Double layers nanofiber (drying
up the medium and death of the explants (RG apple shoots). (f) Modified nanofiber: the explants
started to grow then died due to drying of the medium Photos were taken by Neama Abdalla.

We successfully developed a laboratory-scale electrospinning device capable of pro-
ducing nanofibers from different composition solutions. By combining atomization and
electrospinning, we managed to develop and apply nanofiber-producing heads suitable for
industrial-scale production. Various nano-powder additives for the fibers were tested and
developed using a 3% graphite, 3% nano-selenium, and 10–12% PVB alcohol solution for
nanofiber production (unpublished data). Further remaining tasks may include controlling
and depositing the fibers produced by the atomization-based electrospinning technology
onto a carrier, further investigation of the filtration efficiency of nano-fabrics, and exploring
the potential applications of nanofibers with nanoparticle additives. Industrial optimiza-
tion of these nanofibers may significantly contribute to the advancement and potential
commercial applications of the developed technology.

5. General Discussion

In this section, some questions will present more justifications to highlight the poten-
tial of applied nanofibers in different sectors. What are the economic benefits of nanofibers
in WEF sectors? To what extent can nanofibers be applied in the plant tissue culture
sector? Are nanofibers promising tools for producing sustainable, clean, and safe wa-
ter/energy/food? What are the main challenges of nanofiber production and application?
What are the open questions that still need to be answered? It is well documented that
nanofibers were produced using the electrospinning method several years ago. The electro-
spinning nanofibers are preferred over other methods due to their high quality.

Based on green and sustainable photocatalysis technology, photocatalytic fibers are
considered innovative strategies for the remediation of water and air environments in
addition to energy conversion [205,206]. They are promising for the degradation of volatile
and gaseous pollutants in the air because of their high light utilization efficiency, high
specific surface area, easy regeneration, and sustainability [207]. Many recent studies
reported on the effective photocatalytic degradation using nanofibers in oilfield-produced
water treatment [208], degradation of organic dyes [209], and for degradation of antibiotics
using heterojunction photocatalytic nanomaterials [210] or ceramic nanofibers [211].

What is the scientific research progress concerning nanofibers in the energy sector?
Many recently published articles answered this question by presenting different published
materials. These publications focused mainly on sectors of energy production and the
harvesting of energy, tools of green energy, energy conservation and storage, as well as
nanofibers for producing microbial “bioelectricity” energy. Nanofibers are considered
promising tools in both energy and water sectors when both can be applied for producing
energy and water remediation at the same time [212]. Using nanofibers for the separation
of oil spills from water is an emerging technology for treating oil/water emulsions [213].
More improvement in nanofibers and their functional structures or physicochemical char-
acteristics are needed to increase their efficiency for energy generation and storage [214].
Applying piezoelectric catalysis is an engineering strategy for water treatment (sterilization,
degradation of organic pollutants) and energy regeneration (CO2 reduction, H2 production).
Water and energy are rich sectors, and scientific research every day can find innovative [215]
solutions like applying polymeric polyvinylidene fluoride nanofibers in such fields [216].

Concerning the economic value of nanofibers in WEF sectors, these benefits are com-
mon in the applications of these sectors, which were mainly successfully applied for
producing clean water, sustainable energy, and safe food. Applying nanofibers in the field
of plant tissue culture is a promising approach because these nanofibers can prevent any
microbial contamination under in vitro conditions, but the loss of media by evaporation
is the main challenge in this application. The main challenges of nanofiber production
and application depend on the type of nanofibers and their application. In the case of
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biomedical applications, the major sector for applying nanofibers, there have been many
recent advancements in the fabrication of nano-fibers and their technology [217,218]. For
WEF sectors, each one has many challenges such as water and air pollution, food pollution
and spoilage, agro-waste burning and loss, whereas the possible solutions using nanofibers
may involve green nanofibers, green techno-food, green energy production, integrated
farming water/energy/food, and plant factory for water/energy/food production. Regard-
ing the open questions that still need to be answered, there are many questions for each
sector such as to what extent can nanofiber monitor moisture changes in food packaging?
Which nanofiber criteria can save the sustainable alternatives of WEF? Which microbial
biotechnological approaches are needed using renewable bioprocessing for future energy
systems? To what extent can nanofibers deliver different bioactives in the field of food
and pharmaceuticals?

6. Conclusions and Future Perspectives

During our life, there is a need for water, energy, and food, as essentialities for liveli-
hood. There is an increased global demand for these issues, which may pose an increased
decline in their abundance in the future. The WEF nexus has a very strong link with
these resources, which should be investigated on all levels including local, national, and
global ones. WEF nexus has sustainable and green approaches when we can use many
applications of nanotechnology (mainly in this study, nanofibers). After the amazing
progress in nanotechnology, nanofibers have penetrated several fields, nearly all aspects
of human life, due to their distinguished characteristics. The main fabrication methods of
nanofibers may include drawing, self-assembly, template assist, interfacial polymerization,
phase separation, and electrospinning. The electrospinning technique is a sophisticated
method enabling both researchers and companies to fabricate nanofibers with a variety of
arrangements, architecture from different sources of materials, and morphology.

Therefore, the production and storage of energy, obtaining fresh and clear water, and
maintaining the food and packaging are the main suggested benefits of nanofibers in this
review. More biotechnological applications were discussed in the three previous sectors,
primarily microbial applications in such areas. A novel application of nanofibers in the
plant tissue culture field was presented in this review. Due to the very wide biotechno-
logical applications of nanofibers, more highlights were shed on the biomedical sector as
well. Furthermore, enormous questions still need to be answered, which mainly focus on
integrated research in such areas.

In general, there is no doubt that water, energy, and food are essential resources, which
attracted several workers to focus on them and this is the main motivation for this review.
These resources used nanofibers in their activities to produce the needed water, energy,
and food for human life. This potential is great in biomedicine applications, which do
not need to be proven as they are very common in our lives. The integration production
of energy, water, and food at the same time can be achieved when these nanofibers can
be applied for using agro-wastes for producing nanofibers for energy/water treatments.
What about the limitations of this study? This study still needs more experiments on field
plant tissue culture to know how and when can we use the nanofibers in such fields. What
about the research gaps/future perspectives that should be identified based on this review?
The main aim of this study was to identify to what extent can nanofibers be applied in
the field of plant biotechnology. However, this was not the only aim of this study. The
green application of nanofibers and microbial nanofibers is a great area for the society of
researchers to find a sustainable solution on the farm and industry level as well.
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