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Abstract: The MADS-box transcription factors have garnered substantial attention due to their crucial
involvement in various biological processes, particularly in flower organogenesis. A comprehensive
investigation into the MADS-box genes remains lacking in loquat (Eriobotrya japonica Lindl.). In
the current study, to preliminarily explore the potential candidate genes related to flower and fruit
development, a genome-wide analysis was carried out to identify and characterize the MADS-box gene
family in loquat. Among the 125 identified EjMADS-box members, 49 genes belonged to type I, which
were subsequently assigned to three subfamilies: Mα (25 genes), Mβ (10 genes), and Mγ (14 genes).
Additionally, 76 genes fell under type II, which were categorized into two groups: MIKCC (70 genes)
and MIKC* (6 genes). Through the collinearity analysis and comparison of the gene numbers between
loquat and other Rosaceae genomes, it was revealed that the type II MADS-box members were
expanded in Maloideae after a whole genome duplication. The gene expression analysis utilizing
various tissues during flower development revealed that the expression patterns of the ABCDE model
homologs were conserved in loquat. In addition, several candidate genes potentially involved in
flower bud differentiation (EjMADS107/109) and fruit expansion (EjMADS24/46/49/55/61/67/77/86)
were identified. This analysis could serve as a fundamental basis for investigating the molecular
functions of the MADS-box genes in the development of flowers as well as fruits in loquat.

Keywords: ABCDE model; floral transition; fruit size; loquat (Eriobotrya japonica Lindl.); MADS-box

1. Introduction

Loquat (Eriobotrya japonica Lindl.) is among the most popular fruits in China during
the spring season. In comparison to other fruit trees in Rosaceae, loquat exhibits a unique
flowering time characterized by the initiation of flower bud formation in summer and
blooming in fall, without undergoing dormancy in winter or during specific cold periods in
China [1]. In horticultural plants, the initiation and progression of flowers play a crucial role
in the successful fruit set. Flower development in plants is a highly complex and ordered
process that requires a complex regulatory network to ensure it is in the right environmental
conditions for flowering. Within this intricate network, transcription factors hold pivotal
significance, actively participating in the orchestration of flower development [2,3]. The
MADS-box proteins constitute a significant category of transcriptional regulators that
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participate in the flowering process. They assume crucial positions in regulating the intricate
processes of floral organ differentiation and formation, as well as pollen development and
maturation [4].

Currently, there is a relatively comprehensive understanding regarding the functions
of the MADS-box genes, with the type II members being of particular interest in plants.
For instance, the participation of MIKCC genes in somatic embryo development has been
demonstrated in Arabidopsis and soybean [5]. Moreover, these MIKCC genes are crucial
in regulating flower bud differentiation and controlling the timing of flowering. In the
model plant Arabidopsis, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1)
has the ability to integrate various signals that facilitate flowering, thereby promoting the
process of flower organogenesis [6,7]. The phenomenon of delayed flowering was observed
upon the overexpression of SHORT VEGETATIVE PHASE (SVP), while early flowering was
observed in svp mutants [8]. APETALA1 (AP1), a floral meristem identity gene, was found
to have the ability to trigger flower formation [9].

Research on the MIKCC genes showed that they were also involved in the organo-
genesis of plant flowers. The ABC model was previously introduced in the scientific
literature [10]. The genes for floral organ characteristics were classified into three classes,
including the A-class types such as AP1 and AP2, the B-class types such as PI and AP3,
and the C-class types such as AG, which are MADS-box genes, except for APETALA2
(AP2) [10,11]. With the advancement of research on flower organ development, the ABC
model has been upgraded to a new model named ABCDE. This expansion incorporated
additional genes into the model, among which the D-class genes, such as STK, are respon-
sible for determining the identity of ovules, while the E-class genes, including SEP1-4,
synergistically regulate floral organs production [12].

Currently, a few studies investigating the molecular functions of the MADS-box genes
are available in loquat. Two homologs of SOC1 were identified in loquat, and they con-
trolled the flowering time [13]. EjSVP-1 and EjSVP-2 were functionally different compared
to Arabidopsis, and the overexpression of the EjSVP-2 gene did not delay flowering in
Arabidopsis, but affected the formation of floral organs [14]. The occurrence of double
flowering in loquat was observed, with EjPI and EjAG playing key roles in these two
double flowering phenomena, respectively [15,16]. In addition, in loquat, EjAGL17, EjAP1,
and EjCAL were implicated in flower bud differentiation [17–19].

Given the importance of the MADS-box genes in various developmental processes of
plants, especially in flowering and fruit development, it is necessary to fully identify the
MADS-box genes in the loquat (Eriobotrya japonica Lindl.) genome at a genome-wide level. In
the current study, 125 EjMADSs were discovered in the loquat genome, and we analyzed the
characteristics, structures, phylogenetic relationships, and classification of these EjMADSs.
Furthermore, through the analysis of transcriptome data and qRT-PCR experiments, several
potential EjMADSs were identified, which were presumed to be significant in the processes
of different tissues. Additionally, the investigation successfully identified potential ABCDE
model genes for loquat flowers. The findings from this study offer a valuable point
of reference for the functional identification and characterization of EjMADSs, thereby
providing candidate genes for the study of loquat flower and fruit development.

2. Materials and Methods
2.1. Plant Materials

All plant materials were maintained in the loquat (Eriobotrya japonica Lindl.) Germplasm
Resource Preservation Garden (South China Agricultural University, Guangzhou, China).
The loquat trees were 13 years old and grown under regular management conditions. Using
the cultivar ‘Jiefangzhong’ as the material, five key stages during the flowering process
were selected by paraffin section and observation. The methods of paraffin section is
referred to in the published literature [13]. Tissues including pistils, stamens, sepals, and
petals were collected during the early flowering stage, specifically when approximately
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25% of the flowers had bloomed. Subsequently, the collected samples were rapidly frozen
using liquid nitrogen and stored in a −80 ◦C freezer.

2.2. Genome-Wide Identification

AtMADSs protein sequences of Arabidopsis and VvMADS protein sequences of grape
were derived from a previous report [20,21]. To conduct a search for EjMADSs, the reference
genome of ‘Seventh Star’ was utilized [22]. The protein sequences of AtMADSs were com-
pared with the protein sequences of loquat using Blastp (e-value < 1 × 10−5, identity > 40%).
On the other hand, the Hidden Markov Model (HMM) profile of SRF (type I) domain
(PF00319) was downloaded from the Pfam database (https://www.ebi.ac.uk/interpro/,
accessed on 6 January 2023), which was used to conduct another search with HMMER
v3.3.1 (Cambridge, MA, USA) (e-value < 1 × 10−5) [23]. The non-redundant protein
sequences were submitted to the SMART database (https://smart.embl.de/, accessed
on 8 January 2023) for confirmation. The identification strategy for MADS-box genes
in wild loquat (Eriobotrya japonica), strawberry (Fragaria vesca), apple (Malus domestica),
pear (Pyrus bretschneideri), sweet cherry (Prunus avium), Gillenia trifoliata, Prunus mume,
pear (Pyrus communis), Rosa chinensis, peach (Prunus persica), and raspberry (Rubus oc-
cidentalis) are the same as that for loquat. The genome data of M. domestica, P. mume,
P. communis, P. persica, P. avium, R. chinensis, F. vesca, and R. occidentalis were obtained
from the GDR database (https://www.rosaceae.org/, accessed on 1 January 2023); the
genome data of P. bretschneideri and G. trifoliata were downloaded from NCBI database
(https://www.ncbi.nlm.nih.gov/, accessed on 1 January 2023); the wild loquat (E. japonica)
genome data were obtained from the Genome Warehouse (https://ngdc.cncb.ac.cn/gwh/,
accessed on 3 January 2023) [24].

2.3. Phylogenic Analysis

The protein sequences were aligned utilizing the MAFFT v7.310 software (Osaka
University, Osaka, Japan) [25]. TrimAl v1.4 software (CRG, Barcelona, Spain) was em-
ployed to eliminate any gaps in the alignment [26]. IQ-TREE v2.2.2.6 (Australian National
University, Canberra, Australia) and the maximum likelihood (ML) approaches were uti-
lized for constructing the phylogenetic tree, with 5000 bootstraps [27]. The phylogenetic
tree representing the evolutionary relationships among 14 species was constructed using
Orthofinder2 v2.5.4 (University of Oxford, Oxford, UK) [28].

2.4. Conserved Motif, Functional Domains, and Gene Structure Analysis

Conserved domains were detected by employing the SMART database (https://smart.
embl.de/, accessed on 8 January 2023). The gff3 files were utilized for visualizing gene
structures using Tbtools v2.012 (South China Agricultural University, Guangzhou, China),
a software tool for visualizing genomic data [29]. Conserved motifs were detected by
employing the MEME v5.5.4 (https://meme-suite.org/meme/, accessed on 8 January 2023).

2.5. Synteny Analysis and Chromosome Location

Synteny analysis was carried out using MCScanX (University of Georgia, GA, USA),
a well-established tool for analyzing and comparing gene order and arrangement within
genomes. The obtained results were subsequently visualized employing Tbtools [30]. The
nonsynonymous/synonymous ratio (Ka/Ks) analysis for the genes linked to duplication
events was performed using Tbtools.

2.6. RNA-seq Analysis

RNA-seq data were acquired from previously published reports [31,32]. Clean data
were obtained using fastp v0.23.2 (HaploX Biotechnology, Shenzhen, China) [33]. HISAT2
v2.2.1 (University of Texas, TX, USA) was employed for aligning the polished RNA-seq
reads against the genome of ‘Seventh Star’ [34]. The mapped reads were subsequently
quantified by featureCounts V2.0.6 (The Walter and Eliza Hall Institute of Medical Research,
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VIC, Australia) [35]. The transcripts were normalized to TPM values using R, and Tbtools
was used for heatmap construction.

2.7. RNA Extraction and qRT-PCR

The EASYspin Plus plant RNA extraction kit (Aidlab, Beijing, China) was used for
RNA isolation. The PrimeScriptTM RT reagent kit (TaKaRa, Kusatsu, Japan) was used
for the first-strand cDNA synthesis. BatchPrimer3 was used for qRT-PCR primer design
(primer sequences provided in Table S1) [36]. qRT-PCR was carried out following the
methodology described in our previous report [37]. EjACT was used as the reference
gene [38]. The relative expression levels were determined using the 2−∆∆Ct method [39].

3. Results
3.1. MADS-box Genes in 12 Rosaceae Species

Following the application of consistent identification criteria, 1062 MADSs were iden-
tified from 12 Rosaceae species in this study (Figure 1, Table S2). With the exception of
Pyrus communis, it was observed that species within the apple subfamily exhibited a higher
number of identified MADS-box genes compared to other Rosaceae species, probably be-
cause Maloideae has undergone a recent WGD event (Figure 1) [32]. Loquat (Eriobotrya
japonica) exhibited the highest number of MADS-box members among all the species in this
study, with 125 EjMADSs in cultivated loquat and 130 in wild loquat.
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Figure 1. The species tree and MADS-box gene numbers for fourteen genomes. The phylogenetic tree
representing the evolutionary relationships among 14 species was constructed using Orthfinder2 with
ML method [28]. The wild loquat was marked with ‘*’. The red star represents the whole genome
duplication (WGD) event.

3.2. Phylogenetic Analysis and Gene Characterization

In order to categorize the 1062 MADS-box genes into distinct types, the 105 genes
from Arabidopsis were used to assist in the classification and construction of phylogenetic
trees for each Rosaceae species separately (Figure S1). Subsequently, the type II MADS-
box members from Arabidopsis, rice, as well as grape were utilized to further distinguish
subfamilies from all type II MADS-box members. The phylogenetic analysis classified the
type II MADS-box genes into 15 subfamilies (Figure 2). Except for Pyrus communis and
Rubus occidentalis, there was no significant variation observed in the gene numbers of the
type I members among the remaining nine Rosaceae species; however, Eriobotrya japonica,
Malus domestica, and Pyrus bretschneideri exhibited significantly higher gene numbers of
type II members compared with other Rosaceae species, suggesting that these species
experienced a significant proliferation of type II genes following the WGD event. On the
other hand, the AGL15 subfamily genes were expanded in Rubus occidentalis, Fragaria vesca,
and Rosa chinensis, although no recent WGD event has occurred (Figure 2).
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Figure 2. Phylogenetic relationships and number of individual subfamily members of MADS-box
proteins of 12 Rosaceae genomes. (A) The tree was obtained following the execution of multiple
sequence alignments employing the MAFFT software with the ML method. Distinctive colors were
assigned to 15 clades in order to facilitate visual differentiation. (B) The heat map illustrates the
distribution of MIKCC genes across various clades in the Rosaceae species. The wild loquat was
marked with ‘*’.

3.3. Chromosomal Locations and Annotation

In total, 125 EjMADSs were identified from the genome of ‘Seventh Star’. The nomen-
clature assigned to these EjMADSs was derived from their respective genomic locations,
ranging from Chromosome 1 to 17 in a top-to-bottom order (Figure 3). Among the 17 chro-
mosomes of the loquat, Chr2 exhibited the highest abundance of EjMADS genes, en-
compassing a total of 19 genes. In contrast, chromosome 12 had only one EjMADS81
(Figure 3). The type I genes were found to be dispersed among 13 chromosomes, with the
highest gene count observed on Chr 3 with seven genes, with Mα, Mβ, and Mγ were all
include (Figure 3). The analysis of the peptide length revealed that the length of the loquat
MADS-box proteins varied considerably, with 96 proteins ranging from 200 aa to 400 aa
(Table S3). The molecular weight (MW) of the MADS-box family members in loquat ranged
from 10,332.79 to 73,635.28 Da; the isoelectric points (PI) ranged between 4.07 and 10.21
(Table S3).
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3.4. Gene Structures and Conserved Motifs

Structural information on 125 EjMADSs was obtained from the genome annotation file.
The results showed that usually, the type II EjMADSs contain multiple introns, whereas
the type I EjMADSs contain one or even no introns (Figure 4). By analyzing the protein
sequences of 125 EjMADSs using the MEME online tool, combined with a phylogenetic tree
of the EjMADSs, it was revealed that the closely related members had similar conserved
motifs. Since type II EjMADS proteins possess both MADS and K domains, while type
I proteins lack the K domain, all protein sequences except for EjMADS15, EjMADS32,
EjMAD76, and EjMADS108, contained motif1, indicating that motif1 is the main component
of the MADS domain, along with motif3, which collectively forms the MADS domain
(Figure 4). Almost all type II EjMADS proteins contained motif2, motif5, and motif7,
suggesting that these three motifs are important components of the K domain. Motif10 was
unique in Mα (Figure 4).

3.5. Gene Duplication and Synteny Analysis

The collinear relationships between the genes in the genomic context were analyzed
to investigate gene expansion and duplication events. Among the EjMADSs, there were
69 collinear relationships involving 75 EjMADSs (Figure 5A). A tandem duplication event
of 14 EjMADSs was also detected (Table S4). The collinear analysis showed that the
expansion of the EjMADSs in the loquat genome was mostly caused by large-scale fragment
duplication events, which may be related to the WGD event in loquat [32]. Most of the
fragment duplication events originated from Chromosome 3. Only tandem duplication
events occurred for chromosome 17, in which EjMADS121, EjMADS122, and EjMADS123
were tandem duplicated in the Mγ subfamily (Figure 3). According to the collinearity
analysis between species, it was observed that there was a higher degree of collinearity
among the MADS-box genes when comparing the genomes of Arabidopsis and loquat, as
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opposed to the comparison between the rice and loquat genomes, and this difference may
be due to the closer evolutionary relationship between the dicotyledonous plants of loquat
and Arabidopsis (Figure 5B). The genes with collinearity relationships may play similar
functions in plant growth and development. To further assess the selection pressure on
these genes that underwent duplication events, the Ka/Ks values were calculated for the
repeated EjMADSs. The results revealed that all duplicated EjMADS gene pairs exhibited a
ratio of <1, suggesting that the EjMADS genes were subjected to purifying selection and
they were highly conserved in terms of their functions during evolution (Table S4).
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between other genes. (B) Collinearity of MADS-box genes among genomes of Arabidopsis, loquat,
and rice. The blue line represents the collinearity between MADS-box members. Gray lines represent
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3.6. Expression Profiles in Different Tissues

To understand the potential functions of the EjMADSs in loquat, a re-analysis of
previously published RNA-seq data was conducted. Specifically, this study aimed to
analyze the expression patterns of EjMADSs across various organs and tissues, pro-
viding valuable insights into their potential roles in loquat development. Excluding
some genes that were hardly expressed, 85 EjMADSs were expressed in at least one tis-
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sue or an organ part (Figure 6). EjMADSs from the same subfamily appeared to be
conservative in their expression patterns. Two AG-like genes (EjMADS23/102) and
two TT16-like genes (EjMADS14/3) were highly expressed in seeds. Five EjMADSs (Ej-
MADS119/9/26/104/19) of the ANR1 subfamily were highly expressed in roots. Five
EjMADSs (EjMADS59/31/97/35/53) of the MIKC* subfamily were highly expressed in
pollen. Three EjMADSs (EjMADS81/118/116) of the SOC1 subfamily had high expressions
in young leaves. Four EjMADSs (EjMADS60/98/54/89) of the SEP subfamily had high
expressions in green fruits. The EjMADSs belonging to the same subfamily likely contribute
significantly to the development of the aforementioned tissues (Figure 6A). For another, the
greatly expanded EjMADSs of the SVP subfamily seemed to be functionally differentiated,
and its members are highly expressed in various tissues, including tissues of inflorescence,
roots, stems, mature leaves, young leaves, and other tissue parts (Figure 6A).
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Figure 6. Expression profiles of EjMADSs in different loquat tissues. (A) Expression profiles of EjMADSs
in stem, seed, root, leaf, pollen, flower, and fruit of loquat. (B) Expression profiles of EjMADSs at
different development stages of two sister lines with large fruits and small fruits, respectively.

Fruit size is an important breeding target for horticultural plants, and fruit materials
with extreme sizes are well research objects. Based on the transcriptome data of two sister
lines, with one big-fruited and one small-fruited, at five different developmental stages,
most EjMADSs showed similar expression patterns between big-fruited and small-fruited
lines. However, the expression patterns of several EjMADSs (EjMADS89/104/18/25/86/
121/87/53) showed differences between the two lines (Figure 6B). At the fruit expansion
stage, the S6 stage reported previously [31], we observed that the expression levels of
EjMADSs (EjMADS46/24/49/67/55/61/77/86) were found to be significantly higher in
larger fruits (ZP65) compared to smaller fruits (ZP44). Consequently, they may be associated
with the expansion process of loquat fruits (Figure 6B).

3.7. Expression Patterns in Flower Buds at Different Stages and in Different Tissues

Gene functions are typically reflected by the gene expression patterns. In this study,
the tissue structures inside the bud were observed through a paraffin section of the stem
apex tissues. It was confirmed that the flower bud differentiation began in mid-July, and
obvious inflorescence became visible in mid-late September (Figure 7). To identify the
type II members that potentially participate in flower bud differentiation or flower organ
formation, their expressions were analyzed in various tissues, including the stem apical
tissues at five developmental stages, and flower organ tissues, including petals, sepals,
stamens, and pistils.
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Figure 7. Stem apex tissue at different stages and flower organ tissue of loquat. (A) Vegetative bud.
(B) Flower bud differentiation begins. (C) Visible flower bud. (D) The first flowering stage (the period
when about 25% of the flowers of the whole tree are open). (E) Full-bloom stage (a period when about
75% of the flowers of the whole tree are open). (F) Paraffin section of vegetative bud. (G) Paraffin
section of visible flower bud. (H) Flower organ tissue of loquat. The four flower organ tissues are
sepals, petals, stamens, and pistils in the picture. The red bar represents 1 cm. The blue bar represents
200 µm.

In order to identify candidate EjMADSs involved in regulating the flower bud dif-
ferentiation in loquat, nine genes were selected and their relative expression levels were
analyzed at various stages of flower development. EjAP1s (EjMADS55, EjMADS61) were
used as the mark of the onset of differentiation of flower buds. Based on paraffin sections
and expressions of EjAP1s, stage 2 can be identified as the beginning of loquat flower bud
differentiation (Figure 8). When the flower bud differentiation was underway, a notable
increase in the expression levels of EjMADS107 and EjMADS109 was observed, indicating
their potential significance in the regulation of this process in loquat (Figure 8). At stage 2,
a significant upregulation in the expression of EjMADS75 and EjMADS106 was observed,
while at stage 4, EjMADS30 and EjMADS89 exhibited high expression levels, suggest-
ing their potential involvement in the developmental processes of loquat inflorescence
(Figure 8).

To further explore the involvement of the MADS-box genes in the developmental pro-
cesses of loquat flower organs, a total of 11 genes were analyzed, including two homologs
of AP1, two homologs of AP3 and PI, two homologs of AG, one homolog of STK, and four
homologs of SEP. The results showed the two class A genes (EjMADS55 and EjMADS61)
varied significantly in their expression levels in sepals that were significantly higher than
those in the other three tissue parts. EjAP3 (EjMADS43), a class B gene, showed higher
expression in petals and stamens, while EjPI (MADS110) showed the highest expression in
petals. The two class C genes (EjMADS1, EjMADS11) showed higher expressions in both
the stamen and pistil. The expression of the class D gene (EjMADS23) exhibited a significant
increase specifically in the pistil when compared to the other three tissue parts. Four class
E genes (EjMADS58, EjMADS89, EjMADS52, EjMADS74) were expressed in the sepals,
petals, stamens, and pistils of loquat, suggesting that they may coordinate with other types
of flower organ-characteristic genes to regulate the development of flower organs.
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4. Discussion

During long-term evolution and natural selection, eukaryotes have developed complex
mechanisms for regulating gene expressions to adapt to changing living environments. The
MADS-box proteins were widely known for their involvement in plant biological processes.
At present, they have been identified in the genomes of many plant species, such as
Arabidopsis [21], apple [40], pear [41], rice [42]. In loquat, the systematic characterization and
analysis of the MADS-box genes, despite their significance, have not yet been documented.
Our current study filled this gap by investigating the classification, features, phylogenetic
relationships, evolution, as well as expressions of the MADS-box members in loquat. The
results from this study are anticipated to contribute to an enhanced comprehension of this
important gene family in loquat and present potential candidates implicated in the flower
and fruit development in loquat.

4.1. Features of MADS-box Genes

In the current study, it was found that the type II genes identified in loquat, apple,
and pear in Maloideae all greatly expanded compared with that in other Rosaceae species
without experiencing a WGD event. The expanded MADS-box genes in loquat may be
functionally differentiated, such as EjSVP-1 (EjMADS33) and EjSVP-2 (EjMADS120). In
flowers, EjSVP-1 is only expressed in the receptacle, whereas EjSVP-2 seems to be expressed
in all tissue parts including the receptacle, petal, stamen, and pistil [14], while some
expanded MADS-box genes in loquat may have functional redundancy, such as EjSOC1-1
(EjMADS45) and EjSOC1-2 (EjMADS69), or EjAP1-1 (EjMADS55) and EjAP1-2 (EjMADS61),
which play similar roles in flower bud differentiation [13,17].

For most plants such as lettuce, longan, pear, etc., the majority of type I genes do not
possess an intron, whereas type II genes typically contain multiple introns [41,43,44]. This
is similar in loquat, since only a few type I genes in loquat have introns, such as EjMADS65,
EjMADS66, and EjMADS124, while EjMADS66 has the most introns. The presence of
introns is crucial for the occurrence of alternative splicing, which suggests that there may
be different transcripts of the type II genes possibly with different functions [45].

4.2. Expression of EjMADSs in Different Tissues of Loquat

Currently, several important transcription factor families in plants have been exten-
sively studied, such as MADS-box, R2R3-MYB, and WRKY, and they are involved in most
of the biological processes in plants [4,46,47]. Figure 6A demonstrates that EjMADSs are
expressed in many tissues, and the genes within the same subgroup tend to exhibit similar
expressions, which is consistent with the result from a study in pineapple [48].

In horticultural crops, the attribute of fruit size captures significant attention and
interest. In tomatoes, LeMADS-RIN, a SEP1-like gene, has been reported to possess a
crucial function in the process of fruit development [49]. In this study, some EjMADSs
exhibit distinct expression patterns throughout the progression of fruit development when
comparing an extremely big-fruited line (ZP65) with a small-fruited line (ZP44), including
that of a SEP1-like gene (EjMADS89) (Figure 6B). Compared with those in ZP44, EjMADS89
was expressed at higher levels at the S4 and S6 stages in ZP65, implying that EjMADS89
might have a crucial involvement in the development process of loquat fruits. A series
of genes, including the AGL6 homolog (EjMADS46), AGL12 homolog (EjMADS24), AGL6
homolog (EjMADS49 and EjMADS67), AP1 homolog (EjMADS55 and EjMADS61), and
SHP1/2 homolog (EjMADS77 and EjMADS86), showed higher expressions at the S6 stage
(rapid fruit expansion stage) in ZP65 (Figures 6B and S1A), indicating a potential role in the
expansion process of loquat fruits, and these genes deserve attention in the future breeding
of loquat for its fruit size. In a study on Japanese pear (Pyrus pyrifolia), it was also found
that AP-like, AGL6, and SHP-like MADS-box genes were highly expressed during the fruit
growth and enlargement process [50]. On the other hand, TAGL1 in tomatoes, as a homolog
of Arabidopsis SHP, was found to promote fruit enlargement through transgenic TAGL1
RNAi lines when compared to the wild type [51].
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Recently, the integration of multiple omics data in loquat has shown that EjTRN1 has
great potential in promoting fruit enlargement [31]. Additionally, experimental evidence
through Y1H (yeast one-hybrid) and VIGS (virus-induced gene silencing) has demonstrated
that EjBZR1 inhibits fruit enlargement by regulating EjCYP90A [37]. It is worth further
investigating whether these MADS-box genes highly expressed during the rapid fruit
enlargement stage in ZP65 are involved in regulating the genes related to fruit enlargement,
such as EjTRN1, EjBZR1, EjCYP90A, and other genes.

4.3. Functional Conservation of the ABCDE Model Genes in Loquat

The studies of gene functions in model plants provide a valuable reference for the
homologs in other plant species. The expression profiles of EjMADSs were investigated
to understand their roles in flower organ development. From the expression patterns
of the EjMADSs in these tissues, the flower organ identities were mostly conserved in
loquat. However, some discrepancies were identified. In Arabidopsis, the class A genes
were involved in the development of sepals and petals [52], but in loquat, there were two
class A gene homologs EjAP1s (EjMADS55 and EjMADS61) showing high expressions
only in sepals, which may be caused by the different regulatory mechanisms among
different species. On the other hand, the functions of the two EjAP1s as floral organ
identity genes remain conserved (Figure 8A). In Arabidopsis, AP1, CAL, and FUL together
specify floral meristem development [53,54]. FT, LFY, and SOC1 can integrate signals
from the environment to directly regulate AP1, thus precisely controlling flowering [6].
The MADS-box proteins can form tetrameric complexes, known as floral quartets, which
determine the identity of floral organs [11]. In the ABCDE model, A + B determines
petal formation, and B + C regulates stamen development [55]. A study in Arabidopsis
indicated that the absence of B gene expression will lead to the loss of petals and stamens
or the conversion of these floral organs into sepals and pistils, thus affecting the flower
morphology and structure [10]. EjAP3 (EjMADS43), a class B gene homolog in loquat,
exhibited high expression levels in both the petals and stamens, demonstrating that it
participates in petal and stamen identities in loquat. However, the class B gene homolog
EjPI (EjMADS110) seems to have undergone functional changes in loquat, since it was only
highly expressed in petals, whereas PI can regulate both petals and stamen identities in
Arabidopsis [56]. In model plants, AP1 and LFY redundantly activate AP3 and PI to promote
the formation of floral organs [57,58]. In a recent study, it was found that AP1 and LFY
can also reduce the inhibition of ZP1 and ZFP8 on AP3, PI, and AG by suppressing their
expressions in the floral meristem [59]. In loquat, the class C homologs EjAGs (EjMADS1
and EjMADS11) exhibited high expression levels in both stamens and pistils, the class D
homolog EjSTK (EjMADS23) was highly expressed only in pistils, while these class C/D
genes were not expressed or had low expressions in sepals and petals. This observation
aligns with findings from a previous study in Antirrhinum, where it was demonstrated that
the class C/D genes primarily control stamen and pistil development [60]. In Arabidopsis,
E genes (SEP1-4) are involved in the development of every flower organ, and they are
functionally redundant [61]. Additionally, B and C class genes are synergistically activated
by SEP3 and LFY [62]. In loquat flowers, five class E homologs, including EjMADS58,
EjMADS89, EjMADS52, and EjMADS74, were identified in loquat, and they may function
as cofactors. By analyzing the expression patterns of these genes, we can better understand
the morphogenetic mechanisms of loquat flower, providing a theoretic foundation for the
improvement of flower-related traits.

Specific environmental conditions provide plants with signals to initiate flowering.
Compared to other Rosaceae fruit trees such as apple and pear, loquat has a unique
flowering time, occurring in autumn [63,64]. The formation of floral organs is a prerequisite
for flowering. Investigating the impact of different environmental conditions, such as
temperature and light duration, on the floral organ genes, as well as delving into the
molecular regulatory networks associated with floral organ genes discovered in model
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plants, may help elucidate the molecular mechanisms underlying the unique flowering
phenomenon in loquats.

5. Conclusions

Collectively, we conducted a thorough examination of the MADS-box genes in loquat,
covering their family characteristics, syntenic relationships, and expression patterns. Based
on the transcriptome data, EjMADS46, EjMADS24, EjMADS49, EjMADS67, EjMADS55,
EjMADS61, EjMADS77, and EjMADS86 had higher expressions at the rapid fruit expansion
stage in the big-fruited line, indicating their role in the expansion process of loquat fruits.
These genes may deserve to be prioritized in future breeding for fruit size. Based on the
qRT-PCR experiments exploring the expression patterns of EjMADSs in floral tissue parts
and in buds at different stages, it was found that EjMADS107 and EjMADS109 may poten-
tially assume a crucial function in flower bud differentiation, and that the ABCDE model
homologous genes in loquat are conserved in their expression patterns of loquat floral
tissue parts. Results from this study are expected to contribute to a more comprehensive
comprehension of the involvement of the MADS-box genes in the development of flowers
and fruits in loquat.
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