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Abstract: Arbuscular mycorrhizal fungi (AMF) have established themselves as pivotal allies in the
realm of plant physiology, renowned for their remarkable contributions to augmenting both growth
and resilience against environmental stresses. In this study, we embarked on a comprehensive
investigation into the discernible impact of two distinct AMF species on a widely planted oat cultivar,
‘Qingyan No. 1’, when subjected to the austere conditions of a drought. The experimental design
included three distinct AMF treatments (inoculation with Rhiaophagus intraradices, Funneliformis
mosseae, or not), and the three water treatments were 75% of field capacity (well watered), 50% of
field capacity (moderate drought), and 30% of field capacity (severe drought). The obtained results
showed that the rate of inoculation under 75% FC for both AMF species was over 74%. Drought stress
limited the growth and osmotic regulation of the oat plants. However, AMF inoculation observably
increased the above-ground biomass under 75% FC and increased the root biomass under 30% FC.
AMF inoculation also increased the root traits under 75% FC and 50% FC. R. intraradices inoculation
increased the above-ground soluble sugar and soluble protein concentrations, and both AMF species
showed decreased malondialdehyde (MDA) concentrations in the roots. Furthermore, the pervasive
influence of drought stress exerted a discernible stranglehold on nutrient uptake in the oat plants,
profoundly impacting the distribution of nutrients within the shoots and roots. Regardless of the
drought stress treatment, the inoculation with both AMF species increased the P concentrations
in the roots and the K and Mg concentrations in the roots, and the inoculation with R. intraradices
increased the Ca concentration in the whole oat plant. Under 75% FC, the N concentration of the
whole oat plant was significantly reduced by both AMF species. However, under 50% FC and
30% FC, the N concentrations in the shoots inoculated with both AMF species were close to that of the
non-inoculated shoots. In summary, AMF improved the osmotic regulation and nutrient absorption
and distribution of oat plants under drought stress and thus promoted the growth and biomass
accumulation of oat plants.

Keywords: Avena sativa; arbuscular mycorrhizal fungi; drought stress; nutrient uptake

1. Introduction

In the world cereal production statistics, oats (Avena sativa L.) rank around sixth,
be-hind wheat, corn, rice, barley, and sorghum [1]. In many parts of the world, oats
are grown for use as grains as well as for forage and fodder, as straw for bedding, hay,
haylage, silage, and chaff [2]. At the same time, oats are the winter reserve grass for the
livestock industry [3,4]. Russia, countries of the former Soviet Union, the US, Canada,
Germany, and Poland account for about 75% of the world’s supply of grain oats, seeds,
and industrial-grade oats [5]. However, the rates of yield reduction related to drought
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disasters for major crops will increase significantly with future climate change [6]. Droughts
are one of the factors restricting the growth and production of oats. At the same time,
droughts also limit the sustainable development of society and the economy [7,8]. Drought-
induced stress orchestrates a series of cascading effects, culminating in the diminishment
of soil nutrient availability, a curtailed plant nutrient uptake, and hampered nutrient
translocation from the roots to the above-ground portions of plants [9]. The repercussions
extend to the cellular realm, where drought-induced cellular dehydration and constrained
nutrient assimilation conspire to elevate the presence of reactive oxygen species (ROS). The
outcome is a compromised cell membrane permeability, exacerbating plant cell membrane
peroxidation and malondialdehyde (MDA) accumulation. Plants have evolved an array
of mechanisms to contend with drought-induced damage, encompassing morphological
adjustments such as stomatal closure and an augmented wax content [10], physiological
adaptations including osmotic regulation and antioxidant responses [11], and molecular
responses involving the up-regulation of drought resistance genes [12]. But for some water-
sensitive varieties, self-regulation is far from enough to cope with drought damage. Besides
variety breeding and transgenic methods, biological interaction contributes to improving
plant drought resistance as well.

Arbuscular mycorrhizal fungi (AMF) have garnered attention as formidable facili-
tators of plant resilience in the face of droughts and other environmental stressors [13].
This biological alliance is considered a pivotal strategy for bolstering plant drought tol-
erance [14]. AMF enter into a symbiotic relationship with their host plants, exchanging
nutrients and water in return for carbon sources such as sugars and lipids [15–19]. Under
drought conditions, AMF significantly enhance a plant’s N (nitrogen) and P (phosphorus)
utilization efficiency [20]. Mild drought stress, as evidenced in inoculation studies with Rhi-
zophagus irregularis, notably increases the P and Ca (calcium) contents in plant leaves [21].
AMF interventions have also been shown to ameliorate the water status of crops like
wheat, enhancing chlorophyll synthesis under drought conditions, and ultimately leading
to increased yields and growth [22,23]. The inoculation with R. irregularis has similarly
augmented the root length and root volume in Triticum aestivum ssp. spelta L. [24], while
Glomus mosseae inoculation has exhibited a promotional effect on the root dry weights and
the active and total absorption areas of trifoliate orange (Poncirus trifoliata (L.) Raf.) root
systems under drought stress [25]. It is worth noting, however, that while a wealth of
research underscores AMF’s potential to alter plant root configurations, the colonization
of different strains can induce distinct responses within the same species under varying
environmental conditions [26,27]. While numerous experiments have corroborated AMF’s
prowess in enhancing the drought resistance of crops such as tomato [28], wheat [22,29],
and rice [30], investigations on the effects of AMF on oats and other forage crops remain
comparatively sparse. In the present study, we executed a meticulously designed experi-
ment involving three distinct AMF treatments and three water treatments on cultivated
oats. The objective was to assess the impacts of inoculation with Rhiaophagus intraradices
and Funneliformis mosseae and no inoculation on drought resistance, as well as the nitrogen,
phosphorus, and trace element contents, and any differentiations in the root configurations
between the above-ground and underground components of oats.

2. Materials and Methods
2.1. Biological Materials and Experimental Design

The experiment had a complete 1 × 3 × 3 factorial design with one oat cultivar (Avena
sativa cv. Qinyan No. 1), three arbuscular mycorrhizal fungi treatments (without inoculation
and inoculation with Rhiaophagus intraradices or Funneliformis mosseae), and three drought
treatments (75% of field capacity, well watered; 50% of field capacity, moderate drought; and
30% of field capacity, severe drought). There were twelve replicate pots in each treatment,
totaling 108 pots. Two AM fungi were provided by the Institute of Root Biology, Yangtze
University (Jingzhou, China), and were multiplied in our laboratory using maize (Zea mays
L.) as a host plant. The experiment was conducted in a greenhouse at the Laboratory of
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Alpine Grass Resistance Physiological Ecology at Southwest Minzu University (Chengdu,
China). The mixture of sand and soil (1:1) was autoclaved at 121 ◦C for 2 h under pressure
(0.11 MPa), and then placed in a storage room for 1 night and oven-dried for 6 h before use.
The maximum field capacity (FC) of soil is 20.54%, and the field capacity was calculated
as follows:

FC = (saturated soil weight − dry soil weight)/dry soil weight × 100%. (1)

Seeds were disinfected with 1% sodium hypochlorite (Guangzhou Testing Technology
Co., Ltd., Guangzhou, China) for 10 min and washed with distilled water, and one seed
was sown in each plastic pot containing 3.2 kg of a sterilized mixture of sand and soil. Each
pot was supplemented with 115 g sterilized or unsterilized inoculum of R. intraradices or F.
mosseae. All pots were watered regularly to 75% FC (CK, well watered) in the first 2 months,
and then two-thirds of non-mycorrhizal (NM) and arbuscular mycorrhizal (R. intraradices,
F. mosseae) pots were exposed to drought stress by reducing the water regime to 50% FC
(MD, moderate drought) and 30% FC (SD, severe drought), while the remaining third were
kept well watered (75% FC).

2.2. Mycorrhizal Colonization and Plant Growth Parameters

After 15 days of water stress treatment, plants were harvested. Shoots’ and roots’ fresh
materials were separated and dried at 105 ◦C for 15 min and then at 75 ◦C for 24 h to record
dry weights and conduct nutrient content analyses. Subsamples of fresh roots (0.5 g) were
stored in a 4 ◦C refrigerator to measure mycorrhizal colonization. The rest of the roots and
shoots were stored in a −80 ◦C refrigerator to measure the content of total soluble sugar
(TSS), MDA, and soluble protein content.

The fresh, clean roots were soaked in 10% KOH solution at 90 ◦C for 30 min and then
acidified with 1% HCL for 5 min. The cleared roots were stained with 0.05% Trypan blue in
lactoglycerol (v/v) at 90 ◦C for 20 min [31]. The rates of AM colonization were examined
using the gridline intercept method [32]. The mycorrhizal dependency was calculated
according to van der Heijden method [33]. If biomass of ∑n

1 an > bn, then mycorrhizal
dependency was calculated as follows:

mycorrhizal dependency = (1 − (bn/(∑n
1 an)))× 100. (2)

If biomass of ∑n
1 an < bn, then mycorrhizal dependency was calculated as follows:

mycorrhizal dependency = (−1 + (an/(∑n
1 bn)))× 100 (3)

where a is the plant dry weight of a treatment inoculated with AMF, n is the number of
treatments where plants were inoculated with AMF, and b is the plant dry mass of the
non-inoculated treatments.

2.3. Method for Determination of Root Architecture

The root total length, root volume, and root surface were determined using the LA-S
plant root analysis system from the company Hangzhou Wseen Testing Technology Co.,
Ltd. (Hangzhou, China). A total of three replicates were set for the root architecture
determination. The supporting roots and all fibrous roots in one root sample were scanned
and measured.

2.4. TSS, MDA, and Protein Concentrations

Total soluble sugar, MDA, and soluble protein contents were measured using the assay
kits from the company Suzhou Comin Biotechnology Co., Ltd. (Suzhou, China).
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2.5. Macronutrient Concentrations in Oats

The concentrations of N, P, potassium (K), magnesium (Mg), and Ca were determined
using homogenized dry samples of shoots and roots. The N concentration was determined
as described by Kong [34] using 0.1 g of dried shoots and roots, and the P concentration
was determined using 1 g of dried shoots and roots that were burned with a Muffle oven
and using the vanadomolybdate method [35]. The K, Na, and Ca concentrations were deter-
mined as described by Liu and Zhang [36] using an atomic absorption spectrophotometer
(Hitachi Z-2000, Tokyo, Japan).

2.6. Statistical Analysis

The effects of mycorrhizal inoculation, drought stress, and their interactions were
statistically analyzed with two-way ANOVA using IBM SPSS 26. At least 3 replicates were
used for each treatment of all measured parameters. The significance of differences among
treatments and interaction between factors was calculated at 5%. Multiple comparisons
were performed using Duncan’s (HSD) post hoc test p < 0.05. Graphpad prism 8.0 was
used to make graphs, and the data in the graph were shown as mean value ± SE.

3. Results
3.1. Mycorrhizal Colonization

The mycorrhizal colonization of oats was significantly affected by the drought treat-
ments (Figure 1). The colonization rates of R. intraradices and F. mosseae are higher than 74%
under well-watered conditions. Compared with CK, the colonization rate of R. intraradices
under MD and both AMF colonization rates under SD were significantly reduced. However,
under MD and SD, the mycorrhizal colonization of all AMF speices was not significant
(Figure 2).
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mosseae. Values with different letters indicate a significant difference (Duncan’s test, p ≤ 0.05, n = 3).
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Figure 2. Structures of arbuscular mycorrhizal fungi (AMF) in oat roots inoculated with AMF spores
at the end of the experiment: (A) Funneliformis mosseae spores (s) and extraradical hyphae (eh);
(B) Rhiaophagus intraradices vesicle (v), arbuscular (a), and intraradical hyphae (ih). Unit: µm.

3.2. Plant Growth of Shoots and Roots

The shoot and root dry weights were significantly influenced by drought treatments
and AMF inoculation. However, drought and inoculation had no significant interaction
effect on the shoot dry weights and root dry weights (Figure 3). Compared with the non-
inoculated treatments, the inoculation with R. intraradices and F. mosseae increased the shoot
dry weights under the CK and MD treatments and increased the root dry weights under
the CK and SD treatments (Figure 3A,B), while drought stress decreased the shoot dry
weights and root dry weights for both the non-inoculated and inoculated treatments.
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Figure 3. The effects of irrigation regime and inoculation with two AMF species on (A) shoot dry
weight and (B) root dry weight of oats. CK, well watered; MD, moderate drought; SD, severe drought;
NM, non-mycorrhizal, R.i, inoculated with Rhiaophagus intraradices; F.m, inoculated with Funneliformis
mosseae. Values with different letters indicate a significant difference (Duncan’s test, p ≤ 0.05, n = 3).
PAMF, probability value for the inoculation with the G.r and G.m species; PAMF, probability value
for the inoculation with the R.i and F.m species; PD, probability value for the moisture treatment;
PD×AMF, probability value for the AMF × drought stress. *** p ≤ 0.001; ns, no sigificant.

Based on oat shoot and root biomasses, the mycorrhizal dependency was calculated to
evaluate the contribution of two AMF inoculations to oat growth. Except for the inoculation
with F. mosseae under SD in the shoots, the other inoculations under three water regimes
had positive contributions to both the shoots and roots (Figure 4). Under the three irrigation
regimes, the shoots showed the greatest mycorrhizal dependency on two AMF species in
the MD treatment, the inoculation with R. intraradices had better mycorrhizal dependency in
the shoots under three irrigation regimes, and the inoculation with F. mosseae had negative
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contributions in the shoots under SD. Under the three irrigation regimes, two AMF species
showed positive contributions in the roots. The inoculation with R. intraradices had better
mycorrhizal dependency in the root under MD and SD.
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Figure 4. The mycorrhizal dependency of two AMF species in different irrigation regimes based
on shoot and root dry weights. CK, well watered; MD, moderate drought; SD, severe drought; R.i,
inoculated with Rhiaophagus intraradices; F.m, inoculated with Funneliformis mosseae.

The total root length, root volume, and root surface area of the oats were significantly
influenced by the drought and AMF inoculation. The drought and inoculation had sig-
nificant interaction effects on the total root length and root surface area (Figures 5 and 6).
Under inoculated and non-inoculated treatments, the drought significantly decreased the
total root length, root volume, and root surface area (Figure 5A–C). The inoculation with
F. mosseae and R. intraradices significantly increased the total root length and root volume
under CK and MD (Figure 5A,B). The inoculation with F. mosseae and R. intraradices sig-
nificantly increased the root volume under SD (Figure 5B), and the inoculation with R.
intraradices significantly increased the root surface area under SD (Figure 5C). F. mosseae had
a more significant effect on the total root length under CK (Figure 5A), and R. intraradices
had a more significant effect on the root surface area under MD (Figure 5C).
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Figure 5. The effects of irrigation regime and inoculation with two AMF species on (A) total root
length, (B) root volume, and (C) root surface area of oats. CK, well watered; MD, moderate drought
stress; SD, severe drought; NM, non-mycorrhizal, R.i, inoculated with Rhiaophagus intraradices; F.m,
inoculated with Funneliformis mosseae. Values with different letters indicate a significant difference
(Duncan’s test, p ≤ 0.05, n = 3). PAMF, probability value for the inoculation with the R.i and F.m species;
PD, probability value for the moisture treatment; PD×AMF, probability value for the AMF × drought
stress. * p ≤0.05; ** p ≤ 0.01; *** p ≤ 0.001; ns, no sigificant.
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3.3. TSS, MDA, and Protein Contents

The concentrations of soluble sugar, soluble protein, and MDA in the leaves were
significantly influenced by the drought treatment and AMF inoculation, except MDA,
drought, and inoculation had significant interaction effects on the soluble sugar and soluble
protein contents (Table 1). The AMF inoculation had significant effects on the soluble sugar
content in the roots, which was the same as in the leaves, and drought and inoculation
had significant interaction effects on the soluble sugar and soluble protein contents in the
roots. Drought stress significantly increased the accumulation of soluble sugar in oats
under non-inoculated and inoculated treatments with R. intraradices, and compared with
the non-inoculated treatment, the inoculation with R. intraradices increased the leafsoluble
sugar content by 19%, 38%, and 125% under CK, MD, and SD treatments, and the root
soluble sugar content increased by 50% under MD. As a consequence of SD, the protein
concentration decreased (by 13.2%) in the non-inoculated leaf. However, it significantly
increased in the R. intraradices treatments in the leaves, showing increasing rates of 44.4%,
and showing increasing rates of 79.2% in the roots under MD. The accumulation of MDA
was steeply increased in the non-inoculated leaves as a result of water stress application.
However, mycorrhizal colonization significantly reduced the MDA concentration in the
leaves induced by water stress (Table 2). The MDA concentration in the leaves significantly
decreased by 16% and 18% when inoculated with R. intraradices and F. mosseae under SD.
The inoculation with F. mosseae decreased the MDA concentration in the roots by 38%
under MD.

Table 1. A two-way ANOVA for the effects of drought, two AMF species inoculation, and their
interactions with TSS, MDA, and protein contents of oat.

Part Treatment Soluble Sugar Soluble Protein MDA

Shoots
Drought 10.63 ** 6.46 ** 12.13 ***

AMF 110.97 *** 19.08 *** 8.33 **
Drought × AMF 16.26 *** 10.45 *** 2.28 ns

Roots
Drought 1.94 ns 2.89 ns 0.54 ns

AMF 6.34 ** 0.13 ns 2.24 ns
Drought × AMF 11.3 *** 9.09 *** 0.558 ns

ns, not significant; ** p ≤ 0.01; *** p ≤ 0.001.

Table 2. The effects of irrigation regime and inoculation with two AMF species on TSS, MDA, and
protein contents.

Part Treatment Soluble Sugar
(mg/g)

Soluble Protein
(mg/g) MDA (nmol/g)

Leaves
CK-NM 10.78 ± 0.72 cd 17.69 ± 0.52 cd 8.9 ± 0.36 c
CK-R.i 12.88 ± 1.59 bc 18.06 ± 1.2 cd 8.67 ± 0.34 c
CK-F.m 8.43 ± 0.7 de 16.33 ± 0.35 de 8.95 ± 0.37 c
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Table 2. Cont.

Part Treatment Soluble Sugar
(mg/g)

Soluble Protein
(mg/g) MDA (nmol/g)

Leaves

MD-NM 14.58 ± 0.65 b 18.49 ± 0.78 bc 11.26 ± 0.54 ab
MD-R.i 20.26 ± 0.42 a 20.49 ± 0.68 ab 9.95 ± 0.91 bc
MD-F.m 6.24 ± 0.28 e 16.67 ± 0.2 cde 8.71 ± 0.51 c
SD-NM 8.88 ± 0.62 d 15.35 ± 0.76 e 12.22 ± 0.35 a
SD-R.i 20.06 ± 1.27 a 22.17 ± 0.44 a 10.27 ± 0.51 bc
SD-F.m 9.27 ± 0.47 d 20.18 ± 0.23 ab 9.97 ± 0.18 bc

Roots

CK-NM 5.95 ± 0.78 ab 8.36 ± 0.91 ab 13.5 ± 0.3 a
CK-R.i 3.83 ± 0.16 c 4.77 ± 0.85 c 8.27 ± 0.56 ef
CK-F.m 4.65 ± 0.35 abc 8.89 ± 1.07 ab 11.96 ± 0.84 abc

MD-NM 4.46 ± 0.21 bc 6.53 ± 0.37 bc 12.66 ± 0.3 ab
MD-R.i 6.09 ± 0.57 a 11.7 ± 1.94 a 10.84 ± 1.04 bcd
MD-F.m 1.69 ± 0.1 d 4.17 ± 0.57 c 7.8 ± 0.79 f
SD-NM 4.34 ± 0.72 c 9.01 ± 1.3 ab 10.17 ± 0.61 cde
SD-R.i 4.63 ± 0.49 abc 8.28 ± 0.65 ab 9.63 ± 0.46 def
SD-F.m 4.83 ± 0.16 abc 10.38 ± 1.1 a 10.3 ± 0.9 cde

CK, well watered; MD, moderate drought; SD, severe drought; NM, non-mycorrhizal, R.i, inoculated with
Rhiaophagus intraradices; F.m, inoculated with Funneliformis mosseae. Mean values ± SE with different letters
indicate a significant difference (Duncan’s test, p ≤ 0.05, n = 3).

3.4. Macronutrient Concentrations in Oats

The concentrations of N, P, K, and Ca in all plant tissues, and the concentration of Mg
in the roots were significantly influenced by AMF inoculation. The concentrations of Ca
and K in all oat plant tissues, and the concentration of Mg in the roots were significantly
influenced by drought treatments. Except for Mg in the shoots, the other macronutrient
concentrations were significantly influenced by AMF inoculation. Meanwhile, the K and
Mg contents in the roots and the Ca in all oat plant tissues were significantly influenced
by drought stress, inoculation, and their interactions (Figure 7). Compared with the non-
inoculated treatments, the N concentrations of the shoots in the oats were not significantly
changed except under CK. The N concentrations of the roots even decreased via inoculation
under CK and MD. Under different water conditions, there was no significant difference
in the N concentration of the shoots under two kinds of AMF species inoculation, but F.
mosseae significantly increased the N content of the roots compared with the inoculation of R.
intraradices (Figure 7A). Compared with the non-inoculated treatments, only the inoculation
with R. intraradices significantly increased the concentration of shoot P under CK, while
both R. intraradices and F. mosseae inoculation increased the concentration of root P under
different water treatments (Figure 7B). Compared with the non-inoculated treatments, the
K contents of the shoots were not significantly changed except for R. intraradices inoculation
under CK, and there were significant differences in the inoculated and non-inoculated
root K concentrations under CK and MD; the R. intraradices and F. mosseae inoculations
increased the concentrations of root K under CK, and F. mosseae inoculation increased
the concentrations of root K under MD, while SD decreased the concentration of root K
for both the non-inoculated and inoculated treatments (Figure 7C). Compared with the
non-inoculated treatments, R. intraradices inoculation increased the concentrations of Ca in
all plant tissues under MD and SD treatments (Figure 7D), and R. intraradices inoculation
also increased the concentrations of root Mg under three water treatments (Figure 7E).
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N (A), P (B), K (C), Ca (D), and Mg (E) concentrations of oats. CK, well watered; MD, moderate
drought; SD, severe drought; NM, non-mycorrhizal, R.i, inoculated with Rhiaophagus intraradices; F.m,
inoculated with Funneliformis mosseae. Values with different letters indicate a significant difference
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PD, probability value for the moisture treatment; PD×AMF, probability value for the AMF × drought
stress. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; ns, not significant.

4. Discussion

Our experimental results align with those of previous studies, supporting the idea
that droughts can decrease the infection rate of AMF [21,30,37]. Despite facing drought
conditions, both AMF species had a positive influence on the oat growth, resulting in
increased shoot and root biomasses as well as enhanced root architecture. It is worth noting
that before the drought treatment, AMF and oat roots demonstrate symbiosis for up to
two months, and establish a robust symbiotic relationship. Consequently, under normal
water conditions, both AMF treatments exhibited high infection rates exceeding 74%, with
G.r achieving a higher rate at 77.21%. Similar observations have been reported in wheat
crops under comparable irrigation practices, where F. mosseae inoculation achieved an
infection rate of 72.5% [37]. However, Zhang [38] observed a lower inoculation rate (below
40%) when oats were inoculated with Rhizophagus intraradices under 75% FC conditions.
Notably, it should be acknowledged that plant mycorrhizal infection rates are influenced by
various factors such as the bacterial substrate specificity [39], host genotype variations [40],
soil pH levels, and even other microorganisms that are present in the soil ecosystem [41].
The relatively low infection rate observed in Zhang’s [38] study may be attributed to the
influence exerted by other microorganisms present in non-sterile soil environments. In our
study, both AMF species successfully established symbiotic associations with Qingyan No.
1 and positively influenced their biomass accumulation, root growth, nutrient uptake, and
stress tolerance capabilities.
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Consistent with most mycorrhizal studies, the two AMF species in this research
increased the biomasses of different parts of the oat, especially the shoot dry weight
under moderate drought conditions and the root weight under severe drought conditions.
However, the oats inoculated with R. intraradices have a higher mycorrhizal dependency,
especially for the shoots, which means R. intraradices inoculation has a higher mycorrhizal
contribution to oats. The two AMF species also have significant effects on the root growth
under well-watered and moderate drought conditions. AMF could up-regulate PtYUC3
and PtYU8 genes related to IAA synthesis, thereby increasing the IAA level, root length,
and root density in trifoliate orange root [42].

Despite oats’ drought and barren resistance characteristics, water restriction reduces
the utilization of N, P, and other nutrients. In this study, AMF inoculation resulted in
lower N concentrations in oats compared to those without inoculation. It might be the
high biomass that led to N dilution in the shoot tissues [43]. However, under water stress,
AMF inoculation may promote N uptake by the roots and maintain the stability of the
shoot N concentration. This result may be related to the nitrate reductase activity (NR),
a key enzyme in N metabolism, which is greatly affected by droughts. Some research
already showed that mycorrhizal plants had higher NR than the uninoculated treatments,
particularly under water stress conditions [44,45]. Similar to most mycorrhizal studies,
both AMF species enhanced the P concentration in the oat roots; the extracellular hyphae
of AMF can reach the soil that cannot be reached by the root system to absorb nutrients.
Additionally, the secretion of mycelia can also convert insoluble N and P nutrients into
usable forms, which provide more absorbed N and P to the host plants [46].

Previous studies have shown that K plays crucial roles in enzyme activation, mem-
brane transport, osmotic regulation, as well as protein synthesis, including starches, cellu-
lose, and vitamins in plants [47]. Additionally, K+ also participates in stomatal opening,
aiding in plant adaptation to water stress [48]. P, Ca, K, and Mg are mobile ions in the soil
that rely on continuous water flow between the soil–root–shoot parts for absorption [49].
Our results demonstrated that both AMF species increased the root K concentration un-
der well-watered conditions and were consistent with the findings of Li [21]. G. mosseae
increased the K concentration in the roots under moderate drought conditions. R. irregu-
laris increased the growth, K content, and K channel gene expression in Lycium barbarum,
especially under drought conditions [50]. Compared with the well-watered treatment, the
K concentration of the shoots under the drought treatment has no significant difference.
Therefore, we believe that the two AMF species can maintain higher K concentrations
under drought conditions, thereby reducing drought damage.

The inoculation with R. intraradices significantly increased the concentration of Ca
in oat plants under all water treatments; Ca2+ can serve as a mediator for transducing
signals released by the AMF to plants, thereby facilitating the establishment of a symbiotic
relationship and also transmitting drought signals within mycorrhizal structures under
drought conditions [51,52]. Meanwhile, Ca promoted the water retention capacity of leaves
and cell membranes to alleviate plant water scarcity under drought stress [53]. In our
study, the inoculation with R. intraradices had a significant influence on the oat roots under
all water treatments. Mg is involved in carbon metabolism by activating the enzyme,
RUBISCO, thus promoting mycorrhizal colonization and plant growth [54]. However,
Lopes [55] suggested that the higher Mg accumulation in the roots of mycorrhizal plants
reduces the energy required for the unnecessary transport of mineral nutrients. Overall,
both AMF species had positive effects on ion nutrition accumulation, especially at root
level, during drought stress due to the extraneous mycelium extending from the roots
absorbing more nutrients and water.

5. Conclusions

In this study, the oats had different responses to drought stress and the colonization
of the two AMF species. On the whole, AMF alleviated drought stress to a certain extent,
which was manifested in the increase in the biomass, root architecture, soluble sugar,
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soluble protein, and the decrease in MDA. In addition, the inoculation of two kinds of
AMF increased the accumulation of P, K, Ca, and Mg in different parts of the oat to
different degrees, and both AMF species had significant effects on the increase in the root
P concentration. Of the two types of AMF, the inoculation with R. intraradices was the
most effective in the drought tolerance and nutrient absorption of the oats. The results
demonstrated that the root architecture and nutrient absorption were enhanced in the
mycorrhizal oats, which resulted in enhanced osmotic adjustment, shoot and root growth,
and reduced biomass loss during drought stress compared with the non-mycorrhizal oats,
leading to an improvement in the drought resistance of oats.
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