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Abstract: Root-feeding herbivores present challenges for insect scouting due to the reliance on above-
ground visual cues. These challenges intensify in multi-stress environments, where one stressor
can mask another. Pre-visual identification of plant stress offers promise in addressing this issue.
Hyperspectral data have emerged as a measurement able to identify plant stress before visible symp-
toms appear. The effectiveness of spectral data to identify belowground stressors using aboveground
vegetative measurements, however, remains poorly understood, particularly in multi-stress envi-
ronments. We investigated the potential of hyperspectral data to detect Western corn rootworm
(WCR; Diabrotica virgifera virgirefa) infestations in resistant and susceptible maize genotypes in the
presence and absence of drought. Under well-watered conditions, the spectral profiles separated
between WCR treatments, but the presence of drought eliminated spectral separation. The foliar
spectral profiles separated under drought conditions, irrespective of WCR presence. Spectral data
did not classify WCR well; drought was well classified, and the presence of drought further reduced
WCR classification accuracy. We found that multiple plant traits were not affected by WCR but were
negatively affected by drought. Our study highlights the possibility of detecting WCR and drought
stress in maize using hyperspectral data but highlights limitations of the approach for assessing plant
health in multi-stress conditions.

Keywords: drought; hyperspectral data; maize; Zea mays; physiology; plant stress responses; Western
corn rootworm

1. Introduction

Over 4.5 billion people rely on maize as a primary source of food, especially in
developing countries [1–3], and maize production has outpaced other cereals in these
regions [4]. The current demand for maize production is increasing and is projected to
need to double in the next 30 years to accommodate an increasing population (Rosegrant
et al., 2009). Food demand is a massive challenge for maize producers and breeding
programs, and the major limitations to increasing yield outputs are pests, pathogens, and
environmental stress.

Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera:
Chysomelidae), is a significant pest insect that challenges maize production in the
United States [5] and is responsible for economic losses that can exceed USD 1–2 billion
annually [6,7]. Root feeding by WCR larvae causes a considerable impact on maize
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production, and it is estimated that every root node consumed by WCR larvae leads to a
20% reduction in yield [8]. WCR infestation also leads to plants lodging or falling over,
which complicates mechanical harvesting and reduces yield output [9].

In North American maize production, WCR is managed primarily by using genetically
modified maize varieties that produce a range of insecticidal proteins derived from the
bacterium Bacillus thuringiensis (Bt). Extensive planting of Bt maize, however, increases the
selection pressure for WCR that evolve resistance to Bt toxins [10]. Several studies have
reported WCR resistance to Bt maize hybrids in most Western US corn belt states [9,11–13].
While most maize hybrids contain several genes that produce different Bt proteins as a
strategy to reduce the likelihood of resistance evolving, there are no commercial maize
genotypes fully resistant to WCR [13]. The most common approach for monitoring WCR
in both nonmodified and Bt maize is manual scouting and scoring of root damage. These
approaches, however, are time-consuming and limited by subjective assessments of plant
status and scoring systems [14]. Moreover, early WCR infestation stages do not produce
visual symptoms, and as a root-feeding herbivore, their life history makes a pre-visual
diagnosis challenging [15].

In addition to pest insects, maize production experiences a wide variety of stressors,
and drought is the leading abiotic cause of yield losses in maize [16]. Occurrences and
areas affected by drought conditions are increasing globally, and the regions affected by
drought doubled from 1970 to 2000 [16]. It has been hypothesized that WCR damage
is intensified under water-limited conditions [17], yet most experimental manipulations
of WCR densities or developmental stage and water conditions have shown that WCR
has minimal impacts on maize in the presence of drought [18,19]. The influence of both
stressors on the early detection of WCR, however, remains unclear.

One measurement approach that has become popular for assessing crop stress and
health is hyperspectral data [14]. This approach has been successfully employed to detect
pathogens and pests and understand the responses of vegetation to different stressors
in numerous systems [20–34]. And although the detection of belowground pests and
pathogens has been demonstrated [34–40], the ability of hyperspectral data to detect
belowground stress using aboveground data in the presence of other stressors is unclear.

To address this knowledge gap, we tested the ability of hyperspectral data to detect
WCR in WCR-susceptible and -resistant genotypes of maize exposed to the presence or
absence of drought stress. Specifically, we predicted that hyperspectral data would be able
to identify the presence of WCR prior to the onset of visible symptoms but that responses
would vary between maize genotypes and water availability treatments. We also predicted
that hyperspectral data would predict plant functional trait responses to WCR and drought
treatments and that these responses would vary among maize genotypes and treatments.

2. Materials and Methods
2.1. Experimental Design and Germplasm

This study was conducted at Purdue University (40◦42′26′′ N, 86◦91′04′′ W, 611 m a.s.l.)
in West Lafayette, IN, USA, in 2018 in two different types of controlled environments: the
Ag Alumni Phenotyping Facility (AAPF) and a greenhouse (GH) in the Purdue Horticulture
Plant Growth Facility. One genotype is characterized by the USDA as WCR-resistant (NGS;
NGSDCRW1[S2]C4, Accession PI550643, repository N7) and the parental isoline, which is
WCR-susceptible (R802; Accession Ames 30940, Repository N7).

2.1.1. AAPF Experimental Design

In the AAPF, 96 plants, 48 each of the WCR-resistant (NGS) and the WCR-susceptible
(R802) genotypes, were planted in a peat moss-based bark mix of BM7 soil (Berger, Saint-
Modeste, QC, Canada) in 3 L plastic containers with drainage holes. We planted two seeds
per container; after germination, one seedling was randomly removed, leaving only one
plant per pot. The experiment was fertigated to full-volume capacity based on an auto-
mated, weight-based watering system. Fertigation included 150 ppm of 21-5-20 (N-P-K)
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Peters Excel fertilizer (ICL Specialty Fertilizers, Dublin, OH, USA) and the chamber was
maintained at 28:25 ◦C day:night temperatures. Each maize genotype was divided into
two treatments: control (no WCR) and WCR-infested. To ensure sufficient root material
was present for WCR establishment, WCR treatment plants were infested at the V4 (i.e.,
four fully developed leaf collars) stage with 100 WCR larvae per container in order to
ensure a high infestation level. WCR eggs (Crop Characteristics, Farmington, MN, USA)
were kept in a dark chamber at 27 ◦C until 50% of the eggs on the plate hatched. First instar
WCR larvae were used to infest plants. For the infestation, the soil from the crown roots of
individual plants was carefully removed, and WCR larvae were directly deposited on the
crown roots with a Size 2 microdetail pain brush. The soil was then carefully replaced to
cover the crown root area infested with WCR larvae. To increase the potential impact of
WCR on the corn responses, measurements of all plants were conducted approximately
50 days at the V10 (i.e., ten fully developed leaf collars) stage.

2.1.2. GH Experimental Design

Seeds of the same genotypes used in the AAPF experiment were planted in a growing
medium containing a 1:1 mixture of Berger special mix, a custom blend of BM7 and BM8
(Berger, Saint-Modest, QC, Canada), in 7.5 L black plastic containers with drainage. The num-
ber of containers per genotype planted was 120, for a total of 240 pots. Containers were regu-
larly fertigated to pot capacity using N-P-K-enriched water (400 ppm of 21-5-20 N-P-K Peters
Excel fertilizer, ICL Specialty Fertilizers, Dublin, OH, USA) throughout the entire experiment,
and the greenhouse was maintained at 25:22 ◦C day:night temperatures.

Plants were subdivided into two sets following a randomized, complete block de-
sign, each composed of 120 seedlings per genotype, and sub-assigned to four different
treatments: control (well-watered, non-WCR-infested); well-watered, infested with WCR;
drought stress; and drought stress infested with WCR. For WCR infestations, sixty plants
of each genotype were infested at the V4 stage with 100 WCR first instar larvae (Crop
Characteristics, Farmington, MN, USA), similar to the protocol described in the AAPF
experiment. To implement drought treatments, all plants were regularly watered until
the V6 plant stage. Plants were considered to be under drought stress by measuring the
photosynthetic and stomatal conductance levels to a level of 30% below the well-watered
plants. After this period, water was withheld from the two drought treatments (i.e., drought
and drought + WCR) for nine days, while the two well-watered groups were irrigated
every two days to capacity. At the time of the measurements (approximately 50 days after
planting), all plants were at the V10 stage.

2.2. Spectral Data Collection and Calculation of Indices

Full-range (350–2500 nm) reflectance profiles were obtained using a spectroradiometer
(Spectral Vista Corporation, Poughkeepsie, NY, USA) fitted with a leaf clip containing an
internal halogen light source. In the AAPF experiment, spectral measurements were made
on two different areas on opposite sides of the leaf midvein, midway between the leaf
tip and collar of the adaxial surface of all possible leaves, which were averaged to one
spectral measurement per plant. For the GH experiment, three different areas of the adaxial
surface in each V7 leaf were measured and then averaged following [30]. The relative
reflectance of each leaf was determined using the leaf radiance divided by the radiance
of a white reference panel internal to the leaf clip, measured every 15 spectral collections.
Several vegetation indices (Vis) were calculated using the spectral data collected at both
experiments described in the literature to be related to abiotic and biotic stress (Table 1).

We also calculated the Normalized Differential Spectral Index (NDSI) for all pair-
wise wavelength combinations following NDSI [i, j] = Ri − Rj

Ri + Rj , where R is the reflectance
value of the respective wavelengths. Spearman rank correlations were used to determine
relationships between pairwise wavelength combinations and treatment combinations
following [25]. This approach allows for the identification of wavelengths, or combinations
of wavelengths, related to the treatments or plant responses to the treatments.
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Table 1. Vegetation indices, formulas, biological parameter estimated, and reference for the calcula-
tions used in the current study.

Index Name Formula Estimated Parameter Reference

PRI Photochemical Reflectance Index (R531 − R570)/(R531 + R570) Photosynthesis [41]
NDWI Normalized Difference Water Index (R860 − R1240)/(R860 + R1240) Leaf water content [42]
DSWI Disease Water Index R800/R1660 Detect specific disease and pests [43]
PBI Plant Biochemical Index R810/R560 Plant biochemicals [44]
ARI Anthocyanin Reflectance Index (1/R550) − (1/R700) Pigments [45]
HI Health Index (R534 − R698)/(R534 + R698) −
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2.3. Maize Physiological Reference Measurements

Reference measurements were collected on plants in the GH experiment immediately
following the spectral measurements. The 7th leaf of each plant was consecutively mea-
sured once for the chlorophyll content, gas exchange parameters, and water relations on
the leaf on which spectral data were collected. All measurements were performed between
10:00 a.m. and 3:00 p.m.

2.3.1. Chlorophyll Content and Gas Exchange

The chlorophyll content (SPAD) was measured using a digital chlorophyll meter
analyzer (SPAD 502 m, Konica Minolta, Tokyo, Japan). The net CO2 assimilation (A),
stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration (Transp),
and temperature of the adaxial leaf surface was measured using an LI-6400XT portable
photosynthesis system (LiCor, Inc., Lincoln, NE, USA) with 400 ppm CO2 and saturated
light (1700 µmol m−2 s−1 photosynthetically active radiation). We calculated the intrinsic
water use efficiency (WUE) as A divided by gs.

2.3.2. Water Status and Leaf Thickness

The leaf water potential (Ψw) was measured using a 10–15 cm portion of the leaf. The
leaf midvein was placed into a rubber stopper and inserted into a Scholander pressure
chamber (Model 600; PMS Instrument, Company, Corvallis, OR, USA), as described by
Tiekstra et al. (2000). A portion of the leaf lamina directly subtending the tissue used
to measure the Ψw was used to determine the leaf osmotic potential (Ψπ). The leaf was
placed in a microcentrifuge tube with a mesh insert, quickly frozen in liquid nitrogen, then
stored at −20 ◦C. The samples were removed from the freezer and kept for ten minutes at
room temperature, then centrifuged for 5 min at 500 rpm to extract the cell sap. The solute
concentration was quantified using a vapor pressure osmometer (Wescor 5500; Wescor
Inc., Logan, UT, USA) following [49]). Using another portion of the leaf, the relative
water content (RWC) and leaf succulence (Succ) were measured following the protocol
described by [49]. The RWC was determined using the formula FW-DW/TW-DW (FW:
fresh weight, DW: dry weight, and TW: turgid weight). The leaf portion used for RWC
was scanned to obtain the leaf area (LA) using a Canon Lide 300 scanner (One Canon
Park, Melville, NY, USA). The leaf area was quantified using ImageJ (National Institutes of
Health, Bethesda, MD, USA), and the mass was weighed to calculate the SLA.

2.4. Chemometric Modeling

Chemometric models were developed to predict several traits in maize in the GH
experiment, including the net CO2 assimilation (A), transpiration (Transp), stomatal con-
ductance (gs), intercellular CO2 concentration (Ci), relative water content (RWC), intrinsic
water use efficiency (WUE), leaf greenness (SPAD), leaf temperature (Tleaf), leaf water
potential (LWP), leaf osmotic potential (LOP), and specific leaf area (SLA). Models were de-
veloped using partial least squares regression (PLSR) [50,51]. PLSR is a common approach
for developing models estimating plant traits using spectral data, because the approach
reduces the multicollinearity within spectral data into uncorrelated latent variables [30,52].
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The number of latent variables for each model was selected based on the reduction of
the predicted residual error sums of squares (PRESS) statistic [53] using the leave-one-out
(LOO) cross-validation approach. All the models were developed using the wavelength
range from 400 to 2400 nm. A maximum of fifteen percent of data were removed as outliers,
based on [30], for each trait modeled, but the data points removed varied by the individual
trait modeled. The model performance was evaluated by conducting 100 randomized
permutations of the dataset using 80% of the data (n = 192) divided into an 80:20 split for
calibration and cross-validation, respectively. The 20% of the remaining data (n = 48) was
held onto to perform external validation. To determine the model performance, we tracked
the model’s goodness of fit (R2) and overall error rate (root mean square error, RMSE), the
error normalized to the data range (NRMSE), and the bias for each permutation. Models
that performed satisfactorily (i.e., external validation R2 > 0.65 and NRMSE < 20%) were
used to predict physiological traits in the AAPF experiment and for further analysis of
these traits in the treatments.

2.5. Root Injury Assessment

Following the data collection for both experiments, all plant roots were extracted and
thoroughly rinsed to remove soil. WCR damage was assessed using the root node injury
scale developed by [54]. This approach is a quantitative assessment of root injury caused
by WCR larvae feeding. The scale scoring goes from zero (i.e., no feeding damaged) to
three (i.e., three or more complete nodes pruned).

2.6. Statistical Analyses

Analysis of variance (ANOVA) was performed to determine the effect of treatment
combinations on root damage. Data collected from the AAPF experiment were analyzed as a
two-way ANOVA with the main effects of WCR infestation, genotype, and their interaction
following the model Wi, j = Wi + Gj + WiGj + ei, j. In this model, Wi represents the WCR
treatment level i, Gj represents the genotype level j, and ei, j represents the error term. A
three-way ANOVA following a similar model was used for analysis of the data collected in
the greenhouse experiment, except the term Dj was included to account for the presence
or absence of drought and was included both individually and through interactions with
other factors.

Two approaches were used to identify the influence of treatments on spectral profiles:
dissimilarity analysis and classification. For both analyses, the data ranges of 500 to 800 nm
and 1600 to 2200 nm were used. Those ranges were selected because those wavelength
ranges contain absorption features related with biotic stress responses based on the red edge
position, changes in the pigment profiles, and phenolic absorption features (Curran et al.,
1989; Kokaly and Skidmore 2015; Cotrozzi and Couture 2020; Galiene et al., 2021).

In the AAPF and GH experiments, permutational multivariate analysis of variance
(PERMANOVA, [55]) was the dissimilarity analysis performed using Euclidian distance
measurements and 10,000 permutations to determine if (1) the WCR, genotype, or their
interaction had an influence on the dissimilarity of the spectral data (AAPF) and (2) the
WCR, drought, genotype, or their interactions had an influence on the dissimilarity of the
spectral data (GH). We visualized the dissimilarities using principal coordinate analysis
(PCoA) with Euclidian distance measurements. Both PERMANOVA and PCoA were
performed in R using the package “vegan” (www.r-project.org, Dixon, 2003, accessed
on 15 February 2019). If a treatment factor was found to be statistically significant for
the PERMANOVA, a least significant difference post hoc test was performed on the first
PCoA axis. We then proceeded to the classification analysis of the treatments using the
spectral data by applying a support vector machine (SVM) classification analysis. SVM is a
supervised classification approach where hyperplanes are used to separate samples using
known identifiers in a training dataset and then outcomes derived from the training set are
used to predict the identifier in a validation dataset [56]. The ability of SVM to discriminate
nonlinear data relationships using the kernel function makes it an optimal classification

www.r-project.org
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approach for high-dimensional, multivariate, non-independent datasets [56]. We used the
open python resource Jupiter notebook to perform the SVM analysis. The dataset was split
50:50 for the training and validation datasets. We analyzed the training data using a k-fold
(k = 10) resampling approach.

ANOVA was performed separately for each experiment to determine the effect of
treatment combinations on individual VIs and functional traits using a similar model as
used for the root damage assessment. Because of the small sample sizes of some of the
treatments and to balance between potential type I and II errors, we report p-values p > 0.05
as significant and p-values 0.05 ≤ p ≥ 0.10 as marginally significant [57].

3. Results
3.1. Root Injury Assessment

Both resistant and susceptible genotypes experienced feeding damage by WCR (AAPF
treatment, Appendix A, Figures A1 and A2). We found that the WCR-susceptible geno-
type had higher root damage in both experiments compared to the resistant genotype
(Appendix A, Figures A1 and A2). Drought had no influence on WCR damage for the
greenhouse experiment (Appendix A, Figure A2).

3.2. Spectral Separation and Classification among Different Treatment Combinations

In the AAPF experiment, we found that composite spectral profiles separated indepen-
dently for both the WCR treatments and between genotypes, but we found no interaction
between the two factors (Figure 1a and Appendix B, Table A1). Full spectral profiles
separated more between genotypes, especially in the SWIR region (Figure 1b). In the
GH experiment, we found that composite spectral profiles separated between genotypes
and drought treatment but not WCR (Figure 1c and Appendix B, Table A1). Instead, the
separation of composite spectral profiles of plants infested and not infested with WCR
was influenced by the presence of drought stress (WCR × drought interaction, Figure 1c
and Appendix B, Table A1), and the separation of composite spectral profiles of different
genotypes depended on the presence or absence of drought stress (genotype × drought
interaction, Figure 1c and Appendix B, Table A1). Similar to the AAPF, full spectral profiles
separated more between genotypes, with treatment responses occurring largely in the
SWIR region (Figure 1d).

SVM showed low accuracy in classifying plants infested with WCR in both experi-
ments using spectral data (Figure 2a,b). In the AAPF, the classification of non-WCR and
WCR treatments was similar, with a ~50% classification accuracy (Figure 2a). Similar to
the AAPF outcome, spectral data collected in the GH experiment did not classify WCR
well, again with ~50% classification accuracy (Figure 2b). When including all treatment
combinations, classification showed reduced accuracy for all categories (Figure 2d).

3.3. Relationships between the Normalized Differential Spectral Index (NDSI), Treatment
Combinations, and Vegetation Indices (VI)

Using the NDSI, the relationships of spectral data with treatment combinations re-
vealed weaker relationships of spectral data with WCR (Figure 3a,b) than with drought
(Figure 3c). In the AAPF experiment, PBI and MCARI were the only indices related to
WCR infestation (Table 2), with PBI being 6% lower and MCARI 13% higher in the WCR
treatments (Appendix B, Table A2). The PRI, NDWI, PBI, HI, and WBI varied between geno-
types, but we found no WCR × genotype interactions (Table 2). In the GH experiment, we
found that the PBI and DSWI were the only indices related with WCR infestation (Table 2).
Again, PBI was 6% lower in WCR-infested plants, while DSWI was 5% lower (Table 1
and Appendix B, Table A2). The magnitude of this response depended on drought levels
but was consistent across genotypes (Table 2). In the GH experiment, all VIs except the
MCARI responded to drought (the PRI and WBI increased 32% and 3%, respectively, and
the NDWI, DSWI, PBI, ARI, and HI decreased by 7%, 13%, 12%, 16%, and 60%, respectively,
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Appendix B, Table A2), although several of these responses varied between genotypes
(drought × genotype interaction; Table 2).
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Figure 1. Principal coordinate analysis (PCoA; a,c) and spectral profile (b,c) of composite spectral
profiles among treatments in the AAPF (a,b) and the GH (c,d) experiments. Permutational analysis
of variance (PERMANOVA) results reported as pseudo p-values. Only p-values < 0.10 are displayed.
Scores (mean ± standard error) for the first and second vectors from PCoA of hyperspectral data
collected from both experiments: (a,b) AAPF experiment and (c,d) GH experiment. WCR: Western
corn rootworm; D: drought; D + WCR: drought + WCR; NGS: maize genotype resistant to WCR;
R802: maize genotype susceptible to WCR.

Table 2. p-values of two- and three-way ANOVA examining the effects of Western corn rootworm
(WCR) infestation, genotype, and their interaction (AAPF) or WCR, drought, genotype, and their
interactions (GH) on VI responses. Significant values (p < 0.05) are in bold, while marginally signifi-
cant values (0.10 ≤ p ≥ 0.05) are italicized. df, degrees of freedom (numerator, denominator). AAPF:
Ag Alumni controlled environment Phenotyping Facility. GH: greenhouse. PRI: Photochemical
Reflectance Index, NDWI: Normalized Difference Water Index, DSWI: Disease Severity Water Index,
PBI: Plant Biochemical Index, ARI: Anthocyanin Reflectance Index, HI: Health Index, WBI: Water
Band Index, MCARI: Modified Chlorophyll Absorption in Reflectance Index.

Experiment Treatment df PRI NDWI DSWI PBI ARI HI WBI MCARI

AAPF
WCR 1,89 0.460 0.339 0.799 0.055 0.475 0.290 0.315 0.024
Genotype 1,89 <0.001 <0.001 0.300 0.002 0.333 0.056 <0.001 0.491
WCR × genotype 1,89 0.323 0.447 0.450 0.590 0.291 0.720 0.868 0.148

GH

WCR 1,237 0.210 0.637 0.068 0.007 0.226 0.146 0.921 0.247
Drought 1,237 <0.001 0.006 <0.001 <0.001 0.006 <0.001 0.003 0.445
Genotype 1,237 <0.001 0.450 <0.001 0.045 0.541 <0.001 0.093 0.076
WCR × drought 1,237 0.545 0.928 0.047 0.077 0.431 0.073 0.582 0.717
WCR × genotype 1,237 0.438 0.390 0.567 0.714 0.777 0.380 0.206 0.490
Drought × genotype 1,237 <0.001 0.343 0.004 <0.001 <0.001 <0.001 0.374 0.230
WCR × drought × genotype 1,237 0.841 0.462 0.756 0.682 0.578 0.842 0.556 0.230
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Figure 3. Normalized Differential Spectral Index (NDSI) of all possible combinations of the full
spectral range (400–2400 nm), showing relationships of wavelengths with WCR treatments at AAPF
(a) and WCR (b) and drought (c) in the greenhouse (GH).

Overall, the NDSI showed weaker relationships for spectral data with the PBI and
DSWI for all treatments in the AAPF compared to the GH experiment (Figure 4a–d). There
was approximately a 70% reduction in the total number of correlation coefficients that
were >0.5, but a seven- and five-fold reduction in correlation coefficients that were >0.7,
for spectral data with the PBI and DSWI in the AAPF (Figure 4a,c) compared to the GH
(Figure 4b,d). We also found more prominent relationships of NDSI values relating spectral
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data in regions containing water absorption features (i.e., 970–1450 nm and 1920–2172 nm;
Figure 4b,d) in the GH experiment compared to the AAPF and in the drought compared to
the WCR treatments in the GH, indicating a more pronounced impact of drought stress
than WCR on vegetation spectral profiles.
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GH (b,d) experiments.

3.4. Functional Traits

Many of the spectral models we developed to estimate physiological traits performed
well (Appendix B, Table A3). Specifically, A, Transp, gs, Ci, RWC, Tleaf, and SLA all
demonstrated R2 values ≥ 0.65 and error rates below ≤20% (Appendix B, Table A3). These
models were retained for further examination of the impact of WCR and drought on maize
physiological responses. WUE, SPAD, LWP, and LOP all performed more poorly than
expected, with either R2 < 0.50, error rates greater than 20%, or both, and were not included
in further analyses.

The leaf temperature was the only response to WCR detected in the AAPF experiment,
but the response depended on the genotype, with the leaf temperature of the susceptible
genotype being 7% higher than the resistant genotype (WCR × genotype interaction;
Table 3 and Appendix B, Table A4). The SLA did vary between genotypes in the AAPF
experiment, but the response was only marginally significant in the GH study (Table 3 and
Appendix B, Table A4). In the GH experiment, we found no direct influence of WCR on
any functional traits, but the WCR presence did increase the SLA to levels comparable
with drought (marginal WCR × drought interaction; Table 3 and Appendix B, Table A4).
Drought had a more pronounced influence on the physiological responses than WCR and
reduced assimilation and transpiration by 67%, stomatal conductance by 54%, RWC by
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17%, and increased the SLA by 9% in the GH study (Table 3 and Appendix B, Table A4); the
magnitude of these responses, however, varied among genotypes (Table 3 and Appendix B,
Table A4).

Table 3. p-values of two- and three-way ANOVA examining the effects of Western corn rootworm
(WCR) infestation, genotype, and their interaction (AAPF) or WCR, drought, genotype, and their in-
teractions (GH) on functional trait responses. Significant values (p < 0.05) are bolded, while marginally
significant values (0.10 ≤ p ≥ 0.05) are italicized. df, degrees of freedom (numerator, denominator);
AAPF, Ag Alumni controlled environment Phenotyping Facility; A, net CO2 assimilation; Transp,
transpiration; gs, stomatal conductance; Ci, intercellular CO2 concentration; RWC, relative water
content; Tleaf, leaf temperature.

Experiment Treatment df A Transp gs Ci RWC Tleaf SLA

AAPF
WCR 1,89 0.178 0.115 0.115 0.229 0.195 0.710 0.457
Genotype 1,89 0.380 0.852 0.938 0.977 0.410 <0.001 0.004
Genotype ×WCR 1,89 0.424 0.716 0.536 0.756 0.932 0.027 0.628

GH

WCR 1,237 0.851 0.809 0.187 0.187 0.306 0.409 0.291
Drought 1,237 <0.001 <0.001 <0.001 <0.001 <0.001 0.956 0.001
Genotype 1,237 <0.001 <0.001 <0.001 <0.001 <0.001 0.486 0.107
WCR × Drought 1,237 0.152 0.139 0.056 0.056 0.570 0.956 0.081
WCR × Genotype 1,237 0.277 0.638 0.354 0.354 0.813 0.563 0.284
Drought × Genotype 1,237 <0.001 <0.001 <0.001 <0.001 <0.001 0.978 0.997
WCR × Drought × Genotype 1,237 0.699 0.970 0.675 0.675 0.680 0.810 0.460

4. Discussion

Detecting plant stress prior to the onset of visual symptoms is a management approach
that can dramatically drive crop yield improvement [32,58–60]. Plants exposed to different
stressors can respond by activating a series of complex signaling networks [58]; however,
accurately assessing plant stress pre-visually can be challenging when there are multiple
sources of stress interacting simultaneously [30]. Hyperspectral data have proven to be an
effective method to assess plant abiotic and biotic stress pre-visually in aboveground tissue
when the occurrence of stress is present [25,40,56,61–64]. In addition, there is building
evidence that aboveground spectral data can detect the presence of belowground pests
or pathogen stress [35–40]. The influence of multiple stress events on the ability of spec-
tral data to detect the presence of belowground pests or pathogens using aboveground
measurements, however, is not well understood and represents a limitation in the utility
of the approach. In this study, we found that changes in the composite spectral profile of
plants infested with WCR were detected in a controlled environment and in the absence
of drought stress. We also found that the presence of drought seemed to mask the separa-
tion of composite spectral profiles of plants infested with WCR. Lastly, the VIs calculated
and physiological traits measured produced stronger responses and correlated more with
drought stress than WCR infestation. The results of our study highlight the limitations in
detecting multiple stress events using hyperspectral data.

An emergent outcome of this work is that the presence of multiple stressors can
influence the ability of spectral data to detect an individual stress event, especially if one of
the stress events does not produce a sufficiently measurable response. Regardless of the
separation of the composite spectral profiles among treatments, we found poor outcomes
when classifying the WCR presence individually, and classification was further reduced
when drought stress was included as a treatment. The challenge associated with classifying
belowground stress conditions using aboveground spectral data may be dependent on the
emergence of physiological changes in aboveground vegetation [30]. If a sufficient response
in the aboveground vegetation is not present, then spectral data may not be able to detect
the response and, ultimately, the stress event. Moreover, if an additional stressor elicits a
stronger response, the ability of spectral data to identify one individual stress event might
be reduced. In the current study, drought elicited stronger physiological responses and had
more pronounced relationships with spectral data than the WCR. Our findings suggest that
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relying only on vegetation spectral data, including many common indices, to detect WCR
infestations might not be appropriate in variable environments.

While the MCARI and PBI responded to WCR infestation under exceptionally con-
trolled conditions (i.e., AAPF experiment), they either did not respond in a less homogenous
environment with multiple stressors occurring (i.e., the MCARI in the GH) or the response
magnitude was dependent on the presence or absence of water stress (i.e., the PBI in
the GH). In the GH experiment, the DSWI did vary among the WCR treatments, but the
response was also dependent on the presence or absence of water stress conditions. Com-
bined outcomes from the index data suggest that specific conditions might be required for
WCR detection using spectral data. While some studies have shown the ability of indices
to use aboveground spectral data to detect belowground stress responses in plants [35–40],
others have found that even aboveground herbivory in maize might not be detected using
foliar measurements [26]. In the current study, the combination of multiple stressors ap-
pears to influence the detection of an individual stress event, with the outcome dependent
on the magnitude of the response to the cooccurring stressor.

Drought masking the presence of WCR might also be expected, because drought has
been shown to potentially trigger stronger physiological responses in the area measure-
ments were collected (i.e., foliage) relative to the belowground herbivory by WCR [65].
While other studies have found that a reduction in CO2 assimilation occurs in maize
under WCR infestation [66], we found few differences in multiple gas exchange and water-
related functional responses (e.g., net CO2 assimilation and water potential) in the absence
of drought stress. The changes in these functional responses were detected only under
drought stress. While we did find an increase in leaf temperature in response to WCR
infestation, the response varied between genotypes, with the resistant genotype not ex-
periencing as large a leaf temperature increase. Conversely, drought stress elicited much
stronger physiological responses, such as reducing net CO2 assimilation, transpiration rates,
and stomatal conductance. These results support those of others that show that drought
stress can have a greater negative impact on maize physiology than WCR infestation [17,18].
The stronger the influence of drought compared to WCR on spectral features was further
confirmed by relationships between the NDSI values and treatment combinations between
the two experiments. Combined, these outcomes highlight the challenges of simultaneously
classifying multiple sources of stress [30], especially those that demonstrate a range of
physiological responses.

5. Conclusions

In summary, we found that, while aboveground composite spectral profiles separated
between maize infested or not infested with WCR, classification was poor, and water
stress influenced the magnitude of separation of composite spectral profiles. These out-
comes were likely based on the differences in the physiological responses of maize to the
different stressors, with the vegetation indices and physiological responses to drought
more pronounced. While the use of aboveground vegetation optical properties to detect
belowground pests and pathogens could be beneficial in most crop production systems, our
results highlight an important knowledge gap to be faced when using hyperspectral data to
detect and classify specific stress events in plants under variable environmental conditions.
Our findings do, however, contribute to the growing literature on using aboveground
measurements to detect belowground stress prior to the presence of visible symptoms.
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Appendix B. Post Hoc Analysis of Significant PERMANOVA Terms, Vegetation Indices, Chemometric Modeling Performance Metrics, and
Functional Trait Values Calculated from the Spectral Data

Table A1. Least squares mean post hoc comparison of statistically significant or marginally statistically significant terms in the PERMANOVA of the spectral profiles
from the Ag Alumni Phenotyping Facility (AAPF) or the horticulture greenhouse facility (GH).

Experiment WCR posthoc comparison Genotype posthoc comparison

AAPF
WCR+ a NGS a

WCR− b R802 b

Experiment Drought posthoc comparison Genotype posthoc comparison WCR × drought posthoc
comparison Drought × genotype posthoc

comparison

GH
Drought+ a NGS a WCR−, Drought− a NGS,0 a

WCR+, Drought− bc NGS,1 b

Drought− b R802 b
WCR−, Drought+ c R802,0 a
WCR+, Drought+ c R802,1 a

Table A2. Means ± standard deviation of the indices for the AAPF and GH experiments. AAPF: Ag Alumni controlled environment Phenotyping Facility, GH:
greenhouse, PRI: Photochemical reflectance index, NDWI: Normalized Difference Water Index, DSWI: Disease Severity Water Index, PBI: Plant Biochemical Index,
ARI: Anthocyanin Reflectance Index, HI: Health Index, WBI: Water Band Index, and MCARI: Modified Chlorophyll Absorption in Reflectance Index.

Genotype Treatments PRI NDWI DSWI PBI ARI HI WBI MCARI

AAPF
NGS

Control 0.004 ± 0.002 0.046 ± 0.001 4.823 ± 0.103 2.996 ± 0.083 0.334 ± 0.016 0.032 ± 0.005 0.956 ± 0.001 0.154 ± 0.009
WCR 0.001 ± 0.001 0.044 ± 0.001 4.685 ± 0.092 2.720 ± 0.074 0.317 ± 0.014 0.0321 ± 0.005 0.957 ± 0.001 0.187 ± 0.008

R802
Control 0.007 ± 0.001 0.048 ± 0.001 4.695 ± 0.090 2.933 ± 0.073 0.329 ± 0.016 0.046 ± 0.005 0.953 ± 0.001 0.161 ± 0.008
WCR 0.009 ± 0.002 0.049 ± 0.001 4.776 ± 0.106 2.924 ± 0.083 0.324 ± 0.014 0.041 ± 0.006 0.954 ± 0.001 0.168 ± 0.009

GH

NGS

Control 0.019 ± 0.001 0.046 ± 0.002 4.852 ± 0.238 3.760 ± 0.106 0.384 ± 0.025 0.064 ± 0.007 0.954 ± 0.002 0.070 ± 0.003
WCR 0.016 ± 0.001 0.048 ± 0.002 4.224 ± 0.238 3.362 ± 0.106 0.353 ± 0.025 0.042 ± 0.007 0.953 ± 0.002 0.078 ± 0.003
Drought 0.009 ± 0.001 0.043 ± 0.001 3.473 ± 0.168 2.903 ± 0.075 0.251 ± 0.018 0.015 ± 0.005 0.957 ± 0.002 0.080 ± 0.002
WCR + Drought 0.008 ± 0.001 0.045 ± 0.001 3.378 ± 0.168 2.877 ± 0.075 0.233 ± 0.018 0.013 ± 0.005 0.955 ± 0.002 0.077 ± 0.002

R802

Control 0.018 ± 0.001 0.050 ± 0.002 4.716 ± 0.238 3.445 ± 0.106 0.319 ± 0.025 0.068 ± 0.007 0.949 ± 0.001 0.080 ± 0.003
WCR 0.017 ± 0.001 0.041 ± 0.001 4.191 ± 0.238 3.199 ± 0.106 0.282 ± 0.025 0.057 ± 0.007 0.951 ± 0.001 0.081 ± 0.003
Drought 0.015 ± 0.009 0.044 ± 0.001 4.491 ± 0.168 3.425 ± 0.075 0.325 ± 0.018 0.059 ± 0.005 0.957 ± 0.001 0.076 ± 0.002
WCR + Drought 0.016 ± 0.001 0.044 ± 0.001 4.685 ± 0.170 3.378 ± 0.075 0.337 ± 0.018 0.013 ± 0.005 0.955 ± 0.001 0.083 ± 0.002
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Table A3. Performance metrics of chemometric models developed using GH data. Number of latent variables (LVs); goodness of fit (R2); root mean square
error (RMSE); percent normalized root mean square error (NRMSE); and bias for calibration, cross-validation (CV), and external validation (EV). Calibration
cross-validation performance metrics were generated using 100 random permutations of 80% of the total dataset divided into an 80:20 split for calibration and CV,
respectively. Performance metrics for EV were generated by applying coefficients generated in the C:CV approach to the 20% of the data excluded. Data shown for C
and CV as the mean ± standard deviation. Trait abbreviations: A: net CO2 assimilation (µmol CO2 m−2 s−1), E: transpiration (mmol H2O m−2 s−1), gs: stomatal
conductance (mol H2O m−2 s−1), RWC: relative water content (%), Ci: intercellular CO2 concentration (µmol CO2 mol air−1), Tleaf: leaf temperature (◦C), SLA:
specific leaf area (cm mg−1), WUE: water use efficiency (µmol CO2 mol−1 H2O), LWP: leaf water potential (MPa), LOP: leaf osmotic potential (MPa), and leaf
greenness (SPAD): estimate of chlorophyll. Models used for the estimates of functional trait responses are in bold.

Calibration CV EV

Trait LV R2 RMSE NRMSE (%) Bias R2 RMSE NRMSE (%) Bias R2 RMSE NRMSE (%) Bias

A 17 0.94 ± 0.00 3.71 ± 0.13 8.5 1.05 × 10−14 ± 0.00 0.84 ± 0.04 6.21 ± 0.68 14.3 0.311 ± 1.21 0.77 8.07 18.1 0.66
E 15 0.90 ± 0.00 0.47 ± 0.01 9.7 −1.5 × 10−16 ± 0.00 0.79 ± 0.05 0.68 ± 0.07 14.1 0.003 ± 0.13 0.65 1.03 18.1 0.04
gs 17 0.90 ± 0.00 0.05 ± 0.00 7.6 1.39 × 10−17 ± 0.00 0.75 ± 0.05 0.08 ± 0.00 12.8 0.001 ± 0.01 0.65 0.1 20.4 −0.01
RWC 15 0.91 ± 0.01 0.04 ± 0.00 5.3 3.89 × 10−18 ± 0.00 0.79 ± 0.08 0.06 ± 0.01 7.6 0.001 ± 0.01 0.86 0.05 9.8 −0.01
Ci 18 0.94 ± 0.05 18.36 ± 0.69 6.5 −6.2 × 10−15 ± 0.00 0.84 ± 0.05 30.02 ± 3.23 10.6 0.379 ± 5.01 0.73 47.36 16.1 −1.93
Tleaf 19 0.96 ± 0.00 0.47 ± 0.01 5.1 1.3 × 10−16 ± 0.00 0.88 ± 0.03 0.86 ± 0.10 9.3 −0.026 ± 0.16 0.71 1.31 14.6 0.39
SLA 13 0.78 ± 0.02 22.3 ± 0.83 4.4 −6.18 × 10−16 ± 0.00 0.60 ± 0.09 31.8 ± 3.58 6.2 0.082 ± 6.89 0.67 28.56 5.7 1.98
WUE 17 0.85 ± 0.01 14.50 ± 0.45 10.6 1.1 × 10−14 ± 0.00 0.65 ± 0.09 22.77 ± 2.08 17.6 −0.534 ± 4.57 0.50 30.99 34.3 3.57
LWP 9 0.78 ± 0.01 2.48 ± 0.07 3.5 −3.8 × 10−16 ± 0.00 0.71 ± 0.06 2.91 ± 0.30 4.1 −0.038 ± 0.61 0.50 4.07 20.4 0.42
LOP 17 0.84 ± 0.02 49.71 ± 1.50 5.4 5.51 × 10−14 ± 0.00 0.64 ± 0.11 78.72 ± 6.36 8.6 −1.880 ± 12.51 0.47 85.52 16.0 7.32
SPAD 11 0.73 ± 0.01 2.41 ± 0.06 8.4 −1.7 × 10−18 ± 0.00 0.61 ± 0.09 2.93 ± 0.28 10.3 −0.060 ± 0.56 0.33 4.62 20.2 0.48

Table A4. Means ± standard deviation of the traits for the AAPF and GH experiments. AAPF: Ag Alumni controlled environment Phenotyping Facility, A: net CO2

assimilation (µmol CO2 m−2 s−1), Transp: transpiration (mmol H2O m−2 s−1), Ci: intercellular CO2 concentration (µmol CO2 mol air−1), RWC: relative water
content (%), Tleaf: leaf temperature (◦C), Cond: stomatal conductance (mol H2O m−2 s−1), and SLA: specific leaf area (cm mg−1).

Genotype Treatments A Transp Ci RWC Tleaf Cond SLA

AAPF
NGS

Control 10.4 ± 4.9 0.63 ± 0.7 273.3 ± 33.2 0.79 ± 0.06 27.1 ± 0.2 −0.03 ± 0.06 344.7 ± 28.5
WCR 7.7 ± 4.9 0.23 ± 0.7 302.9 ± 33.2 0.71 ± 0.06 28.4 ± 0.2 −0.09 ± 0.06 309.9 ± 28.5

R802
Control 10.0 ± 4.9 0.76 ± 0.6 264.0 ± 31.8 0.84 ± 0.05 30.0 ± 0.2 −0.06 ± 0.05 413.0 ± 28.95
WCR 7.5 ± 4.9 0.63 ± 0.7 314.1 ± 33.2 0.76 ± 0.06 30.5 ± 0.2 −0.14 ± 0.06 405.7 ± 28.9
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Table A4. Cont.

Genotype Treatments A Transp Ci RWC Tleaf Cond SLA

GH

NGS

Control 37.1 ± 2.2 3.98 ± 0.2 156.5 ± 15.2 0.95 ± 0.02 28.5 ± 0.5 0.37 ± 0.02 364.8 ± 17.4
WCR 36.9 ± 2.1 3.80 ± 0.2 147.0 ± 14.8 0.95 ± 0.02 528.5 ± 0.5 0.35 ± 0.02 424.1 ± 11.9
Drought 5.1 ± 1.5 0.63 ± 0.1 305.9 ± 10.5 0.68 ± 0.01 28.5 ± 0.4 0.05 ± 0.01 390.7 ± 16.8
WCR + Drought 6.96 ± 1.5 0.79 ± 0.1 272.4 ± 10.5 0.70 ± 0.01 28.7 ± 0.4 0.06 ± 0.01 397.9 ± 11.9

R802

Control 37.5 ± 2.1 4.01 ± 0.2 165.4 ± 14.8 0.94 ± 0.02 28.0 ± 0.5 0.40 ± 0.02 378.3 ± 16.8
WCR 33.3 ± 2.1 3.71 ± 0.2 164.9 ± 14.8 0.95 ± 0.02 28.6 ± 0.5 0.33 ± 0.02 422.1 ± 11.9
Drought 17.4 ± 1.5 1.82 ± 0.1 181.1 ± 10.6 0.88 ± 0.01 28.1 ± 0.4 0.16 ± 0.01 411.0 ± 16.7
WCR+Drought 18.1 ± 1.5 1.93 ± 0.1 181.1 ± 10.6 0.90 ± 0.01 28.5 ± 0.4 0.16 ± 0.01 433.6 ± 12.2



Agronomy 2023, 13, 2562 16 of 18

References
1. Conklin, A.R.; Stilwell, T. (Eds.) Grain Crops. In World Food: Production and Use; Wiley: Hoboken, NJ, USA, 2007; pp. 77–127.
2. Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role

played by maize in global food security. Food Secur. 2011, 3, 307–327. [CrossRef]
3. Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and

R&D implications. Food Secur. 2022, 14, 1295–1319.
4. FAO. Statistical Yearbook of the Food and Agricultural Organization for Feeding the World. In FAO Statistical Yearbook 2013.

2013. Available online: www.fao.org/giews/english/fo/index.htm (accessed on 15 February 2019).
5. Spencer, J.L.; Hibbard, B.E.; Moeser, J.; Onstad, D.W. Behavior and ecology of the western corn rootworm (Diabrotica virgifera

virgifera LeConte). Agric. For. Entomol. 2009, 11, 9–27.
6. Rice, M.E. Transgenic rootworm corn: Assessing potential agronomic, economic, and environmental benefits. Plant Health Prog.

2004, 5, 12. [CrossRef]
7. Wechsler, S.; Smith, D. Has resistance taken root in US corn fields? Demand for insect control. Am. J. Agric. Econ. 2018, 100,

1136–1150. [CrossRef]
8. Tinsley, N.A.; Estes, R.E.; Gray, M.E. Validation of a nested error component model to estimate damage caused by corn rootworm

larvae. J. Appl. Entomol. 2013, 137, 161–169. [CrossRef]
9. Jakka, S.R.K.; Shrestha, R.B.; Gassmann, A.J. Broad-spectrum resistance to Bacillus thuringiensis toxins by western corn rootworm

(Diabrotica virgifera virgifera). Sci. Rep. 2016, 6, 27860. [CrossRef] [PubMed]
10. Cullen, E.M.; Gray, M.E.; Gassmann, A.J.; Hibbard, B.E. Resistance to Bt corn by western corn rootworm (Coleoptera: Chrysomeli-

dae) in the U.S. Corn Belt. J. Integr. Pest Manag. 2013, 4, D1–D6. [CrossRef]
11. Gassmann, A.J.; Shrestha, R.B.; Jakka, S.R.K.; Dunbar, M.W.; Clifton, E.H.; Paolino, A.R.; Ingber, D.A.; French, B.W.; Masloski,

K.E.; Dounda, J.W.; et al. Evidence of resistance to Cry34/35Ab1 corn by western corn rootworm (Coleoptera: Chrysomelidae):
Root injury in the field and larval survival in plant-based bioassays. J. Econ. Entomol. 2016, 109, 1872–1880. [CrossRef]

12. Gassmann, A.J.; Petzold-Maxwell, J.L.; Keweshan, R.S.; Dunbar, M.W. Western corn rootworm and Bt maize. GM Crops Food 2012,
3, 235–244. [CrossRef]

13. Moar, W.; Khajuria, C.; Pleau, M.; Ilagan, O.; Chen, M.; Jiang, C.; Prics, P.; McNulty, B.; Clark, T.; Head, G. Cry3Bb1-Resistant
western corn rootworm, Diabrotica virgifera virgifera (LeConte) does not exhibit cross-resistance to DvSnf7 dsRNA. PLoS ONE
2017, 12, e0169175. [CrossRef]

14. Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron.
Agric. 2010, 72, 1–13. [CrossRef]

15. Nowatzki, T.M.; Tollefson, J.J.; Calvin, D.D. Development and validation of models for predicting the seasonal emergence of corn
rootworm (Coleoptera: Chrysomelidae) beetles in Iowa. Environ. Entomol. 2002, 31, 864–873. [CrossRef]

16. Aslam, M.; Maqbool, M.A.; Cengiz, R. Drought stress in Maize (Zea Mays L.); Springer International Publishing: Cham,
Switzerland, 2015.

17. Mahmoud, A.M.B. Effects of Western Corn Rootworm Larval Feeding, Drought, and Their Interaction on Maize Performance and
Rootworm Development. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 2015.

18. Mahmoud, M.A.B.; Sharp, R.E.; Oliver, M.J.; Finke, D.L.; Bohn, M.; Ellersieck, M.R.; Hibbard, B.E. Response of maize hybrids
with and without rootworm- and drought-tolerance to rootworm infestation under well-watered and drought conditions. J. Econ.
Entomol. 2018, 111, 193–208. [CrossRef] [PubMed]

19. Mahmoud, M.A.B.; Sharp, R.E.; Oliver, M.J.; Finke, D.L.; Ellersieck, M.R.; Hibbard, B.E. The effect of western corn rootworm
(Coleoptera: Chrysomelidae) and water deficit on maize performance under controlled conditions. J. Econ. Entomol. 2016, 10,
684–698. [CrossRef]

20. Mahlein, A.-K.; Steiner, U.; Hillnhütter, C.; Dehne, H.-W.; Oerke, E.-C. Hyperspectral imaging for small-scale analysis of symptoms
caused by different sugar beet diseases. Plant Methods 2012, 8, 3. [CrossRef] [PubMed]

21. Mutka, A.M.; Bart, R.S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 2015, 5, 734. [CrossRef]
22. Cotrozzi, L.; Couture, J.J.; Cavender-Bares, J.; Kingdon, C.C.; Fallon, B.; Pilz, G.; Pellegrini, E.; Nalia, C.; Townsend, P.A. Using

foliar spectral properties to assess the effects of drought on plant water potential. Tree Physiol. 2017, 184, 1582–1591. [CrossRef]
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