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Abstract: The primary objective of soybean-breeding programs is to develop cultivars that offer both
high grain yield and a maturity cycle tailored to the specific soil and climatic conditions of their
cultivation. Therefore, predicting the genetic value is essential for selecting and advancing promising
genotypes. Among the various analytical approaches available, deep machine learning emerges as
a promising choice due to its capability to predict the genetic component of phenotypes assessed
under field conditions, thereby enhancing the precision of breeding decisions. This study aimed
to determine the efficiency of artificial neural networks (ANNs) in predicting the genetic values
of soybean genotypes belonging to populations derived from crosses between parents of different
relative maturity groups (RMGs). We characterized populations with broad and restricted genetic
bases for RMG traits. Data from three soybean populations, evaluated over three different agricultural
years, were used. Genetic values were predicted using the multilayer perceptron (MLP) artificial
neural network and compared to those obtained using the best unbiased linear prediction from
variance components using restricted maximum likelihood (RR-BLUP). The MLP neural network
efficiently predicted genetic values for the relative maturity group trait for genotypes belonging to
populations of broad and restricted crosses, with an R2 of 0.999 and root-mean-square error (RMSE)
of 0.241, and for grain yield, there was an R2 of 0.999 and an RMSE of 0.076. While the percentage of
coincident superior genotypes remained relatively consistent, a significant difference was observed
in their ranking order. The genetic gain with selection estimated using MLP was higher by 30–110%
compared to RR-BLUP for the relative maturity group trait and 90–500% for grain yield. Artificial
neural networks (ANNs) showed higher efficiency than RR-BLUP in predicting the genetic values of
the soybean population. Local selection at intermediate latitudes is conducive to developing lines
adaptable for regions at higher and lower latitudes.

Keywords: variance components; Glycine max; machine learning; mixed models; REML/BLUP

1. Introduction

Soybean is cultivated worldwide in different latitudinal zones. In Brazil, this model
was adapted for local conditions and is presently used by all South American public and
private breeding companies [1]. It is recognized as a species with a narrow genetic base,
which can hinder the acquisition of genetic sources for economically important traits and
populations with significant genetic variability. While each cultivar has traditionally been
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associated with a relatively narrow latitudinal zone, its adaptability to diverse producing
regions stems from the genetic variability present in crucial gene loci and quantitative trait
loci (QTLs) responsible for regulating flowering and maturity. The primary genetic loci,
E1–E11 and J, and several QTLs, such as Tof11/Gp11, Tof12/Gp1/qFT12-1, and qDTF-J,
have been identified. In general, except for the E6, E9, E11, and J genes, the dominant allele
of the E genes confers late flowering and maturity, whereas an increase in the number of
recessive alleles leads to early flowering [2,3]. The genetic diversity of soybean has been
reduced, mainly because of genetic bottlenecks related to domestication. In contrast, its wild
relative Glycine soja, which grows under various environmental conditions, has retained
significant genetic diversity [4]. Furthermore, soybean lineages have undergone distinct
and individual selection based on geographical location, with numerous highly conserved
regions among cultivated varieties because of domestication [5]. In countries with vast
continental dimensions, such as Brazil, which is the world’s largest soybean producer,
the segregation of soybean populations for genetic enhancement is often constrained by
latitude, leading breeders to focus their efforts on similar genotypes. Consequently, crosses
between cultivars with differing relative maturity groups can contribute to genetic diversity
by exploring novel QTLs and loci of interest.

Genetic value prediction is paramount in genetic improvement programs as it ex-
clusively encompasses the hereditary component of quantitative trait control that can be
inherited by offspring. Consequently, acquiring insights into the genetic value of individ-
uals constitutes a critical facet of breeding programs, ensuring the realization of genetic
advancements [6]. During the selection phase, breeders must discern the genetic poten-
tial of individual candidates and make decisions regarding the improvement of specific
genotypes, all grounded in empirical data. It is imperative to possess accurate selection pre-
dictions to systematically evaluate individuals within segregated populations and pinpoint
superior genotypes [7].

Genetic variability is estimated using variance components utilizing the restricted
maximum likelihood method (REML), and obtaining the best unbiased linear prediction
(BLUP) of genetic values is preferred because it maximizes selective accuracy compared to
parametric statistical methodologies [8]. Using parametric statistical methods necessitates
assumptions related to the probability distribution of variables, often assuming the linear
nature of the phenomenon under study. However, this can result in inefficiencies in the
analysis since these ideal conditions are not always met when collecting data within genetic
improvement programs.

In contrast to both parametric and non-parametric analyses, artificial neural networks
(ANNs) offer distinct advantages that render them better suited for particular scenarios.
Consequently, they play a valuable role in the selection and development stages, as de-
scribed in [9], and exhibit a high predictive capacity, as demonstrated in [10]. Artificial
neural networks (ANNs) are machine-learning models inspired by the human brain and
have shown promise in various areas, such as pattern recognition, natural language pro-
cessing, and computer vision. They can learn from raw data without prior knowledge of
the domain or specific problems and handle incomplete or noisy data.

ANNs have been used in various areas of agriculture, such as the prediction of
crop productivity [10–12], soil attributes, and image interpretation. ANNs have shown
high efficiency in predicting genetic values compared to other methodologies in several
studies [13–15]. In addition, methodologies using fractal analysis have been applied in
plant breeding, reducing human error during the breeding process [16].

Therefore, the present study aims to evaluate the efficiency of ANNs in predicting
genetic values of soybean genotypes derived from broad and narrow crosses for the trait
of the relative maturity group (RMG). These results may provide critical information for
developing new, more productive soybean varieties adapted to Brazilian conditions.
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2. Materials and Methods

Three soybean populations with different territorial adaptabilities based on their
relative maturity group (RMG) classification [1] were evaluated in the Soybean Breeding
Program at the “Júlio de Mesquita Filho” State University in Jaboticabal, São Paulo.

The cross between the cultivars BMX Veloz (GMR 5.0) and BRS 278 RR (GMR 9.4)
resulted in the “WRMG” population, characterized by wide adaptability and coverage in
the critical photoperiod for latitudes between 23◦ LS (Subtropical) and 0◦ LS (Tropical). The
“Brazilian” population comprised 220 F4, 252 F5, and 252 F6 progenies in 2017, 2018, and
2019, respectively.

The “Subtropical” population was established from the cross between BMX Energia
(GMR 5.3) and BMX Potência (GMR 6.7) cultivars with a critical photoperiod for the
southern region of Brazil, corresponding to latitudes 23◦ LS (Subtropical) and 20◦ LS
(Tropical). The “Subtropical” population comprised 120 F5, 168 F6, and 168 F7 progenies in
2017, 2018, and 2019, respectively.

The “Tropical” population was obtained by crossing the cultivars BRS 245 RR
(GMR 7.3) and BRS 278 RR (GMR 9.4) with a critical photoperiod for the northern region of
Brazil, corresponding to latitudes of 20◦ LS (Tropical) and 0◦ LS (Tropical). The “Tropical”
population comprised 60 F5, 60 F6, and 104 F7 progenies in 2017, 2018, and 2019, respectively.

The evaluations of the three populations across the three agricultural years took place
at the Teaching, Research, and Extension Farm (FEPE) situated within São Paulo State
University (UNESP) on the Campus of Jaboticabal (FCAV), São Paulo, Brazil. The location
is positioned at a latitude of 21◦15′19′′ south and a longitude of 48◦19′21′′ west, with an
altitude of 615 m. This region offers ideal photoperiod conditions for soybean genotypes,
falling within the 6–8 growing degree month (GMR) range. This suitability is attributed to
the prolonged rainy season in the region, spanning from November (spring) to April (fall),
which permits the cultivation of soybean genotypes with a maturity cycle ranging from 90
to 150 days.

The control varieties for each population were their parents, as well as TMG 7262 RR
(GMR 6.2), TMG 1174 RR (GMR 7.4), and TMG 1179 RR (GMR 7.9), for all agricultural
years. The experimental design used was the augmented block design described by [17], in
which the progenies were arranged in plots of a five-meter-long row with a spacing of half
a meter between rows. Controls, parents of each population, and two other commercial
cultivars were randomly allocated to each experimental block. The planting density was
15 seeds per meter, and all cultivation practices followed the technical recommendations
for soybean culture [18]. Data were collected from five visually selected plants per plot.

The evaluated traits were total crop cycle (MATURITY), assessed by the number of
days counted from germination until harvest at the R8 development stage [19]; grain yield
(GY), obtained by the weight in grams of the grains from the five selected plants in each
plot after harvest and processing; the number of days to flowering (NDF), counted from
germination until full flowering of the field (stage R2—[19]; the height of first pod insertion
(AIV), i.e., the height measured from the ground to the first productive pod of the plant, in
cm; and plant height at maturity (APM), i.e., height from the ground to the last fertile pod
of the plant, also expressed in cm.

Data were analyzed for each population using R version 4.0.2 [20] via the mixed model
approach proposed by [21].

The variance components were estimated using the restricted maximum likelihood
(REML) approach [22]. Fixed effects were checked for significance using the F-test, and
significance of variances associated with random effects was verified using the likelihood
ratio test. Heritability, experimental coefficient of variation (CV), and selection accuracy
(rgg) were calculated as described by [22].

The developed neural network is a multilayer perceptron (MLP) with an input layer,
two hidden layers, and an output layer. The number of units in the input layer was
composed of the five agronomic years, population identification, and the three agricultural
years, totaling nine input layers. It was necessary to convert the categorical variables (years)



Agronomy 2023, 13, 2476 4 of 12

into a single-point representation. The input layers also included the population (POP) and
three agricultural years.

The input layer has nine neurons, the hidden layers have 64 and 128 neurons, and the
output layer has one neuron corresponding to MATURITY and the other corresponding to
grain yield (GY).

The dataset consisted of 6158 examples. The MLP network was built in Python 3.6
using Keras as a front end, TensorFlow 2.3.0 as a back end, and Scikit-learn 0.22.2. The
dataset was split into k, or ten partitions, where k-1 sections were used for training, and
k was used to test the model (k-fold cross-validation). Thus, ten models were created in
which the training and test data were changed for each iteration [23].

The final evaluation of the models was based on the correlation between the observed
and predicted values using network (R2) and RMSE parameters [24]. The selected activation
function was a logistic sigmoid function. The output layer used the softmax function [25].

Backpropagation is the standard algorithm for updating the weights in this type of
network and is used to train the network. Backpropagation is an efficient method for
calculating the partial derivatives of each layer. The weights are updated using gradient
descent, which aims to minimize the error produced by the network. The algorithm
generally applies the data and passes it forward to the successive layers, called the “forward
pass”. Then, it calculates the error in the output layer and propagates it backwards, called
the “backward pass”. These steps are repeated until the error is as small as possible [26].

Stochastic gradient descent (SGD) is an efficient method for calculating gradient
descent SGD [27]. In practice, the optimizers used are variations of the SGD. This study
used an adaptive moment estimation (ADAM) optimizer [28]. The number of training
cycles was set to 600. Care was taken to limit the number of iterations such that it did not
become excessive, which could lead to a loss of generalization power.

The efficiency comparison in predicting genetic values between the mixed models
REML/BLUP and artificial neural networks was performed using the coincidence index
(%) of the 10 and 20% best genotypes for each trait, according to each methodology, and
the gain with selection, considering a selection intensity of 20%. For the total cycle trait
(MATURITY), genotypes with lower additive genetic values were selected to choose earlier
genotypes, and for grain yield, genotypes with higher additive values were selected to
increase the estimates.

3. Results

The “WRMG” population exhibited significant genetic variance for GY and MATU-
RITY across the three agricultural years, corresponding to the various generations (as
shown in Table 1). Five of the six estimated heritabilities fell within the medium-to-high
range, spanning from 0.33 to 0.82. Regarding the MATURITY trait, the average ranged
from 130 days in the F4 generation to 121 days in the F6 generation, following the selective
process applied to the earliest plants. In the case of GY, there was a remarkable increase of
over 100% by the conclusion of the selection process. In the F4 generation, the average GY
per plant was 17 g, and this increased to 39 g per plant in the F6 generation.

The “Subtropical” population showed significant genetic variance for GY and MA-
TURITY, except for GY in F6. The heritabilities of the six estimates were moderate to high,
ranging from 0.31 to 0.68. The “Subtropical” population with earlier and less productive
progenies in F5 was selected for the cycle of 115 days and 39 g per plant, which is ideal for
the evaluated region.

The “Tropical” population presented significant genetic variance for GY only in the
first generation and for MATURITY only in the last generation, starting from two non-
significant generations. Only the heritability of GY and MATURITY in generation F7 and
GY in F6 were medium to high. The “Tropical” population with lines with high maturities
in F5 (131 days) and optimal productivity (39 g/plant) was selected for lower maturities,
with 104 days in generation F7 and a productivity of 35 g/plant.
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Table 1. Genetic and phenotypic parameter estimates and means for MATURITY (MAT, days) and
grain yield (GY, g/plant) of soybean genotypes belonging to the “WRMG”, “Subtropical”, and
“Tropical” populations, in three agricultural years in Jaboticabal, SP, and Brazil, respectively.

Population Brazil

Parameters
F4—2017 F5—2018 F6—2019

MAT GY MAT GY MAT GY

σ2
g 17.96 * 22.10 ** 26.22 ** 141.08 ** 28.38 ** 97.74 **

σ2
e 80.11 10.95 19.64 28.27 28.87 66.05

h2 0.82 0.33 0.43 0.17 0.50 0.40
Accuracy (%) 90.5 57.4 65.5 41.2 70.7 63.2

CV (%) 6.9 19.3 3.3 16.2 4.4 21.0

Mean 130 17 133 33 121 39

Population South

Parameters F5—2017 F6—2018 F7—2019

MAT GY MAT GY MAT GY

σ2
g 82.81 ** 15.84 ** 27.81 ** 36.57 ns 15.41 ** 51.07 **

σ2
e 73.66 9.66 8.64 79.22 6.91 60.14

h2 0.47 0.38 0.24 0.68 0.31 0.54
Accuracy (%) 68.60 61.60 49.00 82.50 55.70 73.50

CV (%) 8.20 20.10 2.50 29.10 2.30 19.70

Mean 104 15 119 31 115 39

Population North

Parameters F5—2017 F6—2018 F7—2019

MAT GY MAT GY MAT GY

σ2
g 19.19 ns 130.60 ** 0.00 ns 69.13 ns 33.15 ** 15.09 ns

σ2
e 5.24 3.44 25.43 157.16 15.30 45.80

h2 0.21 0.03 0.00 0.69 0.32 0.75
Accuracy (%) 45.8 17.3 0.00 83.10 56.6 80.60

CV (%) 1.70 4.70 3.80 23.00 3.70 19.60

Mean 131 39 132 54 104 35
**/*/ns Significant at 1%, 5% probability, and non-significant, respectively, using the maximum likelihood ratio test;
σ2g: genetic variance; σ2e: environmental variance; h2: heritability; CV: environmental coefficient of variation.

Experimental precision, verified through accuracy and environmental coefficient of
variation (CV) estimators, varied among generatio no ns and evaluated traits. Accuracy was
higher for MATURITY than for GY for the “Brazilian” population. For the “Subtropical”
and “Tropical” populations, the accuracy estimates for generations F7 and F6 were higher
for GY than for MATURITY.

The coefficient of environmental variation was consistently higher for GY than for
MATURITY in the same year, which was consistent with these traits when evaluated on a per
plant basis and not on the plot mean. In addition, CVs are inherent to the traits themselves.

The correlation estimates (R2) obtained using the MLP algorithm of the ANN between
the observed and predicted data exceeded 0.999, indicating a remarkably high predictive
capacity for both GY and MATURITY, as detailed in Table 2. The models exhibited the
lowest RMSE values for GY, with 0.077 during training and 0.076 during validation. For
MATURITY, these values were 0.2407 during training and 2.6106 during validation. It is
worth noting that these RMSE values share the same units as the variables under investiga-
tion. The overall mean GY of 33.56 g per plant corresponds to an error of merely 0.46%.
In the case of maturity, where the mean was 121 days, the error in the validated models
amounted to 4.2%.
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Table 2. Performance of artificial neural networks in the training and validation phase with estimates
of RMSE and correlation (R2) between observed and predicted values using the artificial neural
network for grain yield (GY) and maturity (MAT).

Training Validation

Loss Function RMSE R2 Loss Function RMSE R2

1 0.006 0.077 0.99994 0.007 0.083 0.99996
2 0.013 0.113 0.9999 0.014 0.118 0.99992
3 0.011 0.104 0.99995 0.013 0.113 0.99995
4 0.012 0.108 0.99994 0.011 0.107 0.99994
5 0.007 0.084 0.99992 0.008 0.09 0.99991
6 0.009 0.093 0.99992 0.009 0.096 0.99993
7 0.011 0.103 0.99989 0.015 0.121 0.99988
8 0.006 0.077 0.99994 0.006 0.076 0.99995
9 0.011 0.106 0.99989 0.012 0.112 0.99987
10 0.005 0.073 0.99994 0.006 0.077 0.99993

Loss Function RMSE R2 Loss Function RMSE R2

1 0.0713 0.267 0.9993 52.533 22.920 0.9625
2 0.0699 0.2644 0.9992 40.269 20.067 0.9706
3 0.1329 0.3646 0.9983 30.974 17.599 0.9743
4 0.0579 0.2407 0.9994 68.127 26.101 0.9608
5 0.079 0.2811 0.9993 53.709 23.175 0.9683
6 0.0865 0.2941 0.9992 19.446 13.945 0.9857
7 0.0639 0.2529 0.9994 31.333 17.701 0.9756
8 0.0731 0.2703 0.9992 57.704 24.022 0.9667
9 0.0677 0.2602 0.9993 39.577 19.894 0.9637
10 0.1528 0.3909 0.9989 60.132 24.522 0.9537

The predictive capacity through artificial intelligence provided by MLP-ANN was
superior to that based on RR-BLUP in predicting the genetic value of plants for both grain
yield (GY) and MATURITY, as shown in Table 3.

Table 3. Predicted mean values for grain yield and maturity (MAT).

MAT GY Mean MAT Mean GY

ANN-MLP Validation 2.61 0.08 132.83 32.82

RR-BLUP 10.68 9.76 128.03 29.56

RR-BLUP WRMG 6.02 6.05 127.64 30.67

RR-BLUP Subtropical 4.00 7.02 113.78 29.99

RR-BLUP Tropical 4.56 2.85 117.49 36.67

The similarity in the classification of the best genotypes indicated by both method-
ologies was observed using the coincidence index with two percentages (Table 4). For the
MATURITY variable, the percentages ranged from 30.77% (F5 population “Subtropical”)
to 100% (F7 population “Subtropical”), considering the selection intensity of 10%, and
from 63.16% (F4 population “WRMG”) to 92% (F5 population “WRMG”), considering
the selection intensity of 20%. This demonstrates that, for MATURITY, a lower selection
intensity may allow for similar genetic gains. For GY, the lowest coincidence for the 10%
intensity occurred for F5 in the “WRMG” population (68.18%). The highest for F4 in the
“WRMG” population was 89.47%. Considering a selection intensity of 20%, the coinci-
dence percentages were 68.18% (F7 population “Tropical”) and 87.50% (F5 population
“Subtropical”). This demonstrates that genetic gains for GY can be similar when applying
both methodologies.
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Table 4. Percentage of coincidence between the 10% and 20% best genotypes for MATURITY (MAT)
and grain yield (GY) according to BLUP and ANN for three soybean populations in 2017, 2018, and
2019, in Jaboticabal, SP, and Brazil.

Population

10%

2017 2018 2019

MAT GY MAT GY MAT GY

WRMG 84 89 82 68 80 80
Subtropical 31 77 76 71 100 78

Tropical 40 80 - 80 73 82

Population

20%

2017 2018 2019

MAT GY MAT GY MAT GY

WRMG 63 84 79 84 92 80
Subtropical 68 87 91 85 91 83

Tropical 70 70 - 70 91 68

It was possible to observe a similarity between the genotypes indicated as the best by
both methodologies, although there was a significant divergence in the ranks they occupied.
For the trait MATURITY in the “Tropical” population in 2018, there was no ordering of the
best genotypes due to zero genetic variance by the analysis using mixed models. According
to the ANN analysis, even with minor differences, genotypes were ordered.

The expected gains from the selection, considering an intensity of 20%, are listed in
Table 5. For GY, the highest gains were obtained by the progenies ranked according to the ar-
tificial neural network prediction, reaching 11.91% for the “Tropical” population, while for
the BLUP prediction, the highest gain was 4.43% for the “WRMG” population. For MATU-
RITY, in which the goal is to reduce the total crop cycle, differences were observed between
the methodologies, with the highest reduction being −5.42 (ANN, “WRMG” population)
and the lowest reduction being −1.49 (BLUP, “Subtropical” population). The expected
gains with ANN-MLP compared to RR-BLUP were 30–110% higher for MATURITY and
90–500% higher for grain productivity.

Table 5. Expected gains with selecting the top 20% progenies for MATURITY—MAT (expressed in
days) and grain yield—GY (expressed in g/plant) in the agricultural year 2019.

Population
BLUPs ANN

MAT GY MAT GY

WRMG −2.53 4.43 −5.42 8.47
SUBTROPICAL −1.49 3.81 −1.99 9.35

TROPICAL −1.64 1.98 −2.57 11.91

4. Discussion

The results of the predictive capability of ANN-MLP reveal its aptitude for capturing
common nonlinear interactions in quantitative genetic traits. This proficiency stems from
its capacity to account for non-additive effects, particularly in the context of grain yield
and MATURITY. Importantly, the predictive ability of ANN-MLP extends to soybean
populations exhibiting both wide genetic variability and a narrow genetic base. Various
authors have demonstrated the superiority of ANN over mixed models. For instance, a
study on flowering traits in beans [29] highlighted the effectiveness of ANN. Similarly,
simulated data were used to showcase how ANN excels in capturing epistatic effects [30].

The MLP neural network was used to estimate soybean yield through its production
components, such as plant height (PH), number of branches per plant (B), number of pods
per plant (P), number of seeds per pod (S), and weight of 1000 seeds (WTS) [31]. In this
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supervised training MLP neural network, the correlation was 0.848 for the validation of
grain productivity, with considerable accuracy, using the information on the agronomic
traits of the plant, growth habits, and population density of soybean crops. According
to [10], MLP has proven to be more efficient in using a relatively small dataset and generalist
or unsupervised problems; furthermore, MLP has efficiency for one or few layers, as well
as shallow neural networks. The best RNA model tested was highly accurate and able to
correctly classify all genotypes, replicating the selection made by the geneticist during the
BLUP simulation [32]. This indicates that ANN can be a valuable tool in plant breeding,
assisting in the selection of genotypes with greater efficiency and accuracy.

Corn productivity was predicted using an artificial neural network and the construc-
tion of multilayer perceptron (MLP) models using public data and experimental networks
of corn [10]. The models with data imputation were more accurate than those without
imputation, and the model with climatic data/SWB had the lowest RMSE of 71 kg ha−1.

ANN has also been used to predict soybean and maize yields by comparing the
prediction capacities of models at the state, regional, and local levels; it was concluded that
the ANN models for maize had a correlation of 0.877 and an RMSE of 1036 kg/ha, and for
soybean, the correlation was 0.64 and the RMSE was 1356 kg/ha [33].

The partial similarity in indicating the best genotypes for MATURITY and GY between
the two prediction methodologies indicates the high efficiency of ANN as the prediction by
mixed models is based on assumptions and considers several genetic and environmental
parameters [15].

The R2 values were 4 times higher for RR-BLUP than for ANN-MLP validation for days
to maturity and 128 times higher for yield per plant, showing the efficiency of ANN-MLP
compared to RR-BLUP, according to [29]. The same authors also identified the efficiency
of ANN-MLP compared with RR-BLUP in predicting the capacity for flowering traits in
black beans.

The efficiency of the predictive model created using the neural network was verified
according to the R2 parameter (correlation between observed and predicted values), which
can range from 0 to 1, indicating a higher correlation the closer it is to 1; meanwhile,
regarding the RMSE parameter (root-mean-squared error), which can range from 0 to
1, it indicates a lower error and higher efficiency the closer it is to 0. The high positive
estimates of R2 (above 0.998) and the low magnitude of RMSE for maturity (0.241) indicate
good accuracy of the model, a low magnitude of error, and no tendency to over- or under-
predict values.

The results obtained corroborate the results from other studies that neural networks,
unlike traditional REML/BLUP models, allow the capture of nonlinear relationships from
data information, and thus more effectively capture the non-additive effects associated with
genetic control of productivity and maturity traits, as for other traits, such as flowering
in bean cultivars [29,34]. DNN is applied with a huge dataset to adjust the artificial
neural network and several hidden layers [11], such as for convolutional and other neural
networks. The popular BP, RBF, GN, GRNN, SVM, and SVR models, as well as MLP,
traditionally use numerical data and one or two hidden layers, which are suitable for more
specific situations.

Autogamous species, such as soybean, exhibit non-additive or epistatic effects, owing
to their high level of homozygosity, which is observed in different species, such as com-
mon beans, rice, barley, and sorghum [29]. Therefore, when parametric models are used,
the prediction of genetic values for both MATURITY and grain productivity may have
low accuracy.

The variation in genotype rankings can be attributed to the neural networks’ capacity
to comprehend intricate data traits and rely on experiential knowledge for genetic value
predictions. This unique feature of neural networks also clarifies the ordering of the
F5 genotypes in the northern population, even in the absence of genetic variance, as
determined by REML/BLUP analysis.
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The lower coincidence percentages observed in the populations during the first year
compared to those in the third year for the MATURITY trait can be attributed to greater
variability within populations during early generations, in which segregation processes are
still ongoing. This heightened variability results in divergent rankings when employing
each methodology.

Based on the estimates of the expected gains with selection, it is possible to predict the
success of selecting specific populations. The neural network was always superior to the
RR-BLUP for traits and all populations.

MLP has been previously applied in different areas, such as weed science [35] or
drought tolerance [36]. Soybean productivity has also been estimated using various
machine-learning algorithms, such as multilayer perceptron, support vector machine
(SVM), and random forest (RF), using spectral reflectance data [37]. The authors concluded
that the MLP is efficient for soybean breeding.

Developing increasingly productive and resistant cultivars depends directly on the
genetic variability in selected populations [22,38]. The results of this study indicate the
presence of variability among the progenies in most of the cases evaluated. However, low
estimates of genetic variance may be explained by the narrow genetic base of soybean, as
pointed out by several authors [39]. This may imply low variability within the “Subtropical”
and “Tropical” populations and the existence of relatedness among parents, especially in
the case of populations derived from biparental crosses.

The non-significant genetic variances observed for MATURITY in the “Tropical” pop-
ulation can be attributed to the intricate interactions between the long-juvenile trait in the
late parents and the E allelic series. These interactions result in reduced variability when
evaluated under our specific conditions [40]. It is worth noting that in individual analyses,
genetic variance, heritability, and accuracy parameters may be either underestimated or
overestimated if genotype × environment interactions are not considered, especially for
quantitative traits. Similar genotype–environment interactions were also highlighted by [1].
In the case of the augmented block design, the absence of genotype repetitions within and
between years could potentially account for the variation in parameter estimates and their
relatively lower magnitude [41].

The heritability estimates indicate the possibility of selecting for MATURITY with
the potential for more significant genetic gains than GY in the “WRMG” population while
maintaining the same proportion of selected individuals. The “Subtropical” population
allows for the selection of both MATURITY and GY with similar genetic gain possibilities,
but this is lower than the “WRMG” population for MATURITY. However, for the “Northern”
population, the genetic gains for MATURITY will be very low, and for GY, they could be
intermediate to high.

The “WRMG” population with genetic variability for maturity and GY stood out with
an efficient selection for reducing maturity and increasing grain yield, demonstrating the
potential for generating lines, combining earliness with high productivity.

The “Subtropical” population, originating from crosses of cultivars adapted to higher
latitudes, presented genetic variability for maturity and GY, standing out with a low
average for maturity and productivity in the F5 generation. However, after an efficient
selection for increased maturity combined with increased productivity, it demonstrated
the potential to generate earlier maturing lineages than the “WRMG” population but with
similar productivity.

The “Tropical” population originated from crosses of cultivars adapted to lower
latitudes and presented a longer average cycle length and high productivity. However,
after intense selection for cycle reduction, super-early lines were generated within 104 days
and a high grain productivity of approximately 35 g per plant. Nevertheless, the intensity
of selection prioritized for MATURITY to adapt the lines to the region caused a drastic
reduction in GY genetic variability, which was insignificant in F7.

The three populations produced highly productive soybean lines with variable and
appropriate MATURITY for the region and strategic crop management for early and
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late sowing. Thus, the populations showed both genetic variability and high means of
lines suitable for MATURITY and GY, proving that populations with broad and restricted
latitude adaptations are ideal for extracting new lines in intermediate geographic regions
of latitudes.

For GY, the gains obtained by the progenies ordered according to the neural network
prediction were higher than those obtained using BLUP ordering in 83.4% of the northern
population, 59.3% of the southern population, and 47.7% the Brazilian population.

For MATURITY, gains were higher when considering the ordering performed by
the neural network in proportions of 53.3% for the “WRMG” population, 36.2% for the
“Tropical” population, and 25.1% for the “Subtropical” population regarding the mixed
models. Although the percentage gain was higher for the population with wider crossings
for the trait, it can be considered that in this situation, there was a more significant reduction
in variability due to the selection directed to the evaluation site of ideal GMR between six
and eight. Although there may be an overestimation by the neural network in predicting
genetic values, the estimates obtained for both MATURITY and GY agree with those
obtained by [42] for soybean crops by applying the same selection intensity.

Both prediction methodologies have demonstrated the viability of successful selection
based on gain estimates. The selection of genotypes for Brazil, specifically between the
northern and southern regions, was grounded in MATURITY, GY, or a combination of
both traits. This choice was made due to the high and relatively similar genetic means
and variances observed. Opting for selection within a single environment can effectively
pre-screen soybean genotypes, enhancing their potential adaptability across a broader
experimental network. Moreover, it offers the advantage of significantly reducing costs
within breeding programs.

5. Conclusions

Artificial neural networks demonstrated their efficiency in predicting genetic values
when applied to soybean populations originating from both broad and restricted crossing
populations. These networks yielded genetic gain estimates with the selection of superior
progenies that outperformed those obtained through the REML/BLUP methodology. As a
result, local selection at intermediate latitudes is deemed suitable for advancing generations
and developing lines adaptable to regions at both higher and lower latitudes.
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