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Abstract: The current status of water resources in the U.S. Central High Plains necessitates adopting
water conservation practices to move toward a sustainable agricultural economy. Identifying proper
irrigation scheduling techniques is a conservative practice to maintain the sustainability of the
agricultural systems. However, conducting field experiments is time and money consuming. Thus, the
utilization of crop models, such as AquaCrop, could be a convenient alternative to field experiments.
The FAO AquaCrop model was calibrated and validated for simulating forage sorghum yield response
to various deficit irrigation conditions in a semi-arid region. Afterwards, the model was used to
investigate the efficiency of the pre-season and in-season irrigation scheduling scenarios. In this study,
the soil water status at the planting time was considered as the indicator of the pre-season irrigation
level. Therefore, the pre-season irrigation scenarios were arranged as the replenishment of soil water
deficiency at the time of planting at up to 30, 50, and 100% of the soil’s total available water for the
first 60 cm of soil depth and the same replenishment levels for the entire crop root zone (150 cm soil
depth). Then, AquaCrop long-term (37 years) simulations of forage sorghum biomass and irrigation
water use efficiency reactions to three levels of maximum allowable depletion (MAD) (40, 55, and
70%) were compared to three fixed irrigation interval (4, 6, and 10 days) scenarios by considering six
pre-season irrigation conditions (36 scenarios). The scenarios analysis found the 10-day irrigation
interval and the MAD levels of 55% and 70% to be the most efficient irrigation scheduling strategies
if combined with pre-season irrigation that brought the crop root zone (0–150 cm soil depth) to field
capacity. Moreover, the 40% MAD application was the least efficient strategy. This study’s outputs
can be a baseline for establishing forage sorghum irrigation scheduling in the U.S. Central High Plains.
However, exploring the interactions of irrigation scheduling strategies with other irrigation and
agronomic practices, such as salinity management and fertilizer application, is highly recommended.

Keywords: AquaCrop; biomass; crop model; deficit irrigation; forage sorghum; irrigation interval;
irrigation scheduling; maximum allowable depletion; pre-season irrigation

1. Introduction

One of the most crucial elements of the economy in Kansas is irrigated agriculture.
However, declining water supplies from the Ogallala aquifer threaten the sustainability of
the western Kansas irrigation district [1,2]. On the other hand, maintaining the production
of forage for livestock in western Kansas has become a critical challenge due to consecutive
water scarcity in the region. Thus, seeking alternative forages, which are more tolerant to
drought conditions in the area, should be pursued to cope with limited water availability.

Forage sorghum, as a supplement to native pasture for feeding cattle, is a highly
productive summer forage, which is known to be more convenient in terms of water
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productivity in severe water stress conditions [3–5]. In addition to forage sorghum’s
tolerance to water stress conditions, its tolerance to root zone soil salinity, low nitrogen
demand, and adaptability to the arid and semi-arid environment have made this crop a
considerable alternative to primary cultivations in the water-limited regions in western
Kansas [6,7].

Proper irrigation scheduling and deficit irrigation have been known as irrigation
management strategies to address water scarcity in agricultural practices. Deficit irrigation
aims to optimize crop yield, yield quality, and growth components by responding to full
crop water requirement reductions. Biomass reduction and negligible yield reduction are
probable as consequences of exposing crops to mild water stress during specific growth
stages or the whole growing season [8].

On top of deficit irrigation, pursuing irrigation scheduling through two common
approaches of fixed irrigation intervals (frequencies) and maximum allowable depletion
(MAD)/variable irrigation intervals can be followed for primary crop production while
saving water resources [9,10]. Extensive irrigation scheduling [11–15] and deficit irriga-
tion [1,16–19] studies have been conducted, particularly in western Kansas, on various
crops, such as corn, spring wheat, winter wheat, and grain sorghum. However, there is
insufficient information regarding the effects of deficit irrigation levels on forage sorghum
in western Kansas’s prevailing weather and soil conditions. Moreover, there is a significant
lack of information regarding establishing irrigation scheduling approaches for forage
sorghum production in the U.S. Central High Plains. The results of a study in the Texas
High Plains indicated that the forage sorghum yielded greater fresh biomass than corn
and pearl millet under deficit irrigation conditions [5]. The results of two experiments
have shown that the implementation of moderate water stress resulted in a 20% reduction
in forage sorghum dry matter yield in a semi-arid region [6]. Kaplan et al. showed that
decreasing irrigation levels reduced green herbage yield, yield, and yield components of
forage sorghum but increased the quality values, such as crude protein and organic matter
digestibility [20].

Moosavi et al. investigated the planting methods and irrigation interval effects on
forage sorghum in an arid region in eastern Iran [21]. This research explored the impacts
of four irrigation intervals of 5, 10, 15, and 20 days combined with planting methods
of one row on the furrow and two rows inside the furrows in a field experiment with a
split-plot design. Their results indicated significant effects of irrigation intervals on the
leaf-to-stem ratio and grain yield protein content. However, they found no significant
difference between the effects of planting methods and their interactions with irrigation
intervals on forage sorghum yield and yield components. Increasing the irrigation interval
from 5 to 50 days reduced dried leaf, stem, ear, and fresh biomass by 57.2%, 72.1%, 69%, and
66.9%, respectively. The total amount of forage production was recorded as 16.9 ton/ha,
which was 19.4%, 44.3%, and 66% higher than the amount of forage produced under 10-,
15-, and 22-day irrigation intervals.

Chen et al. [22] created an algorithm in the Fortran environment to develop maximum-
allowable-based irrigation scheduling for various crops, including cotton, soybean, forage
corn, forage sorghum, and sunflower, using the Soil and Water Assessment Tool (SWAT).
Their efforts were toward the enhancement of triggered irrigations by extending the SWAT
model capabilities to generate crop growth stage-based and out-of-growing season irri-
gations. The triggered irrigation algorithm was developed based on a single fixed MAD
throughout the growing season and crop growth stage-related MAD. Two options were
provided for the model to partition the growing season using calendar dates and accumula-
tive heat units. The model outputs were tested against the lysimeter observational data.
The results showed significant improvements in SWAT model performance in simulating
the irrigation amount, irrigation frequency, and actual evapotranspiration.

Nematpour and Eshghizadeh [23] investigated the biochemical reactions of sorghum
to levels of maximum allowable depletion ranging from 55 to 90% and their interaction with
levels of nitrogen application in a semi-arid region. They reported a significant reduction in
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crops’ relative water content, chlorophyll, and carotenoid content under severe MAD levels
(85–90%). Moreover, an increase in antioxidant enzyme activity, malondialdehyde (MDA),
proline, hydrogen peroxide, and other aldehydes (Alds) was observed by applying severe
MAD levels. Consequently, a 42% reduction in crop yield was observed. The application of
nitrogen under water stress conditions resulted in up to a 14% increase in crop yield.

The lifespan of water resources, mainly the Ogallala aquifer in western Kansas, could
be prolonged if proper deficit irrigation schemes are available for the target cultivation. The
field experiments are costly and require significant cumulative time; meanwhile, generaliz-
ing their results to other locations with different soil or crop management characteristics is
controversial [18]. Hence, utilizing crop models can be a proper answer to this misconnec-
tion. Combinations of crop simulation models and field experiments have been known as
robust tools to analyze the interaction effects of environmental and management factors on
crop growth and growth components. Moreover, analyzing scenarios based on long-term
weather data is one of the capabilities of crop simulation models [24–26].

Sorghum water stress status was explored in a crop modeling study conducted in
India for rainfed conditions. Long-term (2000–2018) simulations of crop water stress were
accomplished for ten districts. They found the DSSAT-CERES-Sorghum model efficient
in determining the water stress effects on growth stages of rainfed sorghum in a tropical
climate region in India. In that study, the postponement of sorghum planting to mid-
July (6th to 15th) was determined effective in minimizing the adverse impacts of drought
conditions on sorghum yield [27].

White et al. [28] demonstrated application aspects of the DSSAT-CERES-Sorghum
model to simulate sorghum responses to existing and hypothetical situations, such as row
spacing, planting date, seeding rate, defoliation, increasing atmospheric carbon dioxide,
and deficit irrigation. They reported high model accuracy for reproducing crop phenology
in such a way that values of R2 were 0.96 and 0.91 for the anthesis and maturity growth
stages, respectively. In addition, they also reported moderate accuracy of the model for
simulating sorghum grain yield (0.3 < R2 < 0.5).

The performance of calibrated Agricultural Production System sIMulator (APSIM)
models based on remote sensing and field trials data for simulating growth indicators, yield,
and yield components of different sorghum hybrids were evaluated by Yang et al. [29].
The parameters of genotypes for the hybrids were calibrated using remote sensing mea-
surements combined with ground observational phenotyping. Their study indicated that
forage sorghum hybrids’ maximum height, final biomass, and radiation use efficiency were
higher than grain sorghum. Photo-sensitive forage/grain sorghum had higher biomass
production in environments with higher growing periods. In addition, good performance
of the calibrated and validated APSIM models was observed for simulating above-ground
biomass for multiple years and locations.

The satisfactory performance of the AquaCrop model for simulating crops’ yield under
various management and prevailing environmental conditions has been proved multiple
times in the literature [30–32]. The good accuracy of the AquaCrop model for simulating
soil water content, canopy cover, and the grain yield of winter wheat under deficit irrigation
has been demonstrated [33], as well as the biochar management of winter wheat [34]. The
AquaCrop model’s usefulness for simulating canola responses to full and deficit irrigation
conditions has been established by Dirwai et al. [35] in a rainfall-controlled condition.
Studies have shown good model performance for simulating maize total biomass and grain
yield; however, the performance of the model for simulating soil water content at the corn
root zone has not been successful enough [36,37].

One of the producers’ concerns in the agricultural industry is how preseason irrigation
or precipitation would affect their crop’s final yield at the end of the growing season.
Furthermore, they would like to know how the soil water status should be managed at the
time of planting in such a way that water loss would be prevented and the efficiency of
their preseason irrigation would be maximized.
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The performance analysis of the AquaCrop model to simulate forage sorghum in
western Kansas might bring unique insights into preparing irrigation scheduling strategies
to conserve the Ogallala aquifer as the primary source of irrigation water for the agricul-
tural industry in the region. Therefore, the main objectives of this study were: (a) the
calibration of the AquaCrop model for simulating forage sorghum biomass, grain yield,
and evapotranspiration responses to soil water content conditions influenced by irrigation
regimes and dryland, and (b) the optimization of forage sorghum irrigation scheduling
methods based on refilling soil water depletion at the time of planting in western Kansas
using long-term (37 years) simulations by the AquaCrop model.

2. Materials and Methods
2.1. Site Description

The experimental site was located at Kansas State University, Southwest Research-Extension
Center (SWREC), near Garden City, Kansas, USA with 38◦01′20.87′′ N, 100◦49′26.95′ ′ W coordi-
nates (Figure 1). The soil type was well-drained Ulysses silt loam (fine-silty, mixed, mesic
Aridic Haplustoll) with field capacity and permanent wilting points equal to 0.33 and 0.15,
respectively. The soil pH was 8.1, and the soil bulk density was equal to 1.38 g cm−3 [1,38].
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Figure 1. Geographical location of the experimental site near Garden City, Kansas, through Google.

The long-term climate data of Garden City, KS indicate annual precipitation of 477 mm
and annual pan evaporation of 1810 mm [1]. The cumulative precipitation during forage
sorghum vegetative growth was 330.95 and 230.88 mm in 2014 and 2015, respectively.

2.2. Experimental Design and Treatments

Two-year field experiments were conducted in 2014 and 2015 based on randomized
complete block designs with four replications. Six different seasonal irrigation depths
based on 100%, 80%, 70%, 50%, 40%, and 0% of crop full water requirements were im-
plemented as the treatments of this study. The sizes of the plots were 13.7 m × 27.4 m.
The treatments were applied using a four-span linear move irrigation system (model 8000,
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Valmont Corp, Valley, NE, USA). Each span contained one replication of the treatments.
Irrigation scheduling followed the 40% maximum allowable depletion (MAD). Irrigation
events were triggered when the volumetric soil water content values reached 60% of the
soil’s available water content under full irrigation treatment. The irrigation depth for full
irrigation treatment was 25.4 mm at each irrigation event.

2.3. Data Acquisition and Management

The weather data for calculating evapotranspiration and rainfall effects were obtained
from the K-State MESONET network tower close to the experimental station. The calculated
daily reference evapotranspiration based on the FAO-56 Penman–Monteith equation [39],
relative humidity, minimum and maximum temperature, and precipitation values for the
2014 and 2015 growing seasons are presented in Figures 2 and 3, respectively.
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Figure 3. Precipitation patterns for the 2014 and 2015 growing seasons. The blue bars show the daily
precipitation and purple dots show the cumulative precipitation during the seasons.

During the growing season, the volumetric soil water contents were measured using
neutron attenuation techniques to 240 cm soil depth with 30 cm increments. The neutron
probe readings were used to calculate the actual seasonal evapotranspiration based on the
soil water balance approach. The generic soil water balance approach was as follows:

ET = I + P− (d2 − d1)−D (1)

where I is the applied irrigation water (mm), P is the precipitation during the growing
season (mm), d1 and d2 are the total soil water (mm) at the beginning and the end of the
soil water content reading period, and D is the drainage water (mm). The drainage was
computed with the Wilcox-type equation [1]:

dW
dT

= 40.1
(

W
920

)23.94
(2)

where W is the total soil water for the 240 cm soil profile (mm) and dW/dT = drainage
rate (mm·day−1).

The BMR (brown midrib) forage sorghum seeds (F75FS28 hybrid) were planted on
3 June 2014 and 5 June 2015. The planting density was 245,500 seeds/ha. The crop growth
stages based on crop structure were recorded during the growing season, accordingly. The
timing of emergence, V7, V11, boot, headed, and soft dough growth stages were recorded
during the growing seasons. The harvest dates for the first and second growing seasons
were 15 September 2014 and 10 September 2015. The weed management and fertilizer
application followed related recommendations in the region [40]. To control the weeds,
the active ingredients of atrazine, S-metolachlor, dicamba, metribuzin, fluroxypyr, and
glyphosate were applied uniformly before planting. The total fertilizer amount (nitrogen
and phosphate mixture) per growing season was 227.9 Kg/ha. The crop above-ground
biomass and yield were measured based on 3 m rows in the middle of the plots.

2.4. AquaCrop Model

AquaCrop 6.1 is a water-driven model that simulates crop yield response to water.
The model’s built-in algorithms’ sequential steps are: (a) transpiration of crop, (b) biomass
development, and (c) yield calculation. The model utilizes canopy cover (CC) instead
of leaf area index (LAI) as the foundation for transpiration calculations and individually
calculates evaporation. The calculated transpiration is translated to biomass on a daily basis
by exploitation of normalized water productivity (WP*). The model, by considering several
reduction factors (coefficients), computes existing stress effects on crop transpiration and,
consequently, on crop biomass formation and yield.
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Thus, the water-driven engine (algorithm) of the model uses the following equations
to determine crop transpiration, biomass formation, and yield [30–32]:

EStage 1 =
(

1−CC*
)

KexET0 (3)

EStage 2 = Kr

(
1−CC*

)
KexET0 (4)

Tr = Ks

(
KcTrxCC*

)
ET0 (5)

B = WP* ×∑
(

Tr
ET0

)
(6)

Y = B×HI (7)

where EStage 1 is the evaporation rate until readily evaporable water exists in the soil surface
layer, EStage 2 is the evaporation rate after readily evaporable water does not exist anymore
and the surface layer starts to drain, CC* is the canopy cover adjusted for micro advection
effects, Kex is the maximum soil evaporation coefficient for the fully wet and not shaded
soil surface, Kr is the evaporation reduction function, Tr is the crop transpiration, Ks is
the stress coefficient, KcTrx is the crop coefficient for maximum transpiration, ET0 is the
reference evapotranspiration, B is the dry total biomass, WP* is the normalized water
productivity by climate and CO2, Y is the yield, and HI is the harvest index; WP* is constant
for the entire growing season and it is a crop-specific value.

Furthermore, the irrigation water use efficiency for observations and simulations
under deficit irrigation managements were calculated as follows:

IWUE =
Forage biomass production (Kg/ha)

Seasonal irrigation water depth (mm)
(8)

2.5. Model Calibration and Validation

The performance analysis of the AquaCrop model relied on the model’s accuracy in
simulating forage sorghum biomass, yield, soil water content, and evapotranspiration. In
this study, the model was initially run with default parameters and state variables. Consid-
erable deviations were detected between the model simulations and the measurement data
(the results are not presented). Thus, the initial results made the calibration of the model
undeniable. The model input parameters and the state variables were adjusted based on
observational data under (above-ground biomass, grain yield) all the treatments in 2014.
Multiple statistics, including the root mean square error (RMSE), normalized root mean
square error (NRMSE), coefficient of determination (R2), coefficient of agreement (d), and
percent of deviation (Pe), were considered together to evaluate the model’s performance:

RMSE =

√
1
n∑n

i=1(Mi − Si)
2 (9)

NRMSE =
RMSE

M
(10)

R2 =

 (
∑n

i=1
(
Mi −M

)(
Si − S

))√
∑n

i=1
(
Mi −M

)2
∑n

i=1
(
Si − S

)2

2

(11)

d = 1−
(
∑n

i=1 (Si −Mi)2
)

/
(
∑n

i=1

(∣∣Si −M
∣∣+ ∣∣Mi −M

∣∣)2 (12)
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MBE =
1
n∑n

i=1 (M i − Si) (13)

Pe =
Si −Mi

Mi
× 100 (14)

where Mi, Si, and M are the measured value, simulated value, and the average value of the
measurements. Values of R2 and d close to 1 indicate the good performance model. MBE,
RMSE, and NRMSE close to zero indicate good matching between the simulated values
and observations. NRMSE ranges of <0.1, 0.1–0.2, 0.2–0.3, and >0.3 categorize the model
performance as excellent, good, fair, and poor calibration [30].

To achieve proper calibration of the model, the calculated NRMSE, R2, d, and MBE
indices based on model simulations of all treatments in 2014 were compared through a
trial-and-error process for individual parameter sets. The parameters set that resulted in
the lowest NRMSE-MBE and the highest R2-d were considered as calibration values.

Afterwards, the performance of the model was evaluated based on all of the statistical
indices. The same procedure was followed for obtained data in 2015 to validate the model’s
accuracy. Then, the model outputs for each treatment were individually assessed for both
growing seasons.

2.6. Exploring Conservational Irrigation Scheduling Strategies and Pre-Season Irrigation Scenarios
by Using the AquaCrop Model

To identify forage sorghum reactions to the pre-season irrigation and to generalize the
results, the refilling soil water depletion at the time of planting as a fraction of the soil field
capacity/total available water (TAW) at various soil depths was explored. Considering
different soil water statuses at the planting time, the irrigation scheduling strategies were
pursued based on maximum allowable depletions (MADs) and fixed irrigation intervals
(frequencies) as two main irrigation management methods. The calibrated and validated
AquaCrop model was employed to seek the optimized irrigation scheduling of forage
sorghum in a semi-arid region. The AquaCrop model considers crop root growth to imple-
ment MAD levels. The forage sorghum biomass, irrigation water use efficiency (IWUE), and
biomass water productivity (BWP) were assessed for three maximum allowable depletions
of 40, 55, and 70% and three fixed irrigation intervals of 4, 6, and 10 days. The biomass
water productivity was calculated as follows:

BWP =
AGB
WT

(15)

where BWP is the biomass water productivity (Kg/ha·mm), AGB is the above-ground
biomass (Kg/ha), and WT is the transpired water (mm).

Pre-season irrigation scenarios that refilled the soil water depletion at the time of
planting were (a) 30% of the total available water (TAW) from the soil surface to a 60 cm
depth and 20% of the TAW from a 60 cm to 150 cm soil depth, (b) 50% of the TAW from
the soil surface to a 60 cm depth and 20% of the TAW from a 60 cm to 150 cm soil depth,
(c) 100% of the TAW (field capacity) from the soil surface to a 60 cm depth and 20% of
the TAW from a 60 cm to 150 cm soil depth, (d) 30% of the TAW from the soil surface to a
150 cm soil depth, (e) 50% of the TAW from the soil surface to a 150 cm soil depth, and (f)
100% of the TAW (field capacity) from the soil surface to a 150 cm soil depth. The summary
of the irrigation scheduling strategies and the soil water status at the planting time are
presented in Figure 4. The total 36 irrigation management scenarios were analyzed for
forage sorghum production. To simulate the irrigation management, the AquaCrop model
was supplied with 37 years (1985–2021) of historical weather data obtained from one of
the weather station towers of the K-State MESONET network, the closest experimental
field. The model was executed for 37 years of weather data, and the planting date was
constantly considered as 3 June for all long-term simulations. To reasonably compare the
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irrigation management strategies simulated by the AquaCrop model, the ANOVA and
the least significant difference (LSD) test were performed in the R 4.0.5 environment for
significance levels of p < 0.05.
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Figure 4. Summary of irrigation management scenarios for investigating the most suitable forage
sorghum productivity in the Central High Plains. D1 = managing the soil water status at the time of
planting from the soil surface to a 60 cm soil depth and considering the soil water status of 60–150 cm
of soil depth as 20% of the TAW. D2 = managing the soil water status at the time of planting from
the soil surface to a 150 cm soil depth (maximum root length). IS1, IS2, and IS3 = refilling soil water
depletion at the time of planting up to 30, 50, and 100% of the soil field capacity. MAD = maximum
allowable depletion. F = irrigation interval.

3. Results and Discussion
3.1. Parameterization

The default values of the input parameters and the calibrated ones are presented in
Table 1. As shown, most adjustments were applied to crop development and parameters
related to water stresses of forage sorghum. The initial canopy development at 90%
emergence, canopy development, and water-stress-related parameters, such as canopy
expansion, stomatal closure, and early senescence, were key parameters to calibrate the
AquaCrop model in western Kansas to simulate deficit irrigation regimes’ effects on forage
sorghum. The crop growth stages were also adjusted according to data recording during
the growing seasons.
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Table 1. Default and calibrated parameters’ values of the AquaCrop model for forage sorghum in
western Kansas.

Parameters Default Calibrated

Initial canopy cover at 90% emergence (%) 0.22 0.74
Canopy expansion 18.1 16.7

Maximum canopy cover (%) 90 48
Canopy decline (day) 25 16

Emergence (days after sowing) 13 13
Maximum canopy (days after sowing) 60 53
Start of senescence (days after sowing) 91 93

Maturity (days after sowing) 102 104
Duration of flowering 20 20
Length of flowering 65 65

Max effective root depth (m) 1.5 1.5
Length of max root depth (days after sowing) 96 96

Normalized Crop Water Productivity 33.7 33.7
Harvest index 45 23

Soil water stress

Canopy expansion
P-upper 0.15 0.07
P-lower 0.7 0.37
Shape 3.0 3.2

Stomatal closure function

P-upper 0.75 0.41
Shape 3.0 1.8

Early canopy senescence

P-upper 0.7 0.41
Shape 3.0 1.6

3.2. Soil Water

The average of the soil water content data obtained at 30, 60, 90, 120, 150, and 180 cm
soil depths was used to reasonably compare the model outputs with the measurements. The
average of the replications was considered the TSW observation point for each experimental
treatment. The 2014 observational soil water data were compared to simulated values by
the model for the calibration year (Figure 5). The temporal changes of simulated TSW
followed the measurement trends. The model accurately reproduced the TSW; however,
underestimations were observed for irrigation treatments. The model accuracy for simu-
lating TSW during the calibration year (2014) was good for all of the treatments (Table 2),
with the RMSE values ranging from 37.5 to 57.1 mm, and the NRMSEs ranging from
0.096 to 0.136. Nevertheless, the adequacy of the model simulations during the calibration
year was not consistent for all treatments. The model adequacy was higher for simulating
TSW under full irrigation, 50%, 40%, and dryland treatments, with R2 varying from 0.58 to
0.93 compared to 80% and 70% treatments as the R2 values were 0.12 and 0.39, respectively.
In 2014, the best performance of AquaCrop was found for estimating TSW under dryland
treatment (RMSE = 42.1, NRMSE = 0.134, d = 0.97, R2 = 0.93).



Agronomy 2023, 13, 2446 11 of 23

Agronomy 2023, 13, x FOR PEER REVIEW  13  of  25 
 

 

 

Figure 5. Simulated soil water content and observational data during the forage sorghum growing 

season  in 2014. The green  lines are simulated soil water content values, and  the purple dots are 

observational data. 

Figure 5. Simulated soil water content and observational data during the forage sorghum growing
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Table 2. Statistical indices for total soil water simulations.

Treatments RMSE (mm) NRMSE d R2

Calibration year

100%—full 57.1 0.136 0.4 0.75
80% 50.4 0.121 0.64 0.39
70% 53.0 0.127 0.36 0.12
50% 49.4 0.12 0.77 0.59
40% 37.5 0.096 0.77 0.58

0—dryland 42.1 0.134 0.97 0.93

Validation year

100%—full 71.5 0.138 0.88 0.78
80% 43.8 0.095 0.89 0.79
70% 79.9 0.153 0.53 0.28
50% 40.7 0.087 0.38 0.15
40% 38.1 0.097 0.84 0.70

0—dryland 93.2 0.181 0.50 0.26

RMSE = root mean square error, NRMSE = normalized root mean square error, R2 = coefficient of determination,
d = coefficient of agreement.
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The validation results (2015) demonstrated underestimation of TSW for the majority
of treatments except for the 40% treatment and part of the 80% treatment (Figure 6). The
underestimation of TSW by the AquaCrop model was also reported by Sandhu et al. as
well [41]. They mentioned that the underestimation of TSW was more intensified in irri-
gated treatments compared with dryland. The highest deviation from observational points
was observed for the first soil water content measurement in the 2015 growing season.
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season in 2015. The green lines are simulated soil water content values, and the purple dots are
observational data.

Similar to the 2014 simulations, the AquaCrop model accuracy was good for estimating
TSW for all treatments during the validation period (Table 2).

The RMSE ranges ranged from 38.1 to 93.2 mm, and the NRMSEs ranged from
0.095 to 0.181. The inconsistency of the model adequacy to simulate TSW was also ob-
served for validation results. The highest adequacy of the model was obtained for the
80% treatment (d = 0.89 and R2 = 0.79), and the lowest was obtained for 50% (d = 0.38
and R2 = 0.15). The calibration and validation results indicated that the AquaCrop model
was able to capture the effects of experimental treatments on TSW in this study, and good
accuracy of the model was determined (0.095 < NRMSE < 0.181). However, the overall
performance of the model based on both accuracy (RMSE and NRMSE) and adequacy (d
and R2) of the model showed some levels of uncertainty in simulated soil water content
by AquaCrop under forage sorghum cultivation. Despite pursuing careful calibration, the
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model TSW simulations were not satisfying. Paredes et al. [36] declared a similar bias in
TSW simulations of the corn root zone by the AquaCrop model at the field scale. They
announced that the poor fitting of the measured ASW with the AquaCrop simulations
(adequacy) was probably related to errors in calculating transpiration and evaporation.
An unsatisfying estimation of TWS by the AquaCrop model under different irrigation
conditions (full and limited irrigation) was found in a study accomplished by Sandhu and
Irmak, 2019 [42]. They evaluated the performance of AquaCrop to simulate maize yield
and evapotranspiration using long-term data.

3.3. Forage Sorghum Biomass and Grain Yield

As shown in Table 3, the MBE = 0.09 was the indicator of the good performance
of AquaCrop in simulating forage sorghum biomass for the calibration year (2014). The
statistical indices of R2 = 0.71 and d = 0.91 have shown the good adequacy of the model
performance for the first growing season. In addition, the RMSE and NRMSE values
were 0.76 and 0.09, respectively, which proved the good accuracy of the model during the
calibration year.

Table 3. The statistical results for forage sorghum biomass and grain yield.

Biomass RMSE (ton/ha) NRMSE R2 d MBE (ton/ha)

Calibration year
(2014) 0.76 0.09 0.71 0.91 −0.09

Validation year
(2015) 0.53 0.04 0.86 0.95 0.26

Grain yield
Calibration year

(2014) 0.27 0.12 0.79 0.87 −0.19

Validation year
(2015) 0.49 0.20 0.30 0.44 0.46

RMSE = root mean square error, NRMSE = normalized root mean square error, R2 = coefficient of determination,
d = coefficient of agreement, MBE = mean bias error.

The adequacy and excellent accuracy of the AquaCrop model in simulating for-
age sorghum biomass in the region have been confirmed in the validation process by
the following statistics: RMSE = 0.53 ton/ha, NRMSE = 0.04, R2 = 0.86, d2 = 0.95, and
MBE = −0.26. Masasi et al. [43] have declared similar results for simulating grain sorghum
affected by deficit irrigation treatments in the Central and Southern High Plains. The compari-
son between the model biomass outputs and the measurements is presented in Table 4.

Table 4. The comparison of simulated and observed forage sorghum biomass (ton/ha) for the 2014
and 2015 growing seasons.

Treatment
2014 2015

Observed Simulated Pe (%) Observed Simulated Pe (%)

100% 9.17 9.27 1.09 13.92 13.69 −1.61
80% 8.62 9.08 5.33 13.70 13.67 −0.20
70% 8.56 7.27 −15.07 13.17 13.63 3.50
50% 8.15 7.20 −11.66 13.09 13.03 −0.45
40% 6.45 7.17 11.16 11.84 13.02 9.93

Dryland 5.22 5.66 8.24 10.20 10.46 2.54

The percent of deviation (Pe) ranged from −15.07 to 1.09% for the 2014 growing
season and from −1.61 to 9.93% for the 2015 growing season. The Pe values were less than
10% for the biomass simulation for most of the treatments. In 2014, the Pe values were
more than 10% for simulating the crop total biomass obtained under 70%, 50%, and 40%
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deficit irrigation treatments. The minimum deviations (Pe = 1.09%) for biomass simulation
were found for the full irrigation treatment in 2014 and for the 80% irrigation treatment
(Pe =−0.20%) in the 2015 growing season. The maximum deviations in 2014 (Pe =−15.07%)
and 2015 (Pe = 9.93%) were obtained for 70% DI and 40% DI, respectively, which are still
relatively low. Considering all the indices, the AquaCrop model was found to be successful
for simulating forage sorghum biomass in western Kansas, even though the adequacy
(goodness of fit) of the model for simulating the total soil water was not convenient for
all treatments. As discussed earlier, AquaCrop is a water-driven model that calculates
biomass based on transpiration during the crop growth stages. Therefore, it might be
reasonable to know that the error in evaporation calculations is the primary source of
inconsistent adequacy in soil water simulation rather than transpiration calculations, as the
biomass simulation results were satisfactory. There could be an error in the evaporation
determination approach that considers the first- and second-stage evaporation rates based
on the soil water status at the first soil layer.

The good accuracy of the model was demonstrated by statistical indices during the
calibration process for simulating grain yield (Table 3), as the RMSE and NRMSE were
0.27 ton/ha and 0.12, respectively. In addition, the values of R2 and d for 2014 were 0.79 and
0.87, respectively, indicating good adequacy of the model for simulating forage sorghum
grain yield. However, the results of the validation process were unsatisfactory for grain
yield simulations. The fine accuracy of the model (RMSE = 0.49 ton/ha, NRMSE = 0.20)
and the poor adequacy (R2 = 0.3 and d = 0.44) of the AquaCrop model were observed
when comparisons to grain yield observational data were made using statistical indices
in 2015. The results of the model’s performance, particularly in terms of forage sorghum
yield simulations, are comparable to published achievements by Araya et al. [18]. The
comparison between the observational and simulated grain yield is presented in Table 5.
The percentages of deviation ranges for reproducing the grain yield were from −19.83 to
2.08% in 2014 and from 7.5 to 28.35% in 2015. The minimum deviation was obtained for
full irrigation treatment in 2014 (Pe = 0.39) and 2015 (Pe = −1.27%). The maximum Pe
value for grain yield simulation was detected for the 70% treatment in the 2014 growing
season (Pe =−19.83%). However, in 2015, the maximum deviation (Pe = 28.35%) was found
for the 40% DI treatment. Based on all the indices, the overall assessment of the model
showed the moderate to good performance of the model for simulating forage sorghum
grain yield under different irrigation and precipitation conditions. Hence, to make any
reliability statement regarding the AquaCrop model simulations of forage sorghum grain
yield, pursuing additional field experiments and, consequently, validating the model using
these extra data is essential.

Table 5. The comparison of simulated and observed forage sorghum grain yield (ton/ha) for 2014
and 2015 cultivations.

Treatment
2014 2015

Observed Simulated Pe (%) Observed Simulated Pe (%)

100% 2.51 2.52 0.39 2.8 3.01 7.5
80% 2.40 2.45 2.08 2.68 3.01 12.42
70% 2.42 1.94 −19.83 2.40 2.98 24.08
50% 2.25 1.91 −15.11 2.33 2.97 27.55
40% 2.02 1.90 −5.94 2.31 2.96 28.35

Dryland 1.56 1.27 −18.42 2.28 2.66 16.67

3.4. Evapotranspiration

Comparisons between the simulated and actual seasonal evapotranspiration (SET)
were made using statistical indices, and the results are presented in Table 6.
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Table 6. Statistical indices for seasonal evapotranspiration.

RMSE (mm) NRMSE R2 d MBE (mm)

Seasonal evap-
otranspiration

(mm)

Calibration year 91.26 0.24 0.89 0.76 −89.93
Validation

year 86.45 0.21 0.95 0.65 59.73

Observational and simulated seasonal evapotranspiration (mm) for irrigation treatments

100% 80% 70% 50% 40% Dryland
Obs. Sim Obs. Sim Obs. Sim Obs. Sim Obs. Sim Obs. Sim

Calibration
year 460.04 352.92 398.68 334.05 384.65 287.47 349.63 271.32 383.83 276.76 301.22 215.9

Validation
year 508.37 506.26 475.47 506.13 463.12 494.02 441.44 468.69 383.29 467.5 217.42 404.77

Obs. = Observational SET, Sim = Simulated SET.

The model’s performance in predicting SET showed fair accuracy for the calibration
and validation seasons. The RMSEs and NRMSEs were 91.26 mm and 0.24 for the calibration
year (2014), and the validation year (2015) values were 86.45 mm and 0.21, respectively.
The model R2 and d were 0.89 and 0.76 for the calibration duration, indicating the model’s
good adequacy for SET simulations. The R2 and d values for validation were 0.95 and
0.65, respectively. The deviations in simulating SETs for experimental treatments could
be related to errors in evaporation calculations, which have been previously discussed.
The evapotranspiration results are comparable with the results of AquaCrop performance
obtained by Sandhu and Irmak, 2019 [42].

Overall, the AquaCrop model could reasonably duplicate forage sorghum seasonal
evapotranspiration under deficit irrigation conditions in western Kansas. However, by
improving the model’s evaporation calculations, more satisfying results are expected.

3.5. Irrigation Water Use Efficiency

The measured and simulated irrigation water use efficiency (IWUE) of forage sorghum
under deficit irrigation treatments were calculated accordingly.

The total forage sorghum biomass was considered for the calculation of IWUE, as
producing forage biomass is the primary aim of forage sorghum cultivation, which is
intended to be used in the livestock industry to feed the cattle.

As shown in Table 7, the model’s performance based on the calculated statistical indices
was good during the calibration year. The good accuracy (RMSE = 4.24 Kg ha−1 mm−1,
NRMSE = 0.13) and excellent adequacy of the model (R2 = 0.94, d = 0.96) were obtained
based on simulated and field-observed IWUE values in the 2014 growing season. The
model’s outputs for 2015 showed excellent adequacy in reproducing IWUE values, as the R2

and d values were close to one. However, some increase in the NRMSE value was detected
for the second growing season. This study’s observational and simulated results indicated
that the 40% deficit irrigation was the most efficient irrigation management method during
the two years of the experiment.
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Table 7. Irrigation water use efficiency of forage sorghum under deficit irrigation treatments.

RMSE
(Kg ha−1 mm−1) NRMSE R2 d MBE

(Kg ha−1 mm−1)

Irrigation water
use efficiency
(Kg/ha·mm)

Calibration year 4.24 0.13 0.94 0.96 −3.02
Validation

year 5.15 0.25 0.99 0.90 4.31

Observational and simulated irrigation water use efficiency (Kg ha−1 mm−1) for irrigation treatments

100% 80% 70% 50% 40%
Obs. Sim Obs. Sim Obs. Sim Obs. Sim Obs. Sim

Calibration year 16.47 16.53 23.62 24.11 31.76 25.45 44.29 37.57 45.19 42.50
Validation year 13.77 14.81 15.07 16.92 15.74 19.54 22.93 29.25 30.31 38.91

Obs. = Observational IWUE, Sim = Simulated IWUE.

3.6. AquaCrop Model Performance Discussion

To date, the AquaCrop model has been used to investigate irrigation and agronomic
practices’ effects on multiple crops, such as corn, cotton, wheat, grain sorghum, soybean,
and canola, in different regions [18,44–47]. However, there is not enough information in
the literature regarding the utilization of the AquaCrop model for seeking the irrigation
management impacts on forage sorghum. Therefore, this study can be a starting point for
additional research on forage sorghum irrigation management practices. As AquaCrop
is a water-driven model, its performance in crop yield and growth components relies on
the accuracy of the soil water simulation, which represents transpiration calculations [48].
Thus, analyzing the soil water simulations is key to assessing the model’s reliability.

The AquaCrop model successfully simulated temporal changes in the total soil water
(TSW) for two growing seasons (Figures 5 and 6). The model for full and limited water
conditions satisfactorily reproduced the dynamics of the soil water status under forage
sorghum cultivation. However, some overestimations were detected in the soil water
simulations, especially at the beginning of the growing seasons. This might be due to
an error in the root growth function in AquaCrop so that the model could not simulate
forage sorghum root development in all growing stages. The results showed that 60 days
after planting TSW simulations, deviation from the simulated values reached its minimum
value. Overall, another source of error for soil water simulations was detected in this
study for soil water and evapotranspiration simulations, which was an error in evaporation
calculation. As the AquaCrop model calculates the in-season and final biomass value based
on transpiration computation, and the excellent model performance was found for two
growing seasons, the model’s accuracy for transpiration must be high, which was translated
into excellent biomass simulation. Hence, it is convenient to point out that evaporation
is the main culprit for the deviations in soil water and evapotranspiration simulation.
These biases and inconsistencies were detected in other studies as well. The authors
identify the error in evapotranspiration partitioning as the reason for overestimation and
underestimation in soil water simulations [36,49–51]. In addition, the results of a certain
number of studies expressed an overestimation of TSW by AquaCrop for deficit irrigation
conditions [52,53]. This might be because the model may overestimate the effects of deficit
irrigation on some crops, and as a result, the crop water uptake is suppressed. Another
possible reason for these deviations could be the linear root water extraction pattern and the
root distribution function used by AquaCrop [30,32]. The implementation of non-linear root
water uptake and root distribution models [54–56] can be proper alternatives to eliminate
this source of error for the AquaCrop model.

As mentioned earlier, the overall performance of the model for simulating forage
sorghum biomass under various irrigation conditions was excellent (Table 3). However, a
detailed analysis of the model’s simulation is worthwhile. The simulated biomass results
indicated that the best model performance of the model under irrigation conditions that fall
into water stress thresholds [30] is better than other conditions that are categorized between
these thresholds (Table 4). The full irrigation and dryland conditions are usually fitted as
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upper and lower water stress thresholds for arid and semi-arid regions that do not receive
considerable rainfall during the growing season. In our case, during the 2015 growing
season, the 80% DI treatment fell into the upper limit of the water stress threshold for the
AquaCrop model. Thus, the better performance of the model was found for simulating
full irrigation and dryland conditions in the 2014 growing season and full irrigation, 80%
DI, and dryland conditions in 2015. The assessment of the crop biomass simulations for
individual treatments indicates certain patterns for the accuracy of the model during the
first growing season. The model’s accuracy decreased gradually upon transitioning the
irrigation conditions from full irrigation to 70% DI, and then it started to increase from the
50% DI to the dryland condition. However, no obvious pattern was noticed for the second
growing season. This could be because of the precipitation distribution pattern during 2015.
The timing and amount of in-season precipitations can considerably change the effects of
deficit irrigation treatments on crop production. Hence, AquaCrop was probably not able
to capture the biological and physiological reactions of forage sorghum to precipitation
while the crop was exposed to limited irrigation conditions.

The AquaCrop outputs in terms of grain yield simulations almost followed the mea-
sured grain yield time series in 2014 and 2015 (Table 5). Nonetheless, less deviation was
found for simulations of grain yield in 2014 compared to the corresponding values in
2015. The AquaCrop model most likely overestimated the forage sorghum grain yield
for the second growing season. The basis of this error could be the method of grain yield
calculations. The model uses the harvest index (HI) to convert the biomass value to the
grain yield, and the model was not able to correctly simulate the HI for the validation
year. This inaccuracy was reported in other studies as well [57,58]. It has been shown
that high temperatures can adversely affect the harvest index in specific growth stages of
sorghum [59–61], and the AquaCrop model does consider a high-temperature stress impact
on either the accumulation of biomass or the HI of the crops [57]. Therefore, the overes-
timation of the grain yield in some years can result from ignorance of high-temperature
stress for crop production by AquaCrop.

The evapotranspiration (ET) calculations depend on the soil water determination
conditions. The ET calculations were prone to terms that were similar to the soil water
determination by the model. The error in evaporation calculations lowered the model’s
accuracy in terms of ET simulations. The analysis of soil water status simulations applies
here as well.

Using on-site evaporation pans or installing sensors in the crop root-zone with a data
logger to access real-time soil moisture data could be beneficial for identifying the source
of error more precisely.

3.7. Long-Term Irrigation Strategies Analysis

Figure 7 illustrates the long-term forage sorghum biomass, IWUE, and BWP simulated
by the AquaCrop model for each irrigation management scenario (pre-season + in-season).
The growing season was considered to be from June to September. The statistical analysis
results for 37 years of simulations of crop yield and yield components are presented in
Table 8. Pursuing 40% MAD resulted in the highest forage sorghum biomass compared
to the other management methods, regardless of the soil water status at the planting time.
For the application of 55% MAD, refilling the soil water depletion up to 30% TAW from
the soil surface up to 60 cm (D1IS1MAD2) is discouraged, as this approach significantly
reduced the crop total biomass compared to other soil water regimes at the time of planting
(D2IS1MAD2, D1IS2MAD2, D2IS2MAD2, D1IS3MAD2, and D2IS3MAD2). Replenishing
the soil water deficiency up to 30% of the TAW from the soil surface to 150 cm soil depth
or filling 50% of the TAW from the soil surface to a 60 cm soil depth maximized the crop
biomass productivity for the 55% MAD application. Overall, higher forage sorghum was
found for the irrigation scheduling based on the maximum allowable depletion (MAD)
compared to the fixed irrigation intervals approach. Implementing a 4-day fixed irrigation
interval with compensation of the soil water deficit to 30% of the TAW for the first 60 cm
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of soil depth showed no significant difference in forage biomass production compared
with irrigation based on MAD levels. The long-term results indicate that in the case of
low well capacity that mandates irrigation every 10 days, the pre-season irrigation that
replenishes the soil water to the field capacity for the first 60 cm of soil depth would be
beneficial (D1IS3F3). This pre-season irrigation management (D1IS3) significantly increased
the forage biomass compared with other pre-season water management. The crop biomass
under 6- and 10-day fixed irrigation intervals reached its highest value for having field
capacity for the first 60 cm of soil depth or the maximum crop root length (150 cm) at the
planting time.
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Table 8. Comparison of means for long-term simulations of forage sorghum biomass, irrigation water
use efficiency (IWUE), and biomass water productivity (BWP).

Scenario Biomass (ton/ha) Scenario IWUE (Kg/ha·mm) Scenario BWP
(Kg/ha·mm)

D1IS1MAD1 15.18151 a D2IS3F3 48.20916 a D1IS1F3 5.452728 a
D1IS2MAD1 15.18151 a D2IS3MAD3 47.75004 ab D2IS1F3 5.448294 a
D2IS1MAD1 15.18151 a D2IS3MAD2 44.13881 abc D1IS2F3 5.434749 a
D2IS2MAD1 15.18151 a D2IS3F2 39.96421 bcd D2IS2F3 5.418804 a
D1IS3MAD1 15.18146 a D1IS3F3 39.12559 cde D1IS3F3 5.384775 a
D2IS3MAD1 15.18146 a D1IS3MAD3 38.57193 cdef D1IS1F2 5.371225 a
D2IS1MAD2 15.12889 ab D1IS3MAD2 36.7872 cdefg D2IS1F2 5.369919 a
D1IS2MAD2 15.12659 ab D2IS2F3 36.31387 cdefgh D2IS3F3 5.369661 a
D2IS2MAD2 15.11846 ab D2IS2MAD3 35.6158 cdefghi D1IS2F2 5.365256 a
D1IS3MAD2 15.11495 ab D2IS3F1 34.89746 defghi D2IS2F2 5.35979 a
D2IS3MAD2 15.11484 ab D2IS2MAD2 33.76995 defghi D1IS3F2 5.347463 a

D2IS3F1 15.08389 ab D1IS3F2 33.63745 defghi D2IS3F2 5.342804 a
D1IS3F1 15.04824 ab D1IS2F3 33.04585 defghij D1IS1F1 5.33982 a

D1IS1MAD3 15.01043 abc D2IS2F2 32.41538 defghij D2IS1F1 5.337857 a
D1IS2MAD3 15.00335 abc D1IS2MAD3 32.33465 defghij D1IS2F1 5.336726 a

D2IS2F1 15.00146 abc D2IS1F3 31.36942 defghij D2IS1MAD3 5.334935 a
D2IS1MAD3 15.00081 abc D2IS1MAD3 31.33822 defghij D1IS2MAD3 5.33398 a
D2IS2MAD3 15.0006 abc D1IS1F3 31.01244 defghij D1IS1MAD3 5.333487 a
D1IS3MAD3 14.99943 abc D1IS1MAD3 30.8295 defghij D2IS3MAD3 5.333436 a
D2IS3MAD3 14.98432 abc D1IS2MAD2 30.57364 efghij D1IS3MAD3 5.333402 a

D1IS2F1 14.9717 abc D1IS3F1 30.23289 efghij D2IS2F1 5.332911 a
D2IS1F1 14.93305 abc D1IS2F2 29.79021 efghij D1IS1MAD2 5.332475 a
D1IS1F1 14.92365 abc D2IS2F1 29.52272 fghij D2IS2MAD3 5.331215 a
D2IS3F2 14.83378 bc D2IS1MAD2 29.23879 fghij D1IS3F1 5.330633 a
D1IS3F2 14.72589 cd D2IS1F2 28.86594 ghij D2IS3F1 5.328729 a
D2IS2F2 14.5053 de D1IS1F2 28.3967 ghij D2IS2MAD2 5.327947 a
D1IS2F2 14.41119 e D1IS2F1 27.23669 hij D2IS3MAD2 5.327681 a
D2IS3F3 14.36884 e D2IS1F1 26.73173 ij D1IS3MAD2 5.327328 a
D2IS1F2 14.3083 e D1IS1F1 26.18553 ij D1IS2MAD2 5.325701 a
D1IS1F2 14.27673 e D1IS1MAD2 24.15055 j D2IS1MAD2 5.325415 a
D1IS3F3 13.99773 f D1IS3MAD1 15.3969 k D1IS3MAD1 5.323934 a

D1IS1MAD2 13.59749 g D2IS3MAD1 15.3969 k D2IS3MAD1 5.323934 a
D2IS2F3 13.41962 g D1IS1MAD1 14.78531 k D1IS1MAD1 5.323607 a
D1IS2F3 13.1293 h D1IS2MAD1 14.78531 k D1IS2MAD1 5.323607 a
D2IS1F3 12.93992 hi D2IS1MAD1 14.78531 k D2IS1MAD1 5.323607 a
D1IS1F3 12.82116 i D2IS2MAD1 14.78531 k D2IS2MAD1 5.323607 a

The long-term IWUE values were compared accordingly to investigate the relations
between the irrigation scheduling strategies and the predicted forage production. The
highest IWUEs ranged from 44.13 to 48.20 ton/ha·mm and were detected for the appli-
cation of a 10-day irrigation interval (F3), and MAD levels of 55 and 70% accompanied
by a pre-season irrigation that refilled the crop root zone (150 cm) up to the field ca-
pacity at the time of planting (D2IS3F3, D2IS3MAD3, and D2IS3MAD2). The statistical
results clearly indicated that implementing the MAD level of 40% significantly reduced the
IWUE values and ranked as the least efficient strategy compared with any other scenario
(14.7 < IWUE < 15.39 kg/ha·mm). Applying a pre-season irrigation that fills the soil profile
(150 cm) up to the field capacity maximizes the efficiency of the fixed irrigation interval
strategies (F1, F2, and F3), as D2IS3F3, D2IS3F2, and D2IS3F1 resulted in the highest IWUE
values in contrast with the other corresponding pre-season irrigation scenarios. Consider-
able impacts of pre-season irrigation on the efficiency of in-season irrigation scheduling
strategies to produce forage sorghum were clearly demonstrated in the IWUE results. In
most irrigation scenarios, refilling either the first 60 cm depth of the soil or the whole
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crop root zone (150 cm) significantly increased the efficiency of the irrigation scheduling
strategies for sorghum production in a semi-arid region of the Central High Plains.

The BWP was the only index with no statistical significance at the 0.05 level. Thus,
no further discussion was presented for this index. The BWP results almost followed
the same order as the IWUE. However, it was found to not be a suitable index in this
study to show the statistical difference between irrigation management effects and forage
sorghum productivity.

4. Conclusions

The performance of the water-driven AquaCrop model for simulating forage sorghum
biomass and grain yield production under different irrigation regimes was evaluated
through calibration and validation processes in western Kansas, a semi-arid region located
in the U.S. Central High Plains. The model was found to be reliable in simulating the soil
water status, the forage sorghum biomass, and the grain yield. The simulated soil water by
the model correctly followed the trend of the measurements. Nevertheless, overestimations
and underestimations were noticed in soil simulations of water under some deficit irrigation
conditions. The error in the root growth and the distribution function, the root water
extract function, and the two-layer method for evaporation calculations were found as
sources of the soil water deviations. However, soil water simulations’ general accuracy was
convenient for both growing seasons. The excellent accuracy of the model was detected for
forage sorghum biomass estimation for all irrigation conditions. The accuracy of the grain
yield value reproductions by the model was good during the calibration process; however,
similarly to other studies, overestimations were detected for the validation process. The
lack of heat stress function in AquaCrop was found to be the source of errors in the grain
yield simulations. Overall, the AquaCrop model was found to be trustworthy for exploring
the effects of variable soil water regimes influenced by irrigation management on forage
sorghum above-ground biomass, the main target for forage sorghum production for the
livestock industry. The AquaCrop model was then used as a decision support tool to
investigate forage sorghum responses to pre-season and in-season irrigation strategies. The
irrigation scheduling approaches based on MAD levels of 40, 55, and 70% were compared
to 4-, 6-, and 10-day irrigation intervals for different pre-season irrigation conditions. The
results revealed that applying a 10-day irrigation frequency (interval) and pursuing MAD
levels of 55 and 70% in combination with pre-season irrigation that replenished the soil
water deficiency in the entire root zone up to the field capacity was the most efficient
irrigation scheduling strategy.

On the other hand, 40% MAD was found to be the least efficient irrigation man-
agement approach for forage sorghum production. The findings of this study could be
used as new clues for the initiation of water conservation irrigation practices for forage
sorghum production that can save the livestock industry in the U.S. Central High Plains.
Nonetheless, evaluating the interactions of irrigation scheduling approaches with other irri-
gation and agronomic practices, such as irrigation water application technologies, fertilizer
management, and tillage treatments, is highly encouraged.
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