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Abstract: Bean common mosaic disease is one of the most destructive diseases of the common
bean, which is one of the most important legumes worldwide. It is caused by two closely related
potyviruses: bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV).
Both viruses have spread to all the common bean-growing areas worldwide and have become a major
challenge in bean production. In this review, we summarized the biology and diversity of BCMV and
BCMNV, discussed the current knowledge on the resistance genes of BCMV, and finally pointed out
the future prospects for the control of bean common mosaic disease.
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1. Introduction

The common bean (Phaseolus vulgaris L.) is one of the most important legumes for
human consumption worldwide and is an important source of vegetable protein, minerals,
antioxidants, and bioactive compounds [1–3]. Bean common mosaic virus (BCMV) and
bean common mosaic necrosis virus (BCMNV) are aphid-transmitted viruses that can
also be seed-transmissible in common beans with an efficiency of up to 80%, depending
on the bean cultivar and viral strain [4]. An infection by phytopathogens, including
plant viruses, can cause significant losses to the common bean in terms of both yield and
quality. BCMV and the closely related BCMNV are the most destructive viruses of the
common bean, which cause the common bean mosaic disease and the so-called “black
root” disease. Since their discovery in 1917, BCMV and BCMNV have been reported in
57 countries and regions and have become two of the most important biological factors
affecting common bean production [5–9]. Both BCMV and BCMNV belong to the genus
Potyvirus in the family Potyviridae, the largest family of known plant RNA viruses, which
are classified into 12 genera (Arepavirus, Bevemovirus, Brambyvirus, Bymovirus, Celavirus,
Ipomovirus, Macluravirus, Poacevirus, Potyvirus, Roymovirus, Rymovirus, and Tritimovirus) [10–
13].

Understanding the molecular biology of BCMV and BCMNV and the plant antiviral
mechanism is a prerequisite for the development of effective management strategies. Over
the last two decades, several advances have been made in this field. For instance, the strain
composition of BCMV has been well documented, infectious cDNA has been successfully
developed for analyzing the pathogenicity of BCMV, and several resistance genes in the
common bean have been successfully identified and utilized in breeding practices [14–24].
In this short review, we summarize the current knowledge on BCMV and BCMNV, includ-
ing genome organization, strain composition, evolution, and resistance in the common
bean. Moreover, we highlight the areas that are particularly worthy of further investigation
and the potential methods for developing novel antiviral strategies with broad-spectrum,
efficient, sustainable, and environmentally friendly resistance.
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2. Biological Characteristics of BCMV
2.1. Genome Structure

Both BCMV and BCMNV have a positive-sense single-stranded RNA (+ssRNA)
genome of approximately 9600 nucleotides (nt) that is encapsulated in non-enveloped,
flexuous, and filamentous virions of 750 nm long and 11–13 nm in diameter [25–27]. The
3′ end of the genome is polyadenylated, whereas the 5′ end is covalently linked to the
viral genome-linked protein (VPg) [28]. Similar to other potyviruses, the genomes of
BCMV and BCMNV encode a large open reading frame (ORF), which is translated into a
polypeptide of approximately 350 kDa [29]. This polypeptide is hydrolyzed by three viral
proteinases into ten mature proteins; from the N- to C-termini are protein 1 (P1), a helper
component-protease (HC-Pro), protein 3 (P3), 6-kilodalton protein 1 (6K1), a cylindrical
inclusion (CI), 6-kilodalton protein 2 (6K2), viral protein genome-linked (VPg), nuclear
inclusion a-protease (NIa-Pro), nuclear inclusion b (NIb), and a coat protein (CP) [30].
Additionally, a polymerase slippage motif (GAAAAAA) within the P3 cistron allows the
expression of an additional short polypeptide, which is hydrolyzed into three mature pro-
teins, namely P1, HC-Pro, and P3 N-terminal fused with the pretty interesting Potyviridae
ORF (P3N-PIPO), which shares the same N-terminal domain as P3, but has a different
C-terminal domain [31–34]. These proteins function similarly to their counterparts in the
genus Potyvirus [35]. In addition, precursors such as P1-HcPro, 6K2-VPg, and P3-6K1 also
exist in virus-infected cells via partial hydrolysis [36,37]. These precursors may play im-
portant roles in virus proliferation [38–61]. The cleavage of P1 may play dual roles in viral
infectivity [62,63], and HC-Pro has been shown to play a role in virus movement and aphid
transmission [64,65], while P3 has been associated with virus replication, systemic infection,
and cell-to-cell movement [66–68]. Moreover, the 6K2 protein has been shown to play a
pivotal role in the formation of the virus replication complex [69,70], Vpg has been shown
to bind eukaryotic translation initiation factor 4E(eIF4E) and its isoform eIF(iso)4E and to
enhance viral translation in plants [29], and 6K1 binding to the membrane is involved in
replication and viral movement between cells [61].

2.2. Transmission

BCMV and BCMNV can be transmitted through seeds, pollen, aphids, and mechanical
friction [71,72]. The seed transmission rate of BCMV is between 3% and 95%, depending
on the viral strain and host variety [73,74]. The high seed transmission rate is one of the
major reasons for the global BCMV epidemic and is the primary virus resource in the field.
BCMV is limited to the seed coat of bean varieties with a low transmission rate; however, it
can invade the seeds (embryos) of bean varieties with high transmission rates. Generally,
BCMV infects seeds via the endosperm [75]. However, it can also infect seeds through
pollen. BCMV can survive for more than 30 years in seeds grown under suitable conditions.
However, the gene(s) involved in seed transmission and the molecular mechanisms of seed
transmission remain elusive [75]. It has been reported that 36 aphids in 21 genera, including
Acyrthosiphon pisum, Aphisfabae, Myzus persica, and Aphis craccivoracan, effectively transmit
BCMV [76–79]. Studies have shown that BCMV-infected plants are more attractive to aphids
than healthy plants [80], indicating that BCMV may modulate the jasmonic acid pathway
to reduce anti-insect defenses to benefit the aphid vector. BCMV can also be transmitted to
new plants via mechanical inoculation [80,81]. Pathogen infection can induce changes in
plant morphology and traits, such as wrinkled, curled, and yellowed leaves, increased or
decreased glandular trichome density, callose deposition, and increased or decreased leaf
thickness. These changes may affect the feeding and transfer of vector insects to host plants.
Most viruses can cause yellowing or light-green symptoms in the host leaves. Vector insects
are more inclined to select yellow and light green plant tissues, which may have been
formed by the long-term evolution of virus–host plant-vector insects [82–86]. However,
mechanical inoculation may not contribute significantly to the natural spread of BCMV.
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2.3. Host Range and Symptoms

Potyviruses collectively exhibit a broad host range; however, the host range of their
individual members is usually limited to a few plants. For instance, the host range of the
soybean mosaic virus (SMV), a phylogenetically related potyvirus, is restricted to two plant
species of a single genus: cultivated soybean (Glycine max) and wild soybean (G. soja) [87].
Interestingly, BCMV has a much wider host range, including over 100 plants in 44 genera,
such as the common bean, peanut (Arachis hypogaea Linn.), pigeonpea (Cajanuscajan (Linn.)
Millsp), jack bean (Phaseolus lunatus L.), sickle senna (Cassia tora Linn.), chickpea (Cicer
arietinum Linn.), showy crotalaria (Crotalaria spectabilis Roth), common lentil (Lens culinaris
Medic.), white lupine (Lupinus albus L.), soybean (Glycine max), white sweet clover (Melilotus
albus Medic. ex Desr), broad bean (Vicia faba L.), bingdou (Lens culinaris Medic.), and sesame
(Sesamum indicum L.). It is one of the most widespread plant viruses infecting legumes
under natural conditions, with the common bean being the most affected host [76,88–90].

The symptoms induced by BCMV in the common bean include leaf mosaic, chlorosis,
deformation and etiolation, plant retardation, local or systematic necrosis, and even whole-
plant death [91–96]. The symptoms are mainly affected by three factors: host plants,
environmental conditions, and viral strains [97–100] (Figure 1). BCMV can seriously affect
the common bean’s yield reduction or even total failure. Even mild or symptomless
infections can decrease crop yield by 50% [101]. An infection by the BCMV strains NL2
and NL6 on common bean cultivars carrying the I gene at a high temperature will result in
systemic necrosis symptoms that are typically known as “black root” disease. However,
all BCMNV strains cause systemic necrosis symptoms in I-gene-containing bean cultivars,
regardless of the temperature [91,92,96].

Figure 1. Symptoms of bean common mosaic virus (BCMV) in different bean cultivars. (A) Crinkling
and leaf rolling of Dubbele Witte seedlings; (B) mild mottling of Stringless Green Refugee seedlings;
(C) leaf deformation and rolling of IVT-7214 seedlings; (D) crinkling of Redland’s Greenleaf “C”
seedlings; (E) leaf rolling, chlorotic spots, and leaf deformation of Sanilac seedlings; and (F) leaf vein
necrosis of SGR seedlings.



Agronomy 2023, 13, 58 4 of 18

3. Diversity and Evolution of BCMV and BCMNV
3.1. Strain Composition

According to the symptoms of BCMV and BCMNV on eleven bean cultivars (Dubbele
Witte (DW), Stringless Green Refugee (SGR), Redland’s Greenleaf “C” (RGLC), Redland’s
Greenleaf “B” (RGLB), Sanilac, UI35, IVT-7214, Jubila, Amamda, US1006, and IVT7233),
Drifjhout divided BCMV into seven pathotypes, namely I–VII [18,19,91–95]. Recently, Feng
discovered a new pathotype, VIII [102]. The symptoms caused by strains of the same
pathogenic type may also differ. For example, the BCMV strains 3PF and A1 are both
pathogenic type PG I, but 3PF causes mild mosaic on “DW”, while the A1 strain can cause
systemic necrosis on “DW”, causing plant death [103,104]. Clearly, not all pathotypes have
been characterized, and new pathotypes may be discovered in the future [102–105].

Historically, BCMV isolates have been divided into two serotypes, serotypes A and
B, based on serological reactions [106]. Serotype A includes pathotypes III and VI, which
are strains that cause temperature-sensitive necrotic spots on bean plants carrying the I
gene, including TN1, NL3, NL5, and NL8, whereas serotype B includes all isolates of other
pathotypes, such as CH2, NL1, NL4, NL6, NL7, PR1, RU1, and US1-US10. Subsequent high-
performance liquid chromatography (HPLC) and gene sequence analyses demonstrated
that the serotypes A and B belong to different virus species [107]. McKern et al. [106]
initially named members of the serotype A bean necrosis mosaic virus, which was later
renamed the bean common mosaic necrosis virus (BCMNV) based on its typical symptoms
and serological characteristics by the International Committee on Taxonomy of Viruses
(ICTV). Recently, some soybean-infecting potyviruses, such as the blackeye cowpea mosaic
virus (BlCMV), azuki bean mosaic virus (AzMV), peanut strip virus (PStV), and cowpea-
aphid-borne mosaic virus (CABMV), have been classified as strains of BCMV based on
their serological characteristics and genome sequences [107].

There are many BCMV and BCMNV isolates; however, the identification of the BCMV
strains in China and abroad has not been unified. Currently, there are eighty-six full-length
genomes of BCMV in the GenBank database, including seven from cowpeas (Vigna un-
guiculata), one from yam beans (Pachyrhizus erosus), one from phaseolus riukiuensis (Vigna
riukiuensis), twenty-eight from common beans (Phaseolus vulgaris), one from the common
nandina (Nandina domestica), two from mung beans (Vigna radiata), one from sesame (Sesa-
mum indicum L.), one from azuki beans (Abrus precatorius L.), one from tricuspid cudrania
(Cudrania tricuspidate), thirty-two from soybeans (Glycine max), two from peanuts (Arachis
hypogaea), one from hyacinth beans (Lablab purpureus), and one from purple bushbeans
(Macroptilium atropurpureum) (Figures 2 and 3). A phylogenetic analysis showed that Chi-
nese isolates of BCMV derived from soybeans, cowpeas, peanuts, sesame, and yam beans
clustered into the same clade. Four cowpea isolates from China clustered with one soybean
isolate, and one mung bean isolate clustered with another clade. The common bean isolates
from India, South Korea, Colombia, Iran, Tanzania, and the United States clustered in the
same clade as one cowpea strain from Iran. Another clade contained BCMV isolates from
the common bean, cowpea, azuki bean, mung bean, purple bushbean, common nandina,
and tricuspid cudrania. Members of this clade are widely distributed in the USA, Mexico,
Australia, Germany, Iran, Tanzania, and Asian countries such as China, Japan, South Korea,
and India. There are twenty-two full-length genomes of BCMNV in the GenBank database,
including nineteen from the common bean (Phaseolus vulgaris), one from Fabaceae (Fabaceae
Lindl.), and one from the benth (Nicotiana benthamiana). A phylogenetic analysis showed
that these BCMNV isolates were clustered into two major clades: one clade contained the
Indian isolate from the common bean, and the other contained the remaining BCMNV iso-
late. The BCMV lineage probably originated in South and East Asia. The BCMV sequence
was first provided by Spain in 1992 [108–111], and the BCMNV sequence was first provided
by the USA in 1995 [112]. In general, BCMV isolates from the same host exhibit a close
genetic relationship. At the same time, the reported clustering between BCMV strains is
closely related to the region, indicating a high frequency of gene communication between
strains in the same country or region and vice versa.
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Figure 2. Maximum-likelihood phylogenetic tree for BCMV and BCMNV whole-genome sequences.
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Figure 3. Phylogenetic tree produced through Bayes methods for BCMV and BCMNV whole-genome
sequences.

3.2. Evolution

It is well known that mutation is the key factor driving the rapid evolution of RNA
viruses and generating genetic diversity to adopt different hosts and environments for
survival and transmission [113–118]. The situation is the same as that of BCMV: it has been
shown that mutation is the major factor allowing BCMV to quickly overcome multiple
resistance genes in the common bean [109,119,120]. Recombination is another major source
of plant virus evolution, as it benefits viruses by allowing them to obtain new genetic
information and optimize their existing biological characteristics through gene expression,
increasing the possibility of breaking through host resistance to cause a successful infec-
tion [121]. Studies have shown that recombination between different BCMV or BCMNV
strains is common [113,122,123]. For example, US10 is a recombinant isolate containing
segments derived from the strains US1 or RU-1. Thus, interspecific recombination with
other potyviruses is possible. For example, NL-3K is a natural recombinant strain of the
BCMV strain RU-1 with the BCMNV strain NL-3D’s derived sequence at the 5′ end [22,23].
RU1-OR is a new strain produced by the recombination of BCMV RU-1 with another
unknown member of the Potyvirus genus [124]. The current hotspots of BCMV recombina-
tion are mainly centered on the 5′ end of the genome, including the 5′ non-coding region
(5′-UTR) and its adjacent P1 and HC-Pro protein-coding regions [22,23,124]. It has been
shown that P1 is associated with the pathogenicity and host specificity of potyviruses,
such as the plum pox virus (PPV) and SMV [125,126]. For instance, a recombinant SMV
isolate containing a watermelon mosaic virus (WMV)’s 5′-UTR was able to infect Nicotiana



Agronomy 2023, 13, 58 7 of 18

benthamiana, a non-host for normal SMV isolates [127]. However, the effect of recombination
on the biological characteristics of BCMV and BCMNV requires further investigation.

4. Resistance Resources
4.1. Dominate Resistance

Hitherto, only one dominant resistance gene has been identified in common bean
germplasm resources. The I gene, which was initially described in 1950 by Ali, confers
a high resistance or even complete immunity to most strains of BCMV at temperatures
below 30 °C [128]. Consequently, it has been rapidly used for breeding, and most commer-
cially available common bean cultivars contain this gene. However, when the temperature
exceeds 30 °C, BCMV induces temperature-dependent systemic necrosis symptoms. There-
fore, the use of common bean cultivars harboring the I gene often leads to plant death
in high-temperature areas, such as Africa and South America [91,92,96]. Studies have
shown that BCMV can replicate and move intercellularly in I-gene-containing common
bean cultivars without causing the plant to express any viral symptoms [91]. However, the
molecular mechanisms underlying the temperature-induced necrosis induced by BCMV
remain elusive. It has been proposed that the expression of the I gene is negatively reg-
ulated by temperature. As a result, the amount of I protein is too low to confer reliable
resistance at high temperatures. Alternatively, immune responses induced by the I gene
may be attenuated at high temperatures [91,92,96]. Moreover, an infection with BCMNV
stimulates systemic necrosis in common bean cultivars harboring the I gene. Several closely
linked molecular markers have been successfully developed in the BeanCAP diversity
panel for breeding practices [15,16,21]. Additionally, six single nucleotide polymorphisms
(SNPs) that are closely associated with the I gene were identified, and two kompetitive
allele-specific PCR(KASP) and CAPS molecular markers were developed to accurately
detect the I gene (Table 1). The I gene likely encodes a nucleotide-binding domain leucine-
rich repeat-containing protein (NLR), which has been mapped to the end of the arm of
chromosome 2. A total number of seven potential NLR genes were found in the resistance
locus [21]. However, further studies are needed to clone the I gene and elucidate the
mechanism against BCMV [15,21,129].

Moreover, several dominant resistance genes have been identified in several soybean
cultivars [130–132]. In the soybean cultivars Suweon 97 and Raiden, the BCMV resistance
locus was mapped to a region within the complex SMV-resistance locus Rsv1 on chro-
mosome 13 [130,131]. However, the resistance gene in the soybean cultivar V94-5152 has
been mapped to a genetic region in proximity to the SMV-resistance locus Rsv4. Rsv4 on
chromosome 2 encodes an RNase H family protein with substrate specificity for double-
stranded RNA, which confers resistance to all SMV isolates [133]. Therefore, Rsv4 confers
resistance against both SMV and BCMV. Breeding resistant common bean cultivars using
soybean-derived dominant genes via horizontal transfer is a promising direction for future
breeding research.

4.2. Recessive Resistance

A total number of five strain-specific recessive resistance genes have been identified,
namely bc-1, bc-2, bc-3, bc-4, and bc-ud [18,92]. Scientists have long believed that the
Bc-1 locus contains a pair of highly linked alleles (bc-1 and bc-12). However, a recent
study suggests that bc-1 and bc-12 are actually the same resistance gene, and that different
resistance phenotypes are caused by the bc-ud gene [19]. The bc-1 gene was mapped to
chromosome 3 using a genome-wide association analysis, and three candidate, receptor-like
kinases (RLKs) (Phus.003G038700, Phus.003G038700, and Phus.003G038800 1) have been
proposed (Table 2). bc-1 alone confers resistance to the NL-8 strain of BCMNV, but requires
other recessive resistance genes, such as bc-2 and bc-u, to resist other strains [19,134]. It has
been proposed that the symptom induction and systematic movement, but not replication,
of BCMV and BCMNV are limited in bc-1 genotype common bean cultivars [103,105].
However, the identity of bc-1 is still unknown at the present.
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Genome-wide associations have mapped bc-2 on chromosome 11, and several specific
molecular markers have been developed to identify bc-2 (Table 1). A sequence alignment
between the common bean genome of G19833 v2.1 and UI 111 v1.1 showed that UI 111
v1.1 has a 10 kb depletion in the Bc-2 locus [18]. A common bean with the mesoamerican
genotype has a frameshift mutation at the Bc-2 locus [18]. Both mutations involve the
same gene, Phvul.011G092700, which encodes vacuolar protein sorting 4 (Vps4) AAA +
ATPase required for the endosomal sorting complexes used for transport (ESCRT) (Table 2).
ESCRT plays a critical role in many important physiological processes in plants, including
endosomal trafficking to lysosomes, organelle biogenesis, DNA replication, protein folding,
and proteolysis [135]. Although the bc-2 gene has a minor influence on BCMV replica-
tion and intercellular movement, it can significantly inhibit the efficacy of the systemic
movement of the virus [103]. However, bc-2 alone cannot confer resistance to BCMV; it
can confer resistance to most BCMV strains except for PG-V in the presence of bc-4, or
resistance to all strains of BCMV (except PG-VI) and BCMNV in the presence of bc-ud [18].
The cucumber homolog of the Vps4 AAA + ATPase was identified as a candidate gene
for zymA192-18, providing recessive resistance against the zucchini yellow mosaic virus
(ZYMV), a potyvirus infecting cucurbitaceous plants [136]. Interestingly, the host’s ESCRT-
related mechanism is also required for the replication of tomato bushy stunt virus (TBSV),
an +ssRNA virus from the genus Tombusvirus of the family Tombusviridae [137]. Thus, it
is possible that the ESCRT, including Vps4 AAA + ATPase, plays an essential role in the
proliferation of varied RNA viruses.

The bc-3 gene is the most well-studied recessive gene, and it encodes the eukaryotic
translation initiation factor 4E (eIF4E) on chromosome 6 [17]. Several KASPar allele-specific
SNP and CAPS molecular markers have been developed for the rapid identification of it
in the common bean [93,95]. The eIF4E and its isomer, eIF(iso)4E, are essential for normal
protein translation in all eukaryotes by binding to the 5′ terminal cap of the mRNA [138].
In potyviruses, the 5′ termini are covalently linked to the viral VPg protein, which responds
to eIF4E or eIF(iso)4E binding for protein translation [139]. A mutation in eIF4E that
blocks VPg interaction will result in the impediment of viral protein translation and the
complete loss of infectivity [70,140–145]. Given its obvious application value in breeding,
the interaction between VPg and eIF4E has been extensively studied, and the structure of
the complex has been successfully determined recently [140–142,146–149]. Indeed, it is the
main source of potyvirus resistance in many crops [150]. In the common bean, non-silent
mutations in codons 53, 65, 76, and 111 of eIF4E have been identified in common bean
cultivars carrying the bc-3 gene, indicating that this region is required for the interaction
between eIF4E and the VPg protein [93,95,151,152]. The combination of bc-3 and bc-ud can
protect the common bean from infection by all BCMV strains, except BCMV-1755a [92,102].
However, potyviruses can overcome eIF4E-mediated resistance by introducing mutations
in the VPg coding regions [139].

The bc-4 gene was mapped on chromosome 5 of the common bean using a genome-
wide association study [18]. Specific molecular markers have been developed to identify
bc-4 (Table 1). Phus.005G125100 is the best candidate gene for bc-4, which also encodes
Vps4 AAA + ATPase. Similar to bc-2, bc-4 cannot act alone, but requires other recessive
resistance genes for resistance to BCMV. For instance, bc-4 and bc-3 are required for the
bean variety IVT7214 to inhibit C1YVV, and bc-1 and bc-3 are required for the common
bean cultivar USCR-8 to resist infection by C1YY, BCMV, and BCMNV (except for the strain
NL-3K) [22,153]. Thus, bc-4 may negatively regulate bc-3 resistance through an unknown
molecular mechanism [18].

The bc-u gene has always been recognized as a nonspecific assistant gene required for
other recessive resistance genes [92,94]. Recently, Soler et al. remapped bc-u on chromosome
5 in a genome-wide association study (GWAS). Furthermore, this gene has been confirmed
in the common bean varieties host group (HG)-3, -6, -10, and -11, but not HG-2, -4, -5, or -7,
using specific molecular markers (Tables 1 and 3). After amending the genetic background
of each HG cultivar, the bc-u gene was renamed bc-ud [19]. Phvul.005G124100 was identified
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as the candidate gene of bc-ud, which encodes a basic Leucine Zipper (bZIP) transcription
factor [19]. The bc-ud gene in the Durango Diversity Panel (DDP) carries a non-synonymous
mutation at codon 14 of the first exon (Pv05: 36,114,516 bases), which results in premature
termination [19]. Reports have shown that bZIP is involved in regulating many important
plant physiological processes and is a crucial component of the plant regulatory network
in response to biotic stresses [154–157]. For instance, AtbZIP10 in Arabidopsis thaliana is
a positive regulator of pathogen-induced hypersensitive response (HR) [154]. bZIP can
also interact with the non-expressor of pathogenesis-related 1 (NPR1) in tobacco (Nicotiana
tabacum), which is the receptor of salicylic acid and is required for resistance to the tobacco
mosaic virus (TMV) in tobacco [158]. Moreover, bc-ud can improve the resistance of the bc-1
or I gene against BCMNV-NL3 and NL-8 in the common bean [19].

5. Future Prospects

The most cost-effective method for controlling BCMV infections is breeding resistant
cultivars [159–163]. Indeed, the dominant I gene and recessive genes have been extensively
used to breed resistant varieties [164–166]. However, pyramiding all the resistance into one
cultivar is extremely time-consuming. The development of rapid DNA molecular markers,
including Random Amplified Polymorphic DNA (RAPD), Restriction Fragment Length
Polymorphism (RFLP), Amplified Fragment Length Polymorphism (AFLP), and Simple
sequence repeat (SSR), will accelerate the identification of resistance genes in common
bean populations for breeding purposes [167]. Viruses tend to escape resistance through
the accumulation of mutations. Therefore, it is necessary to identify new dominant or
recessive resistance genes in the common bean and related legumes. For instance, the
translationally controlled tumor protein (TCTP) is required for the proliferation of several
potyviruses [168,169]. Therefore, the counterpart in the common bean may also be a suitable
candidate for resisting BCMV and BCMNV.

BCMV is naturally spread by aphids, and the control of the aphid population by
chemical spraying is another method for controlling the outbreak of BCMV or BCMNV
in the common bean [170]. However, special attention should be paid to the potential
contamination of beans with pesticides and their influence on the environment. Recent
developments in the biosafety of pesticides have shed new light on the control of aphids.
Worrall et al. [171] developed a BioClayTM as the carrier of dsRNA that is a homolog
to BCMV CP, which can effectively inhibit the spread of BCMV. Another study showed
that 0.9% chitosan could effectively inhibit the population quality and change the feeding
preference of Aphis craccivora, reducing BCMV transmission efficiency [172]. Biological
prevention can effectively reduce the incidence and severity of viral diseases [27,173–175].
Seed transmission capacity is a key survival strategy for many potyviruses, including
BCMV and BCMNV. However, the molecular mechanisms underlying seed transmission
are largely unknown at the present. Therefore, it is necessary to investigate the molecular
mechanisms of seed transmission and develop an efficient tissue culture method to obtain
virus-free common been seeds.

Table 1. List of resistance gene markers.

BCMV Resistance
Alleles ID Marker Sequence Reference

I SW-13 F CACAGCGACATTAATTTTCCTTTC [176]
R CACAGCGACAGGAGGAGCTTATTA

S02_48908259 Fa gcgggcCAAAGTGCTAGAGGCATGATCA [19]
R TGGTTATCATTCATTGTGAAGTCAATG
Fb gcgggcagggcggcAATCTTATGCTTGAAGCAGTGAAAGC

BCMV_48289723_CAPS F AGGAGGAAGAACGGTGGTC [15]
R TTTGGTGGTAATTTGAAAATGG

OW13690 RAPD
marker CACAGCGACA [177]



Agronomy 2023, 13, 58 10 of 18

Table 1. Cont.

BCMV Resistance
Alleles ID Marker Sequence Reference

bc-1 SBD-5 F GTGCGGAGAGGCCATCCATTGGTG [134]
R GTGCGGAGAGTTTCAGTGTTGACA

S03_4203361 Fa gcgggcTGGTCAGTTTGTCTTCCCTAACT [19]
R TGCAGAAGAGCTCAACTCGAAG
Fb gcgggcagggcggcGGTCAGTTTGTCTTCCCTAACA

bc-2 Pvvps4_del Fa AGACCGTTTGCTAGGTTCACAA [18]
R TGTAGGCAATAAGGCGACGTTT
Fb AAATTATAAACATGTGTTGGCGAGC

Pvmit-2_C_del Fa gcgggcagggccATTTCTGCGTGATTGCCTCT [18]
R CTTCAAAACGCACCTCAAGTATGA
Fb gcgggcTCTGCGTGATTGCCTCC

bc-3 ROC11 F CCAATTCTCTTTCACTTGTAACC [177]
R GCATGTTCCAGCAAACC

eIF4E F ACCGATGAGCAAAACCCTA [17]
R CAACCAACTGGTATCGGATT

OAD19690 RAPD
marker CTTGGCACGA [178]

OS13660 RAPD
marker GTCGGTTCCTG [178]

PveIF4E1,3,4_PveIF4E2 Fa gcgggcCAATCTTATGCTTGAAGCAGTGAAAGT [19]
R ATTTACAATAACATTCACCACCCGAGCAA
Fb gcgggcagggcggcAATCTTATGCTTGAAGCAGTGAAAGC

bc-4 Pvmit1_T_G Fa gcgggcCGAAAGCGTTCCCTCTCTACAT [18]
R GCGTGATGGCTTCCTTGATCTT
Fb gcgggcagggcggcCGAAAGCGTTCCCTCTCTACAG

bc-ud Pvbzip1_A_C Fa gcgggcTAGGAGAACTTGGTTTGTCTGAGTA [19]
R GCACTCCATAAGGGATGTGGT
Fb gcgggcagggcggcGGAGAACTTGGTTTGTCTGAGTC

Note: Fa and Fb: allele specific positive primers; F: forward primer; R: reverse primer.

Table 2. Candidate BCMV resistance genes in common bean.

BCMV
Resistance

Alleles
Location Candidate Genes Reference

I Pv02: 48,908,259 Phvul.002G323000~Phvul.002G323,500
Phvul.002G323800 [15,21]

bc-1 Pv03: 4,203,361

Side-by-side receptor-like
protein kinases (RLKs),

Phvul.003G038700,
Phvul.003G038800

[19]

bc-2 Pv11: 9,272,542
-9,262,459 Phus.011G092700 [18]

bc-3 Pv06: 27,204,768 Phvul.006G168400 [176]
bc-4 Pv05: 36,225,550 Phus.005G125100 [18]

bc-ud Pv05: 36,114,516 Phvul.005G124100 [19]
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Table 3. List of BCMV and BCMNV pathotypes.

Bean
Varieties

Resistance
Genes PG-I PG-II PG-III PG-IV PG-V PG-VI PG-VII PG-VIII

DW / +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+
Poncho

(DDP041) bc-ud +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+

RGLC bc-1 -/- +/+ -/- +/+ +/+ +/+ +/+ -/-
RGLB bc-1, bc-? -/- -/- -/- +/+ -/- +/+ +/+ -/-
Sanilac bc-2, bc-4 -/- -/- +/+ -/- +/+ +/+ -/- +/+

UI35 bc-ud, bc-1,
bc-2

-/- -/- -/- -/- -/- -/- +/+ -/-

IVT7214 bc-3, bc-4,
bc-2? -/- -/- -/- -/- -/- -/- -/- +/+

Jubila I, bc-1 -/- -/- -/- -/- -/- -/- -/- -/-

Amanda I, bc-1,
bc-? -/- -/- -/- -/- -/- -/- -/- -/-

US1006 I, bc-ud,
bc-2

-/- -/- -/- -/- -/- -/- -/- -/-

IVT7233 I, bc-ud,
bc-2

-/- -/- -/- -/- -/- -/- -/- -/-

Note: Pathotype determination criterion: symptoms appear after each strain inoculation/TAS-ELISA test result.
For example, if a symptom is presented and tested as BCMV-positive, it is marked as +/+, and vice versa, it is
marked as -/-. bc-? indicates a helper gene other than bc-ud, and work characterizing these other genes is in
progress.
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