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Abstract: Soil aggregates play an important role in affecting the structural stability of the soil, and it
is important to understand the relationship between soil aggregate stability and crop yield in herbage-
fruit tree intercropping systems. In this study, we determined the optimal spacing configurations for
improving aggregate stability while increasing crop yields in alfalfa-jujube intercropping systems. The
treatments included three intercropping patterns, i.e., the distances between alfalfa and jujube at 0.5 m
(IP0.5m), 1 m (IP1m), and 1.45 m (IP1.45m), along with monoculture alfalfa (CKAL) and jujube (CKJU).
The results showed that IP0.5m, IP1m, IP1.45m, and CKJU effectively improved soil aggregate structure
compared to CKAL. The IP1m spacing significantly increased the amounts of macro-aggregates (8.2%),
and improved soil mechanical properties and aggregate stability among the other treatments, which
was partly attributable to increased mean weight diameter (13.6%) and decreased soil aggregate
destruction rate of water-stable aggregates (2.9%). The results of the principal component analysis
showed that IP1m treatments had a positive effect on PC1. The one-meter spacing of jujube-to-alfalfa
intercropping optimized the soil structure while improving the yield (8.3%); thus, it can be considered
the most suitable intercropping spacing configuration for growing alfalfa in jujube plantations.

Keywords: soil aggregates; intercropping; spacing configurations; soil water-stable aggregates;
ziziphus jujuba; medicago sativa

1. Introduction

Intercropping has been shown to have several advantages over sole or monoculture
cropping [1–3]–increasing crop yields, land use efficiency, improving water and nutrient
use efficiencies, and reducing carbon footprints. Intercropping herbage with fruit trees
in orchard cultivation is a common soil management practice, which has been used for
the development of sustainable cropping systems worldwide [3–5]. In China, the use of
herbage in orchard cultivation has been promoted as a major measure for increasing green
fruit production since the 1990s. Typically, the herbage is planted between fruit trees or
throughout the whole orchard as mulch [6]. In some of the orchard–herbage complex
systems, multiple crop species are planted at multiple levels and with multiple timings,
allowing the fruit trees and the multiple species to engage in inter-species interactions via
the sharing of and competing for light, heat, water, and nutrients [7,8]. The feedback effect
of each component of the intercropping on the utilization of soil resources is important for
the sustainable development of orchard–herbage systems [9].

Jujube (Ziziphus jujuba L.) is a traditional cash crop in Xinjiang province, China, where
it has been planted for more than 3000 years. The unique climate in southern Xinjiang is
favorable to grow jujube trees because the duration of sunshine is long and the temperature
difference between day and night is large, which creates jujube fruits with great density
and fine texture, high sugar content, and small stones. Alfalfa (Medicago sativa L.), a
perennial legume forage, can be adapted to survive under harsh environments, where it
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can continuously produce a high yield per unit area for several years after establishment.
Alfalfa plants have high nutrient content and intercropping alfalfa in a rotation system
can improve soil nutrient content and enrich soil fertility. The deep rooting systems and
the unique forage characteristics of alfalfa make it a favorable choice for improving soil
structure [10]. In China, alfalfa has been used as the main forage crop in the development
of sustainable agricultural systems. However, little information exists regarding how
intercropping alfalfa with jujube trees would affect soil aggregates and herbage yields.

Crop plants require a desirable soil structure to ensure their root anchorage, growth,
and development. A good rooting system enables plants to absorb soil water and nu-
trients, regulate soil water and air contents, and can penetrate deep soil layers for extra
resources [11]. Soil aggregates occur in various forms and sizes due to the interactions
between the host plants, the environment, crop management factors, and soil properties.
Soil aggregates are essential components of the soil structure that affect many of the physi-
cal, chemical, and biochemical properties of the soil. Changes in the soil environment will
be accompanied by changes in the quantity and quality of soil aggregates [12–14]. Soil
aggregate formation is a consequence of the rearrangement of particles, flocculation, and
cementation. The distribution of soil aggregate sizes (i.e., the amounts of large, medium,
and small macro-aggregates, and micro-aggregates) influences the size and continuity of
soil pores [15]. Macro-aggregates typically contain more organic matter and nutrients, are
less susceptible to wind and water erosions, and form larger pores to allow greater water
infiltration and aeration than micro-aggregates [16,17]. Micro-aggregates are generally
formed by chemical factors (Tisdall and Oades, [18,19]), whereas macro-aggregates are
formed by biological factors such as roots and fungal hyphae, and byproducts of microbial
synthesis and decay [19–21]. Thus, soil management practices such as crop rotation, fertil-
izer application, and water management will affect the formation of macro-aggregates more
than micro-aggregates [15,16]. The soil structure is one of the core soil quality indicators
as it affects other processes that are important for soil productivity, carbon sequestration,
and soil systems resiliency [22]. A good soil structure requires more soil aggregates and an
appropriate particle size distribution, to increase soil productivity and reduce erosion [23].
Many agronomic practices, such as intercropping, and fertilization have important effects
on soil structure [24,25]. For example, [26] found that no-tillage slowed down the turnover
of soil macro-aggregates and helped to produce more micro-aggregates < 0.25 mm within
the soil macro-aggregates, thereby enhancing soil C sequestration.

The stability of soil aggregates, an important indicator of the structural quality of the
soil [26], serves as a key feature that provides information about the functional capacity of
the soil. Aggregate stability is the consequence of complex interactions among multiple
factors, including soil physiochemical and biological processes [27,28], abiotic (texture,
clay minerals, sesquioxides, and exchangeable cations), biotic (organic matter content,
plant root activities, soil fauna, and microorganisms), and environmental factors (soil
temperature, wetting, drying, freezing, and thawing) [29,30]. Aggregate stability influences
the productivity of the soil because it directly or indirectly affects soil bulk density, porosity,
hydraulic conductivity, and compactibility. Thus, an accurate determination of aggregate
distribution and stability is of importance for evaluating and improving soil structure
and quality.

Many studies on orchard herbage cultivation have focused on the effects of herbage
on the microclimate, soil, and fruit yield and quality, while other studies have evaluated
the orchard–herbage cropping systems and their interaction with soil properties. However,
few studies have investigated the mechanisms responsible for the plant-soil interaction
effect on the productivity of an orchard–herbage cropping system. Information is lacking
regarding the response of herbage to soil aggregate stability in orchard cultivation and the
feedback effect of the soil aggregate stability on herbage yield. Understanding the feedback
mechanism will allow researchers to establish a theoretical base for further investigating
the complex interactions between fruit trees and herbage components in orchard–herbage
systems. The objectives of the present study were: (1) to determine the differences in
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soil water-stable aggregates under different patterns of herbage-tree intercropping, and
(2) to assess the relationships between soil aggregate parameters and herbage yield using
principal component analysis and correlation analysis, and to evaluate the short-term
effects of aggregate stability on soil structure.

2. Materials and Methods
2.1. Study Area

The study was conducted in a jujube orchard at the Horticultural Experiment Station
of Tarim University (40◦54′23” N, 81◦30′13” E, 1015 m), Alar, Xinjiang, China. The site
is in the upper reaches of the Tarim River at the northwestern edge of the Taklamakan
Desert. The area is rich in solar and thermal resources, with average annual solar radiation
of 559.4–612.1 KJ/cm2, a sunshine duration of 2996 h/year, and a daily rate of 66%. The
annual accumulated temperature 10 ◦C is more than 4000 ◦C, the frost-free period is
180–224 days, and the annual mean temperature is 10.8 ◦C. Average annual precipitation
is 40.1–82.5 mm, while annual evaporation is 1976.6–2558.9 mm. Agriculture in the area
mostly relies on irrigation with underground water, which has a water table below 3 m. The
surface evaporation is strong with dry air and northeastern-oriented winds. The site has a
typical continental arid desert climate. The soil type at the experimental site is sandy loam.

2.2. Experimental Design

The experiment was conducted between 2013 and 2020, and the data related to soil
aggregate and herbage yield were collected in 2020. The Jujube plantation was planted in
the spring of 2013 with a row spacing of 1 m × 3 m, and trees were grafted in the spring of
2014. The alfalfa variety ‘Xinjiangdaye’—a large-leaf alfalfa species—was planted between
jujube trees in 2014. The following five cropping patterns were used as the layout of the
treatments in the experiment: (i)–(iii) the distance between alfalfa and jujube trees was
0.5 m (IP0.5m), 1.0 m (IP1m), and 1.45 m (IP1.45m), with seven, four, and two rows of alfalfa,
respectively; (iv) alfalfa sole cropping (CKAL), and (v) jujube sole cropping (CKJU). The
row spacing of alfalfa was 30 cm, and the seeding rate was 22.5 kg/ha (thousand-grain
weight of 2.42 g). Each treatment was repeated three times (Figure 1), for a total of 15 plots.
The area of each plot was 30 m2 (10 m long and 3 m wide). Jujube trees were planted using
artificial drilling to a depth of 1–2 cm, whereas the intercropped alfalfa was grown for three
years in all treatments. The management practices (irrigation, fertilization, etc.) of the crops
were consistent during the study period for all the treatments. Starting from 1 March each
year, weeds within 0.5 m of the base of the jujube trees were hand removed every 30 days
and buried in the surface soil. Irrigation was provided nine times during the season with
30 mm each time, and the last irrigation (100 mm) was provided in early October before
soil froze.

Agronomy 2023, 13, 264 4 of 15 
 

 

 

Figure 1. Intercropping patterns with different distances. 

2.3. Sample Collection 

Soils were sampled using a 40-mm diameter soil auger from the different treatments 

on 15 May, 30 July, 15 August, and 30 October in 2020. In each plot, one soil sample was 

taken from under the center between the two adjacent alfalfa, one was taken from the 

center between the alfalfa and jujube at depths of 0–20 cm and 20–40 cm, and then com-

bined to form a single soil sample for each depth in each plot. Then, the samples of around 

1.0 kg each were transported in hard plastic boxes from the field to the laboratory to pre-

serve the original physical structure of the soil. The samples were manually separated 

along the natural fracture cracks, and the visible stones, debris, and roots were removed 

with tweezers, and then passed through an 8 mm sieve to measure the aggregate stability. 

The sieved soil was divided into equal portions for the determination of mechanical ag-

gregates and water-stable aggregates, and it was then air-dried and stored at room tem-

perature. 

2.4. Aggregates Analysis 

The mechanically stable aggregates were measured using the dry sieving technique 

[31]. An amount of 100 g of air-dried soil aggregates were separated by placing them on a 

sequence of sieves with 2, 1, and 0.25 mm mesh openings (Figure 2). Each sieve was man-

ually shaken at a rate of 30 times per minute (with a 5 cm amplitude) for 2 min. The vari-

ous size fractions of soil aggregates were gently removed from the sieves, collected, and 

weighed. The soil water-stable aggregates were measured using the wet sieving technique 

[32]. Three sieves were used for the aggregate size distribution (2, 1, and 0.25 mm). An 

amount of 100 g of each soil sample was placed into a 2 mm sieve and submerged in dis-

tilled water for five minutes. After the slaking process, manual wet sieving was performed. 

The soil aggregates were oscillated in water at 50 cycles for 2 min and passed through 

progressively smaller sieves (i.e., 1 and 0.25 mm mesh sizes). After the oscillating process, 

the remaining soil aggregates on each mesh screen were washed from the sieves into alu-

minum pans, oven-dried at 50 °C for 24 h, and weighed. The aggregate stability was ex-

pressed as the mean weight diameter (MWD) (Equation (1)) comprising the sum of the 

mass fraction remaining in each sieve multiplied by the mean aperture of the adjacent 

mesh: 


=

=
n

1i

iiwxMWD

 
(1) 

where wi is the proportion of the sample with a mean size of xi mm [33]. 

Figure 1. Intercropping patterns with different distances.



Agronomy 2023, 13, 264 4 of 15

2.3. Sample Collection

Soils were sampled using a 40-mm diameter soil auger from the different treatments
on 15 May, 30 July, 15 August, and 30 October in 2020. In each plot, one soil sample was
taken from under the center between the two adjacent alfalfa, one was taken from the center
between the alfalfa and jujube at depths of 0–20 cm and 20–40 cm, and then combined to
form a single soil sample for each depth in each plot. Then, the samples of around 1.0 kg
each were transported in hard plastic boxes from the field to the laboratory to preserve
the original physical structure of the soil. The samples were manually separated along
the natural fracture cracks, and the visible stones, debris, and roots were removed with
tweezers, and then passed through an 8 mm sieve to measure the aggregate stability. The
sieved soil was divided into equal portions for the determination of mechanical aggregates
and water-stable aggregates, and it was then air-dried and stored at room temperature.

2.4. Aggregates Analysis

The mechanically stable aggregates were measured using the dry sieving technique [31].
An amount of 100 g of air-dried soil aggregates were separated by placing them on a se-
quence of sieves with 2, 1, and 0.25 mm mesh openings (Figure 2). Each sieve was manually
shaken at a rate of 30 times per minute (with a 5 cm amplitude) for 2 min. The various size
fractions of soil aggregates were gently removed from the sieves, collected, and weighed.
The soil water-stable aggregates were measured using the wet sieving technique [32].
Three sieves were used for the aggregate size distribution (2, 1, and 0.25 mm). An amount
of 100 g of each soil sample was placed into a 2 mm sieve and submerged in distilled water
for five minutes. After the slaking process, manual wet sieving was performed. The soil
aggregates were oscillated in water at 50 cycles for 2 min and passed through progressively
smaller sieves (i.e., 1 and 0.25 mm mesh sizes). After the oscillating process, the remaining
soil aggregates on each mesh screen were washed from the sieves into aluminum pans,
oven-dried at 50 ◦C for 24 h, and weighed. The aggregate stability was expressed as the
mean weight diameter (MWD) (Equation (1)) comprising the sum of the mass fraction
remaining in each sieve multiplied by the mean aperture of the adjacent mesh:

MWD =
n

∑
i=1

xiwi (1)

where wi is the proportion of the sample with a mean size of xi mm [33].
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The formula for calculating the soil aggregates destruction rate (SAD) was calculated
as seen in Equation (2):

SAD =
Md − Mw

Md
× 100% (2)
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where SAD is the percentage of aggregates destruction (%), Md and Mw represent the aggre-
gate mass fractions of dry sieve and wet sieve with >0.25 mm particle sizes, respectively.

2.5. Dry Matter Yield (DMY) of Alfalfa

The DMY of alfalfa was measured by taking a 1 m2 sample from each plot at the early
flowering stage (10% blooming) and cutting two times a year. The specific harvesting dates
were 30 July and 30 October. All 1 m2 samples of alfalfa in each plot were cut with scissors
(5 cm stubble). Subsamples of 400 g fresh alfalfa were first oven-dried at 105 ◦C for 30 min
and then at 70 ◦C to a constant mass and reweighed to calculate DMY (kg ha−1).

2.6. Statistical Analysis

All data were analyzed by one-way analysis of variance to detect differences in the
soil aggregate sizes and the effects of intercropping patterns. Significant differences were
accepted at p < 0.05. If a significant difference was detected, the least significant difference
test was used to conduct multiple comparisons. All statistical analyses were performed
using SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). The relationships between the alfalfa
yield and soil aggregate properties were determined using principal component analysis
(PCA) and using redundancy analysis.

3. Results
3.1. Aggregate Size Distribution
3.1.1. Soil Mechanically Stable Aggregates

The concentrations of soil mechanically stable aggregates (SMSA) > 0.25 mm measured
at the first full-bloom stage followed the order of IP1m > IP1.45m > IP0.5m > CKAL > CKJU. The
best distribution of SMSA was obtained for IP1m. In addition, the SMSA was lower under
IP0.5m, IP1m, IP1.45m, and CKAL than that under CKJU (Figure 3). The SMSA, averaged
over different treatments, was low in the surface soil and then increased with the soil
depth. The greatest improvement in SMSA in the surface soil occurred under CKAL.
Aggregates < 0.25 mm in size dominated all soil layers under CKJU. The SMSA under
IP0.5m was higher in the 20–40 cm soil layer than in the 0–20 cm soil layer, and the SMSA of
the 1–2 mm aggregates was highest under IP1m at 12.61%.

Compared with the first full-bloom stage, the SMSA increased in the second full-bloom
stage, although the concentration slightly decreased under CKJU. Thus, compared with
CKJU, CKAL had a lower SMSA value. Overall SMSA decreased from the first blooming
stage for all treatments, but the concentrations of 1–2 mm and 0.25–1 mm aggregates
increased to varying degrees under IP0.5m, IP1m, IP1.45m, and CKAL in the two soil layers.
The average increases in 1–2 mm aggregates under IP0.5m, IP1m, IP1.45m, and CKAL were
6.5%, 6%, −2.2%, and 1.5%, respectively. The average increases in 0.25–1 mm aggregates
under IP0.5m, IP1m, IP1.45m, and CKAL were 3.1%, 1.8%, 4.7%, and 6.6%, respectively. The
average increase in 1–2 mm aggregates was highest under IP0.5m. The highest increase
in 0.25–1 mm aggregates occurred under CKAL. The concentration of 1–2 mm aggregates
decreased in IP1.45m, whereas the concentrations of 0.25–1 mm aggregates increased under
the other treatments. Therefore, the conservation effect of alfalfa mulching on 0.25–1 mm
SMSA was relatively stable and reliable.

3.1.2. Soil Water-Stable Aggregates

In the first full-bloom stage, the concentrations of soil water-stable aggregates > 0.25 mm
(SWSA) followed the order of: IP0.5m > IP1m > CKAL > IP1.45m > CKJU. The best distri-
bution of SWSA was obtained under IP0.5m. In particular, the SWSA > 2 mm, 1–2 mm,
and 0.25–1 mm were higher under IP0.5m, IP1m, IP1.45m, and CKAL compared with CKJU
(Figure 4). In addition, the SWSA > 0.25 mm was significantly higher than that under CKJU.
Thus, the herbage treatments significantly improved the distribution of soil water-stable
aggregates. The SWSA > 0.25 mm decreased as the soil depth increased, whereas the
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SWSA < 0.25 mm increased. In each soil layer, the SWSA > 2 mm, 1–2 mm, and 0.25–1 mm
were significantly higher under the herbage treatments than CKJU.
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Compared with the first full-bloom stage, the SWSA > 0.25 mm increased in the
second full-bloom stage, where the average increases under IP0.5m, IP1m, IP1.45m, and
CKAL were 2.8%, 5.9%, 5.1%, and 5.6%, respectively, but the SWSA > 0.25 mm under
CKJU decreased by 1%. The herbage treatments effectively maintained or even increased
the SWSA in the first and second full-bloom stages, whereas they were more readily
broken under CKJU. The ratios of the four water-stable aggregates relative to CKJU under
the herbage treatments were about 1.41 for SWSA > 2 mm, 1.71 for 1–2 mm, 1.47 for
0.25–1 mm, and 0.98 for <0.25 mm. Thus, the herbage treatments most effectively increased
the concentration of 1–2 mm soil water-stable aggregates, followed by 0.25–1 mm soil
water-stable aggregates. The SWSA > 0.25 mm in the full-bloom stage followed the order
of IP1m > IP0.5m > CKJU > IP1.45m > CKAL. The effects of IP0.5m and IP1m on increases in
SWSA > 0.25 mm did not significantly differ. IP0.5m increased the SWSA > 2 mm (coarse
aggregates) compared with IP1m. Therefore, IP0.5m was most effective in improving the
SWSA, followed by IP1m.

3.2. MWD
3.2.1. MWD of Soil Mechanically Stable Aggregates

The MWD of the soil mechanically stable aggregates were higher under IP0.5m, IP1m,
IP1.45m, and CKAL than CKJU (Figure 5). Compared with CKJU, the herbage treatments sig-
nificantly increased the MWD values of the soil mechanically stable aggregates. The MWD
under IP1.45m in the 0–20 cm and 40–60 cm soil layers were lower than those under CKAL,
thereby indicating that the effect of CKAL on improving the MWD of the soil mechanically
stable aggregates was slightly inferior to that of CKJU. The MWD of the soil mechanically
stable aggregates followed the order of IP1m > IP0.5m > CKAL > IP1.45m > CKJU. Therefore,
IP1m had the greatest effect on consolidating the soil’s mechanically stable aggregates.

Agronomy 2023, 13, 264 8 of 15 
 

 

a

a

bc

ab

c

ab

a

bc
bc

c

0.5

0.6

0.7

0.8

IP 0.5 m IP 1 m IP 1.45 m CK AL CK JU

M
W

D
 (

m
m

)

0−20 cm

20−40 cm

 

Figure 5. Mean weight diameter (MWD) of soil mechanically stable aggregates. The letters on the 

bar denote the significant differences between the treatments across the two soil depths. 

3.2.2. MWD of Soil Water-Stable Aggregates 

The MWD of the soil water-stable aggregates were higher under IP0.5m, IP1m, IP1.45m, 

and CKAL than CKJU to varying degrees (Figure 6). The MWD was significantly higher un-

der IP0.5m and IP1m than CKJU. Thus, the herbage treatment effectively improved the MWD 

values for the soil water-stable aggregates. The MWD values decreased under each treat-

ment as the soil depth increased. The concentrations of water-stable macro-aggregates 

gradually decreased with soil depth, whereas the concentrations of micro-aggregates in-

creased. The MWD values for water-stable aggregates followed the order of IP1m > IP0.5m > 

CKAL > IP1.45m > CKJU. Therefore, IP1m had the greatest effect on consolidating the soil wa-

ter-stable aggregates. 

a

a

bc ab

c

ab

a

bc bc

c

0.06 

0.07 

0.08 

0.09 

0.10 

0.11 

IP 0.5 m IP 1 m IP 1.45 m CK AL CK JU

M
W

D
 (

m
m

)

0−20 cm

20−40 cm

 

Figure 6. Mean weight diameter (MWD) of soil water-stable aggregates. The letters on the bar de-

note the significant differences between the treatments across the two soil depths. 

3.3. Proportions of Soil Aggregates 

3.3.1. Proportion of Soil Macro-Aggregates > 0.25 mm 

The concentrations of mechanically stable macro-aggregates > 0.25 mm accounted for 

about 50% of the total in all treatments (Figure 7). However, the concentrations of soil 

water-stable aggregates were very low and they only accounted for 4–8% of the total. In 

the first full-bloom stage, the highest concentration of mechanically stable macro-aggre-

gates was obtained under IP1m, and it was significantly higher than those under CKAL and 

CKJU. The second highest was obtained under IP1.45m, but IP0.5m only slightly increased the 

concentration of mechanically stable macro-aggregates. The lowest concentration was ob-

tained under CKJU. In the second full-bloom stage, the concentrations of mechanically sta-

ble macro-aggregates increased to varying degrees under the four herbage treatments, 

whereas there was no obvious change under CKJU. 

The concentrations of water-stable macro-aggregates significantly differed among 

the treatments. In the first full-bloom stage, the concentration of water-stable macro-ag-
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3.2.2. MWD of Soil Water-Stable Aggregates

The MWD of the soil water-stable aggregates were higher under IP0.5m, IP1m, IP1.45m,
and CKAL than CKJU to varying degrees (Figure 6). The MWD was significantly higher
under IP0.5m and IP1m than CKJU. Thus, the herbage treatment effectively improved the
MWD values for the soil water-stable aggregates. The MWD values decreased under
each treatment as the soil depth increased. The concentrations of water-stable macro-
aggregates gradually decreased with soil depth, whereas the concentrations of micro-
aggregates increased. The MWD values for water-stable aggregates followed the order of
IP1m > IP0.5m > CKAL > IP1.45m > CKJU. Therefore, IP1m had the greatest effect on consoli-
dating the soil water-stable aggregates.
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3.3. Proportions of Soil Aggregates
3.3.1. Proportion of Soil Macro-Aggregates > 0.25 mm

The concentrations of mechanically stable macro-aggregates > 0.25 mm accounted
for about 50% of the total in all treatments (Figure 7). However, the concentrations of soil
water-stable aggregates were very low and they only accounted for 4–8% of the total. In the
first full-bloom stage, the highest concentration of mechanically stable macro-aggregates
was obtained under IP1m, and it was significantly higher than those under CKAL and
CKJU. The second highest was obtained under IP1.45m, but IP0.5m only slightly increased
the concentration of mechanically stable macro-aggregates. The lowest concentration was
obtained under CKJU. In the second full-bloom stage, the concentrations of mechanically
stable macro-aggregates increased to varying degrees under the four herbage treatments,
whereas there was no obvious change under CKJU.
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The concentrations of water-stable macro-aggregates significantly differed among the
treatments. In the first full-bloom stage, the concentration of water-stable macro-aggregates
was highest under IP0.5m, followed by IP1m, and these concentrations were significantly
higher than those under IP1.45m, CKAL, and CKJU. In the second full-bloom stage, the
concentration of water-stable macro-aggregates was 22.6% higher under IP1.45m than that
in the first full-bloom stage. Thus, the effects of IP0.5m and IP1m on increasing the concen-
trations of water-stable macro-aggregates did not significantly differ. The concentrations
of mechanically stable macro-aggregates under different treatments followed the order
of IP1m > IP1.45m > IP0.5m > CKAL > CKJU. The concentrations of water-stable macro-
aggregates followed the order of: IP0.5m > IP1m > CKAL > IP1.45m > CKJU. Therefore, the
concentrations of mechanically stable and water-stable macro-aggregates were highest
under IP1m and IP0.5m, and lowest under CKJU. The concentrations were significantly
higher under the four herbage treatments than CKJU. Thus, CKJU did not effectively in-
crease the soil macro-aggregate concentrations. Among the herbage treatments, the soil
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macro-aggregate concentrations were low under IP1.45m and CKAL, and these treatments
had a low capacity to improve the soil aggregate contents, whereas IP0.5m and IP1m were
the most effective with more suitable intercropping spacing configurations.

3.3.2. Soil Aggregate Destruction Rate (SAD)

SAD is one of the key indexes used to evaluate the stability of soil aggregates and the
overall soil structure. The soil structure is more stable when the SAD values are smaller. In
the 0–20 cm soil layer, the SAD values significantly differed between the herbage treatments
and CKJU, where they were significantly lower under IP0.5m, IP1m, IP1.45m, and CKAL than
CKJU (Figure 8). The SAD value was lowest under IP0.5m and significantly lower than that
under IP1.45m, followed by IP1m. The SAD value was highest under IP1.45m among the
herbage treatments. The differences in the SAD values between the herbage treatments and
CKJU gradually narrowed as the soil depth increased. The SAD values did not significantly
differ in the 20–40 cm soil layer under IP1.45m, CKJU, and CKAL. The SAD value was lowest
under IP0.5m, followed by IP1m. Thus, IP0.5m and IP1m effectively enhanced the stability of
the soil structure.
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Figure 8. Distribution of soil aggregate destruction rate (SAD).

3.4. Dry Matter Yield of Alfalfa

The dry matter yield of alfalfa was significantly higher under CKAL than the other
treatments (Figure 9). The second highest yield was obtained under IP1m and it was
significantly higher than those under IP0.5m and IP1.45m. The dry matter yields under
each treatment were significantly higher than that under IP1.45m. Thus, the intercropping
configuration was not effective under IP1.45m and the alfalfa yield increase was significantly
lower than those under other treatments. The dry matter yields in the second full-bloom
stage decreased to different degrees compared with those in the first full-bloom stage. The
yield was significantly higher under IP0.5m than the other treatments and was still the
lowest treatment under IP1.45m. IP0.5m was most effective at increasing the dry matter yield,
followed by IP1m. The yield in the first full-bloom stage was much higher under IP0.5m than
the other herbage treatments. In the second full-bloom stage, the highest decrease in the
yield occurred under IP0.5m, and thus the increase in yield was most unstable under this
treatment. In the first full-bloom stage, the lowest yield occurred at IP1m compared with
the other herbage treatments. In the second full-bloom stage, the decrease in the yield was
lowest under IP1m, and thus the increase was most stable. The total annual yields under
all treatments followed the order of CKAL > IP1m > IP0.5m > IP1.45m. Thus, CKAL was most
effective at increasing the alfalfa yield.
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Figure 9. Dry matter yields of alfalfa under different treatments. The first and second in the abscissa
are the abbreviation of the first full-bloom stage and the second full-bloom stage, respectively.

3.5. Relationships between Soil Aggregate Parameters and Dry Matter Yield

The two main principal components (PC) 1 and 2 were selected with an explanation of
82.7% and 7.4%, respectively (Figure 10). SWSA > 0.25 mm has the largest load coefficient
in PC1 and the highest contribution to PC1, followed by SMSA > 0.25 mm. The contribution
of MWD-M to PC2 was the largest, and SAD was the smallest. PCA also reflected the
relationship between the spacing treatment and each principal component. The distribu-
tion of IP1.45m treatment and CKAL treatments was almost the same, indicating that the
difference between the two treatments is very small. IP0.5m and IP1m treatments were
positively correlated with PC1, indicating that IP0.5m and IP1m treatments had a positive
effect on PC1. CKJU treatment had a negative effect on PC1 and a positive contribution on
PC2. It suggested that PC1 was greatly affected by IP0.5m and IP1m treatments, and PC2
was most affected by CKAL treatment. The correlation analysis revealed that alfalfa yield
was strongly positively correlated with SWSA > 0.25 mm, SMSA > 0.25 mm, MWD-M, and
MWD-W (Figure 11). This indicates that changes in alfalfa yield were mainly driven by soil
aggregates. In the alfalfa-jujube tree intercropping system, spacing configurations have a
significant effect on alfalfa yield by changing the soil aggregate distribution and proportion,
especially changing soil macro-aggregates.
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Figure 11. Correlation analysis between soil aggregate parameters and alfalfa yield in alfalfa-jujube
tree intercropping systems. MWD of soil mechanically stable aggregates (MWD-M); MWD of soil
water-stable aggregates (MWD-W); soil aggregate destruction rate (SAD); mechanically stable soil
macro-aggregates (SWSA > 0.25 mm); water-stable soil macro-aggregates (SMSA > 0.25 mm).

4. Discussion

The soil structure and distribution of soil aggregate sizes are important for soil ero-
sion resistance, soil fertility, and crop yields [30,34]. In general, a higher proportion of
soil aggregates >0.25 mm is more conducive to the formation of a desirable soil aggre-
gate structure [35,36]. Therefore, the concentration of macro-aggregates is proportional
to the stability of the soil structure [37]. In the present study, the distributions of soil
mechanically stable and water-stable macro-aggregates were better under the four herbage-
alfalfa intercroppings than under CKJU. The concentrations of soil mechanically stable
aggregates > 0.25 mm initially generally decreased and then increased as the soil depth
increased under all treatments. The deep soil is less disturbed by farming operations
and human activities, and is thus conducive to the formation of soil mechanically stable
macro-aggregates [38,39]. In the first full-bloom stage for alfalfa, the concentrations of
soil mechanically stable macro-aggregates were higher under the herbage treatments than
that under CKJU, but there were no significant differences between the different herbage
intercropping spacings. However, the concentration of 1–2 mm soil mechanically stable
macro-aggregates was significantly greater under IP1m than IP0.5m in the second full-bloom
stage. These results indicate that alfalfa intercropping with jujube could significantly
increase the soil mechanical stability of macro-aggregates under an appropriate spacing
between fruit trees and alfalfa plants.

Compared with soil mechanically stable aggregates, soil water-stable aggregates are
more closely associated with the mechanisms responsible for nutrient transformation in
soil [40]. The stability of soil structure, cementation, and accumulation of soil nutrients
are more dependent on water-stable aggregates. In this study, the concentration of soil
water-stable aggregates > 0.25 mm decreased as the soil depth increased, whereas the
concentration of soil water-stable aggregates < 0.25 mm increased; these observations
were in agreement with previous findings that water-stable aggregates were mainly con-
centrated in the surface of the 0–40 cm soil layer [41,42]. In the two full-bloom stages,
the concentration of soil water-stable macro-aggregates was highest under IP1m. The
alfalfa roots were densest at the spacing distance under IP1m, and thus they facilitated
the cementation of organic matter and minerals. In addition, the micro-aggregates were
transformed into macro-aggregates due to microbial activities [43,44]. The MWD of soil
aggregates can directly reflect the distribution of different aggregate sizes. We found that
the MWD values increased as the concentration of macro-aggregates increased. A larger
MWD indicates a higher soil aggregate size and greater aggregate stability [44,45]. The
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MWD values for water-stable aggregates were higher under IP1m than under IP0.5m. In
addition, the concentration of 1–2 mm water-stable aggregates was lower under IP0.5m than
under IP1m. The distance from jujube trees was larger under IP1m, and thus the intensity of
the competition for nutrients between alfalfa and jujube trees was reduced compared with
those under IP0.5m.

The soil structure is more stable when the rate of damage to soil aggregates is lower,
which is more conducive to the growth and development of herbage and fruit trees [46,47].
In the present study, compared with jujube monoculture, herbage treatment effectively
reduced SAD, and the improvement was more obvious in the 0–20 cm soil layer. Alfalfa
mulch significantly reduced the rate of aggregate destruction in the surface soil. The
variation in the soil aggregate destruction rate was similar to that in the water-stable
large aggregate content. Water-stable aggregates strongly influence the destruction rate of
aggregates [48,49]. The aggregate destruction rates in different soil layers were significantly
lower under IP1m than under CKJU, and the average was lower than those under the other
treatments, indicating that IP0.5m and IP1m were most effective in reducing the aggregate
destruction rate in the orchard soil, followed by IP0.5m. The failure rate of soil aggregates
was high at our test site due to the large differences in the mechanically stable >0.25 mm
aggregate contents and the water-stable > 0.25 mm aggregate contents, possibly because
of the sandy loam soil that was greatly affected by arid desert environments [50,51]. We
found that the water-stable aggregates were mainly concentrated in <0.25 mm aggregates
and the >0.25 mm aggregate content was low, which explained the poor structural stability
of the local soil [52,53].

The dry matter yield of alfalfa yield was lower in the second full-bloom stage than
in the first full-bloom stage, possibly because of the low soil water content in the latter
stage and a decrease in the total phosphorus content of soil aggregates [54,55]. Among
the different intercropping treatments, the dry herbage yield was highest under IP1m and
it was significantly higher than those under the other treatments. The alfalfa yield was
lowest under IP1.45m because the yield decreased as the row spacing increased. However, a
smaller spacing between alfalfa plants was not better because the density was excessively
high under IP0.5m, leading to strong competition for nutrients between alfalfa and jujube
trees, with a reduced alfalfa yield as a consequence. Both IP0.5m and IP1m significantly
enhanced the soil structure, mechanical properties, and water-stable aggregate contents, as
well as increased the nutrient content in soil aggregates with different grain sizes. The dry
matter alfalfa yield was highest under CKAL, but IP1m achieved a good balance between
improving the soil fertility and increasing the alfalfa yield.

5. Conclusions

Herbage alfalfa intercropping with jujube trees effectively improved soil aggregate
structure compared with alfalfa monoculture, and the magnitude of the effect was depen-
dent on the spacing configuration or the distances between neighboring jujubes within a
row. The spacing between alfalfa and jujube at one meter apart (i.e., IP1m) significantly
increased the concentration of macro-aggregates > 0.25 mm, soil mechanical properties,
and water stability, while decreasing the concentration of micro-aggregates < 0.25 mm,
compared to the other spacing treatments evaluated. The improvement in the aggregates
and the stability with the one-meter spacing configuration boosted dry matter alfalfa yield
and achieved a balance between optimizing soil structure and maintaining crop yields.
Therefore, the one-meter spacing of jujube-to-alfalfa within a row is considered the most
suitable configuration for alfalfa–jujube intercropping systems.
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