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Abstract: Fusarium head blight (FHB) is one of the most detrimental wheat diseases. The accurate
identification of FHB severity is significant to the sustainable management of FHB and the guarantee
of food production and security. A total of 2752 images with five infection levels were collected to
establish an FHB severity grading dataset (FHBSGD), and a novel lightweight GSEYOLOX-s was
proposed to automatically recognize the severity of FHB. The simple, parameter-free attention module
(SimAM) was fused into the CSPDarknet feature extraction network to obtain more representative
disease features while avoiding additional parameters. Meanwhile, the ghost convolution of the
model head (G-head) was designed to achieve lightweight and speed improvements. Furthermore,
the efficient intersection over union (EIoU) loss was employed to accelerate the convergence speed
and improve positioning precision. The results indicate that the GSEYOLOX-s model with only
8.06 MB parameters achieved a mean average precision (mAP) of 99.23% and a detection speed of
47 frames per second (FPS), which is the best performance compared with other lightweight models,
such as EfficientDet, Mobilenet-YOLOV4, YOLOV7, YOLOX series. The proposed GSEYOLOX-s was
deployed on mobile terminals to assist farmers in the real-time identification of the severity of FHB
and facilitate the precise management of crop diseases.

Keywords: Fusarium head blight; wheat diseases severity identification; lightweight network
architecture; YOLOX; attention mechanism

1. Introduction

Wheat (Triticum aestivum L.) is one of the world’s three major food crops. In 2021,
global wheat production exceeded 776 million tons, of which China, with 136 million
tons ranked first, accounting for ca. 17.6% of the world’s total wheat production [1].
However, Fusarium head blight (FHB) is a destructive disease that restricts the safety of
wheat production and food quality [2,3]. In epidemic years, FHB can reduce the yield
loss of wheat by 10–70%, influencing more than 7 million hectares of wheat-planting
areas [4]. The classification of FHB severity is crucial in making decisions on its control.
The inaccurate identification of FHB severity will lead to ineffective control and fungicide
abuse [5]. Therefore, it is essential to conduct a precise method to identify the severity
of FHB.

Traditionally, the identification of the severity of FHB mostly depends on technicians’
continuous field investigation. Disease severity based on scale proportions is usually
estimated using the naked eye depending on the number or the area of the lesions in the
whole wheat ear. This method is not only time-consuming but also biased and unreliable.
Deep convolutional neural networks (DCNNs) [6] are state-of-art neural networks, which
have the ability of self-learning and contribute to the automatic recognition and severity
estimation of crop diseases. Esgario et al. [7] used the ResNet50 model with 25 MB
parameters to estimate the severity caused by four diseases on coffee leaves, such as
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cercospora leaf spot, brown leaf spot, rust, and leaf miner, which achieved an 86.51%
accuracy. However, the average time required by this model to train one epoch was 21.90 s.
Ji et al. [8] employed images of single crop leaves with a simple background to identify
ten crop disease types and three crop disease severity levels (normal, general, and serious
samples), and adopted the ResNet50 model improved by multi-label binary correlation
CNN (BR-CNN) with an accuracy of 86.70% and the parameters of 23 MB. Mi et al. [9]
developed a novel GradCAM++ network based on a densely connected convolutional
network (DenseNet) and a convolutional block attention module (CBAM) to identify the
severity of wheat stripe rust and the accuracy of the severity level improved to 97.99%.
Zhang et al. [10] proposed a segmentation model of single wheat ear and the FHB lesion
segmentation model based on their self-constructed IABC-K-PCNN. According to the radio
between the lesion and the whole wheat ear, the speed of the FHB classification was about
5 s per photo, with an accuracy of 92.5%. Although satisfactory results are reported in the
above studies based on large CNNs, there will be a problem in the practical application
of disease severity identification due to the high number of parameters, the large storage
space, and computational consumption.

In order to reduce the parameters and speed up network training, some lightweight
CNNs have been gradually applied in plant disease detection research. Bao et al. [11]
developed SimpleNet using convolution and inverted residual blocks that achieved a
94.10% recognition accuracy of wheat ear diseases. Hong et al. [12] improved the YOLOv4
by a lightweight network, non-maximum suppression (NMS), and complete intersection
over union (CIoU) to achieve model lightweight improvement and deploy to UAV to
identify FHB. Liu et al. [13] improved the YOLOX-Nano model by introducing blueprint-
separable convolution (BSConv), attention mechanism, and the asymmetric ShuffleBlock.
This study provided a feasible solution for the real-time detection of apple leaf disease
with a 91.08% accuracy. Although the parameters of the above network models were
smaller than those of the common DCNNs, these models did not directly identify the
severity of FHB. In recent years, researchers have started to concentrate on extracting
critical feature information and improving the performances of models by incorporating
the attention mechanism into the networks. Cui et al. [14] introduced the CBAM into
the autoencoder to identify maize leaf diseases from PlantVillage in laboratory scenarios,
and obtained a 99.44% identification accuracy. Li et al. [15] applied a hybrid attention, the
Atrous Space Pyramid Pool (ASPP), to optimize DeepLab V3+ to accurately segment lesions
and automatically assess the severity of cucumber downy mildew and powdery mildew.
The above studies demonstrated that using different strategies to optimize neural networks
can further improve the recognition accuracy and training speed. However, considering
the small and subtle differences between the different severity levels of FHB, it is still a
great challenge to establish a real-time and accurate identification model for the severity of
FHB on the mobile terminal.

To reduce the parameters while improving the detection accuracy and speed of the
classical YOLOX-s, a lightweight network named GSEYOLOX-s was proposed in this
study. An FHB severity grading dataset (FHBSGD) was established, which contained a
total of 2752 images with five infection levels of FHB under experimental and complex field
conditions. GSEYOLOX-s model was designed by fusing a simple, parameter-free attention
module (SimAM), the ghost convolution of the model head (G-head), and the efficient
intersection over union (EIoU) loss function into YOLOX-s. The three improvements
maximized the reduction in model parameters and facilitated the deployment of our model
on the mobile terminal. The experimental results show that the proposed GSEYOLOX-s
model only had 8.06 MB parameters while achieving a mean average precision (mAP) of
99.23% on the FHBSGD. The proposed model provides support for precise planting and
intelligent decision-making for wheat production.
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2. Materials and Methods
2.1. Data Acquisition

FHB consists in the premature fading or wilting of wheat ears that can be seen 3 weeks
post Fusarium spp. [16]. infection, with infected spikelets showing orange or pink colors
due to pathogen spores and mycelia on wheat ears [17]. According to the National Standard
of the People’s Republic of China for FHB (GB/T 15796-2011), the severity of FHB is divided
into 5 levels ranging from Level_0 to Level_4. Level_0 represents disease-free; Level_1
indicates that the number of infected spikelets is less than 25% of all spikelets; Level_2
indicates that the number of infected spikelets is less than 50% and more than 25% of all
spikelets; Level_3 indicates that the number of infected spikelets is less than 75% and more
than 50% of all spikelets; and Level_4 indicates that the number of infected spikelets is
more than 75% of all spikelets.

The images acquisition area is Guanzhong district, Shaanxi Province, such as Wugong,
Fuping, Pucheng, and Mei County. The image collection time was from 10 May 2022 to
20 May 2022 during late grouting stage of wheat. The shooting equipment include one
digital camera (Canon EOS 850D) and mobile phones (Apple 11pro and Huawei Mate20),
using automatic white balance and optical focusing. These devices were held 25–50 cm away
from wheat ears and the time of acquiring image was from 9:00 a.m. to 18:00 p.m. The images
were stored in JPEG format with a resolution of 6000 × 4000 pixels and 4032 × 3024 pixels.
To meet the training requirements of the proposed detection model, the image size was
uniformly adjusted to the size of 640 × 640 pixels. According to the above standards, we
classified the collected dataset into five severity levels of FHB. The dataset contained a total
of 2752 images of FHB, including 556 images of Level_0, 638 images of Level_1, 732 images
of Level_2, 598 images of Level_3, and 228 images of Level_4. Specific samples of the
FHBSGD are shown in Figure 1.

(a) Level_0 (b) Level_1

(c) Level_2 (d) Level_3

(e) Level_4

Figure 1. Wheat FHB with different severity levels under experimental and field conditions in
the dataset.
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2.2. Data Processing

Dataset annotation is essential for an identification task based on deep learning. Under
the guidance of plant protection experts, we used “LabelImg” to manually label the severity
grading of wheat ears in the images and generated XML-type annotation files with Pascal
VOC 2007 dataset format standard. The dataset was divided into training set, validation
set, and test set at 8:1:1, as shown in Table 1. To enrich the background of samples and
improve the robustness against image noises, the data enhancement method in this study
adopted the combination of Mixup and Mosaic [18], which was helpful to improve the
detection ability of partial occlusions and subtle targets.

Table 1. The sample distribution in FHBSGD.

Level_0 Level_1 Level_2 Level_3 Level_4

training set 444 510 586 478 182
validation set 56 64 73 60 23

test set 56 64 73 60 23
total 556 638 732 598 228

2.3. GSEYOLOX-s for FHB Severity Identification
2.3.1. The Network Architecture

YOLOX is a new high-performance target-detection model presented by Ge and
Liu et al. [19]. Its network architecture baseline includes CSPDarknet [20], feature pyramid
networks (FPNs) [21] structure combined with the path aggregation networks (PANs) [22]
structure to extract features, the decoupled head with the anchor-free method, and IoU
loss [23] for bounding box regression. YOLOX-s, a lightweight version of YOLOX series,
was selected as the base network architecture in this study. Although the parameter number
of YOLOX-s had been significantly reduced compared to other versions of the YOLOX
series, the amount of calculation for the mobile terminal was still greater. Moreover, there is
still a challenge to accurately detect the subtle differences between different severity levels
of FHB.

A lightweight network based on improved YOLOX-s, named GSEYOLOX-s (Figure 2),
was proposed in this study. To fully minimize the parameters while enhancing the detection
accuracy and speed of the classical YOLOX-s, three main strategies were designed in our
model. Firstly, the attention mechanism, SimAM, was introduced into the CSPDarknet
backbone network of YOLOX-s (Figure 2c) to focus on essential features without additional
parameters, which can effectively improve the expressive ability of feature extraction by
optimizing an energy function to calculate the contribution of each neuron. Secondly,
G-head (Figure 2e) was applied to take full advantage of redundant feature information
among similar images, thus greatly reducing parameters and ensuring the performance
of the model. In addition, EIoU function was employed for rapid convergence and more
accurate localization of wheat ear lesions.

2.3.2. A Simple, Parameter-Free Attention Module (SimAM)

Referring to the attention module of the human brain, Yang and Zhang presented a
novel SimAM [24] based on the theory of neuroscience, which can directly calculate the full
three-dimensional weights on the feature graph. The SimAM improved the performance of
convolutional neural networks without referring to any additional parameters to calculate
the attention weight on the feature map. In this study, we introduced the SimAM to the three
feature maps extracted by CSPDarknet. This operator was used to boost the representation
ability of feature extraction and a favorable effect for FPN and PAN structure feature fusion.
The calculation procedure of the SimAM is shown in Figure 2g.
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Figure 2. The structure of the GSEYOLO-s.

In the theory of neuroscience, the attention of the human brain evaluates the impor-
tance of each neuron, in which info-rich neurons usually display different firing modes from
surrounding neurons. Furthermore, the activated neurons usually inhibit the surrounding
neurons, which need to be given more attention. The study defines the energy of neurons
by measuring the linear separability between neurons, which is simplified to produce the
following energy function (Equation (1)) [24] to assess the importance of each neuron.

e∗t =
4
(
σ̂2 + λ

)
(t− û)2 + 2σ̂2 + 2λ

(1)

where û = 1
M ∑M

i=1 xi, σ̂t
2 = 1

M ∑M
i=1(xi − ut)

2, xi is the target neuron, and M is the number
of neurons on this channel. The significance of neurons can be gained by 1/e∗t , where
e∗t represents the energy value of neurons at the current position. Combined with the
neuroscience theory, the lower the current neuronal energy, the greater the discrepancy
between the current neuron and the surrounding neuron, the greater the importance. Then,
a scaling operator refines the whole feature.

X̃ = sig
(

1
E

)
� X (2)

In Equation (2), sig is the sigmoid activation function, E is the integration of all e∗t
across spatial and channel dimensions, and X ε RC×H×W is the input features. The sigmoid
activation function is applied to limit the E-value range without affecting the relative
importance of each neuron.

2.3.3. G-head Module

Traditional convolution processing has the redundancy problem of feature maps,
resulting in a large amount of computational costs. The ghost convolution designed simple
operations to simplify the redundant calculation process of traditional convolution [25]. By
introducing the ghost convolution into the G-head, we achieved the lightweight and speed
improvement of the model.
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The ghost convolution (Figure 2h) first uses a primary convolution to generate m
intrinsic feature maps according to the input feature information where m is less than the
desired n feature maps; then, each intrinsic feature is subjected to a series of cheap linear
operations to generate s ghost features according to the following function:

C′′′i = Φi

(
C′′j
)

∀i = 1, . . . , s, j = 1, . . . , m (3)

where C′′j is the j-th intrinsic feature map generated by primary convolution, Φi is the i-th
linear operation that generates the i-th ghost feature map C′′′i , and C′′j generates total s
corresponding ghost feature maps through different mappings. Finally, these feature maps
are linked together to form the desired n feature maps, which reduces the learning cost of
non-critical features without reducing the accuracy of the model.

Equations (4) and (5) represent the calculation of parameter numbers of ordinary
convolution (Pbsc) and ghost convolution (Pghc), respectively.

Pbsc = c1c2k× k (4)

Pghc =
1
2

c1c2k× k +
1
2

c2k× k =
1
2

c1c2k× k (5)

where c1 is the channel of the input feature map, c2 is the channel of the output feature
map, and k× k is the size of the convolution kernel. The ghost convolution model has
only half as many parameters as the conventional convolution for the same input–output
feature maps.

2.3.4. Efficient Intersection over Union (EIoU) Loss

To obtain faster convergence and more accurate localization of the prediction target,
EIoU loss [26] was used for bounding box regression. YOLOX-s adopts IoU loss to calculate
the difference of the prediction box and the real box. However, when the prediction box
and the real box do not intersect, the IoU loss [27] will exhibit gradient disappearance.
The CIoU [28] considers three geometric factors, such as the overlap area, the central
point distance, and the aspect ratio, to ameliorate the above problem. Due to the fact
that the aspect ratio difference of CIoU cannot reflect the true discrepancy in width and
height as well as their confidence, EIoU breaks down the aspect ratio factor into width and
height loss separately. EIoU is defined in Equation (6). The two previous parts follow the
approach in CIoU, while the width–height loss module directly minimizes the width–height
difference between the target frame and the anchor frame. It effectively helps to speed up
the convergence and improve positioning accuracy.

LEIoU = LIoU + Ldis + Lasp = 1− IoU +
d2

c2 +

∣∣w− wgt
∣∣2

C2
w

+

∣∣h− hgt
∣∣2

C2
h

(6)

where LIoU is the overlap area loss, Ldis is the center point distance loss, Lasp is the aspect
ratio loss, d represents the center distance between the groundtruth box and the prediction
box, and c represents the minimum border diagonal distance that can include both the
prediction box and the real box, Cw and Ch are the width and height of the minimum
bounding box covering the two boxes, respectively, wgt and hgt represent the width and
height of the groundtruth box, respectively, w and h are the width and height of the
prediction box, respectively. In summary, the illustration of EIoU loss for box regression is
shown in Figure 3.
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ground-truth

prediction
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gt
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Cw 

Ch c 
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w 
gt 

Figure 3. The EIoU loss for box regression. The hgt, wgt, w, h, Cw, Ch, d, and c are the same definition
as Equation (6).

2.4. Experimental Configurations and Hyperparameters Setting

The experiment employed Python as the programming language and Pytorch as the
deep learning framework. The configurations of hardware and software were shown
in Table 2. The hyperparameters of the GSEYOLOX-s were set as follows. The initial
learning rate was 0.001, and when the loss value of the verification set did not decrease
after 10 epochs, the learning rate dropped to 1/10 of the initial value. The batch size was 8,
and the number of epochs (iterations) was 200. Adam optimizer was applied to optimize
the model.

Table 2. Hardware and software configurations.

Configuration Item Value

CPU Intel Xeon CPU E5-2683 v3 @ 2.00GHz
GPU NVDIA Geforce RTX 3090

CUDA 11.7
Memory 64 G

Operating system Ubuntu 18.04.6 LTS (64-bit)
Deep learning framework Pytorch

2.5. Evaluation Indices

In this study, precision, recall, F1-score, mean average precision (mAP), frames per
second (FPS), and parameters are selected as evaluation indices to comprehensively eval-
uate the performance of deep learning modules. These evaluation indices are calculated
as follows:

Precision =
TP

TP + FP
× 100 (7)

Recall =
TP

TP + FN
× 100 (8)

F1-score =
2× Precision× Recall

Precision + Recall
(9)
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FPS =
1
t

(10)

mAP =
∑S

i=1 AP(S)
S

(11)

where TP, FP, and FN are the numbers of true positive cases, false positive cases, and false
negative cases, respectively. Moreover, t is the average time the model takes to recognize an
image and S is numbers of the FHB severity level. Precision is the ratio of the quantity of
positive samples correctly predicted to the quantity of all positive samples predicted. Recall
is the ratio of the quantity of positive samples correctly predicted to the total quantity of
true samples. F1-score can be used to balance accuracy and recall. FPS is used to evaluate
the real-time processing speed of a model and parameters are used to estimate the model
size. The mAP is the mean of the average precision (AP) for each severity level of FHB,
which is used to reflect the performance of the model. The parameters (MB) represent the
spatial complexity of the model, which is calculated by the size of the convolution kernels
and the number of input and output channels.

2.6. WeChat Mini Program Development

The GSEYOLOX-s model was deployed on the cloud server. The front-end user
interface of WeChat Mini Program was written in WXML and WXSS, and its logic layer
was developed in JavaScript. The application consisted of disease detection home page,
encyclopedia, and detection results page. The open-source Flask framework was used to
communicate between the front-end applet and the cloud server.

3. Results
3.1. Ablation Experiments

To verify the effectiveness of the G-head, SimAM, and EIoU loss function for the
YOLOX-s model, ablation experiments were conducted on the FHBSGD dataset under the
same experimental setting.

As shown in Table 3, the CBAM, SimAM, and EIoU all provided positive feedback
to the model in terms of precision or light weight. Firstly, compared with the attention
mechanism of CBAM, the SimAM achieved better results with 97.92% of mAP and without
increasing the number of parameters. Secondly, although the accuracy of the model was
slightly reduced by introducing G-head to YOLOX-s, the parameters of YOLOX-s + G-head
were reduced by 9.84%. Additionally, when the G-head was combined with SimAM
attention and EIoU loss, our proposed GSEYOLOX-s could not only reduce the parameters
to 8.06 MB, but also increase the average precision of the model to 99.23%. Thirdly, as
shown in Figure 4, the EIoU loss function can obtain the smaller loss value and accelerate
convergence compared with the IoU loss function used in YOLOX-s. In summary, by
uniformly applying the three above methods to the proposed model, the simultaneous
tuning of model accuracy maximization and lightweight parameters was achieved.

Table 3. Ablation experiments of the GSEYOLOX-s on FHBSGD.

Models CBAM SimAM G-head EIoU mAP (%) Parameters (MB)

YOLOX-s 96.71 8.94
YOLOX-s + CBAM X 97.81 9.03
YOLOX-s + SimAM X 97.92 8.94
YOLOX-s + G-head X 96.48 8.06
YOLOX-s + EIoU X 98.54 8.94

YOLOX-s + SimAM + G-head X X 96.95 8.06
YOLOX-s + SimAM + EIoU X X 98.56 8.94

GSEYOLOX-s X X X 99.23 8.06

A ‘X’ indicates that the corresponding module is used.
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Figure 4. The loss curves during training process.

3.2. Comparison of Different Target Detection Models

The GSEYOLOX-s was compared with five typical target detection models including
EfficientDet [29], Mobilenet-YOLOV4 [30], YOLOV7 [31], YOLOX-s, and YOLOX-m. The
detection results on the FHBSGD are shown in Table 4. Among the five target detection
models, YOLOX-s employed relatively small parameters of 8.93 MB to achieve the relatively
high mAP of 96.71% and the fastest detection speed of 50 FPS, while YOLOX-m used nearly
three times as many parameters (25.28 MB) to achieve the highest mAP of 98.73%, and
Mobilenet-YOLOV4 achieved the highest F1-score of 94%. However, compared with the
above models, the mAP, F1-score, and parameter numbers of our proposed GSEYOLOX-s
were all optimized. In addition, the detection speed with 47 FPS of our model was also
comparable to that of the fastest YOLOX-s, which can meet the requirements of real-time
detection. Above all, the proposed model is more suitable for mobile devices.

Table 4. Detection results of different target detection models on FHBSGD.

Methods mAP(%) F1-Score (%) Parameters (MB) FPS Recall (%) Precision (%)

EfficientDet 88.71 86.20 3.87 11 81.23 92.21
Mobilenet-YOLOV4 96.28 93.81 12.29 20 95.93 92.15

YOLOV7 88.52 81.18 37.22 27 78.57 85.51
YOLOX-s 96.71 79.67 8.93 50 96.71 70.08
YOLOX-m 98.73 95.88 25.28 27 96.62 95.15

GSEYOLOX-s 99.23 96.02 8.06 47 96.70 95.33

In detail, the mAP of FHB severity grading detection using the six models is shown in
Table 5. It can be seen that the mAP of the GSEYOLOX-s was the best among the six models
and all above 99% for five FHB severity levels, while the confusion matrixes of YOLOX-s (a)
and GSEYOLOX-s (b) on the test set are shown in Figure 5. Among the images of the test
set, the YOLOX-s incorrectly predicted one sample for each severity level of FHB. However,
the GSEYOLOX-s mis-predicted 1 Level_0 sample, 1 Level_3 sample, and 1 Level_4 sample.
All samples in Level_1 and Level_2 were correctly identified. This further demonstrates
the outstanding detection performance of our model.
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Table 5. The mAP of FHB severity grading detection using six target detection models.

Methods
mAP(%)

Level_0 Level_1 Level_2 Level_3 Level_4

EfficientDet 70.57 88.56 91.36 96.28 96.77
Mobilenet-YOLOV4 96.44 95.69 96.74 96.76 95.78

YOLOV7 90.84 82.20 89.57 91.32 88.68
YOLOX-s 96.62 97.85 97.73 97.54 93.83
YOLOX-m 98.70 98.68 98.79 99.32 98.16

GSEYOLOX-s 99.28 99.23 99.09 99.33 99.23

(b)(a)

Figure 5. Confusion matrixes of YOLOX-s (a) and GSEYOLOX-s (b) on test set.

3.3. Visualization

The visual detection results of the top four precision models on FHBSGD are shown in
Figure 6, and it can be seen that GSEYOLOX-s outperforms the other comparison models in
terms of the accuracy of the grading identification and the prediction of the bounding box
for single ear wheat images in column (a) and column (b). For the multi-ear wheat image
in column 3, GSEYOLOX-s and Mobilenet-YOLOV4 can accurately detect the severity
level of the two wheat ears at the same time, but for the wheat ear obscured partially in
column (c), the GSEYOLOX-s detected the severity level of FHB more accurately than
Mobilenet-YOLOV4. From the heatmaps in column (d), due to the application of SimAM,
the GSEYOLOX-s more accurately focused on the center of the wheat than the other
models, making it easier to extract the typical features of FHB. Overall, the comprehensive
performance of GSEYOLOX-s was superior to other models in the identification of severity
levels of FHB.

3.4. Model Deployment

We developed a WeChat Mini Program (Figure 7) to deploy the GSEYOLOX-s model.
The service allowed croppers to upload wheat pictures taken in the field or in mobile phone
albums (Figure 7a). By using our proposed model on mobile terminals, croppers can easily
obtain the real-time feedback to identify the severity levels of FHB (Figure 7b). In addition,
some popular science knowledge about FHB was graphically and literally provided in the
platform (Figure 7c).
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Figure 6. Visualization of detection results on FHBSGD. (a) Single wheat ear in laboratory scenes;
(b) Single wheat ear in field scenes; (c) Multiple wheat ears in field scenes; (d) Heatmaps of detec-
tion results.
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(a) (b) (c)

Figure 7. User interfaces of Wechat Mini program.

4. Discussion

The light weight and accuracy of the model determine whether it can be easily applied
to the actual planting environment. Gao et al. [32] employed the ResNet50 model to estimate
the severity of FHB. However, the model with about 25 MB parameters was constructed
under simple experimental conditions, which faced the problem of decreasing accuracy in
complex field conditions. The FHBSGD dataset established in this study collected disease
images under experimental and complex field conditions. Training on this dataset enabled
the proposed GSEYOLOX-s to learn differential features of FHB severity while avoiding
the interference of complex backgrounds. Moreover, the combined optimization of SimAM,
G-head, and EIoU improved the identification speed and accuracy of FHB severity, reduced
the parameters of the model, and promoted the deployment of our model on the WeChat
Mini Program to achieve real-time detection in the field.

FHB is a typical head disease of wheat, and directly induces the yield decline of
wheat crops. Given the cost of disease control and the yield loss, Level_1 is an appropriate
threshold to intervene on the disease with treatments of chemical fungicide. While the
proportion of diseased spikelets is less than 25%, the intervention could retrieve a loss
which far outweighs the cost of disease control. When the severity of FHB exceeds Level_1,
there are currently no better control measures to save the affected crops. GSEYOLOX-s
aims to accurately predict the severity of FHB as early as possible, which can help farmers
in their decision toward better crop management.

5. Conclusions

To develop a real-time automatic identification of FHB grading, a lightweight GSEYOLOX-
s model was proposed in support of the sustainable management of FHB. The SimAM
attention mechanism was introduced into CSPDarkNet to enhance the ability to represent
essential disease features without additional parameters. The G-head module was designed
to decrease the number of parameters and ensure the performance of the model. Addition-
ally, the use of EIoU loss further accelerated the convergence and increased the positioning
accuracy of the prediction box. The results indicate that the proposed GSEYOLOX-s can
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efficiently and accurately identify severity levels of the FHB with a mAP of 99.23% and
47 FPS of detection speed. Meanwhile, the proposed model was deployed on the mobile
terminal to enable farmers and technicians to automatically identify the severity levels
of FHB. Further work is required to enrich the construction of the canopy scale multi-
severity detection model. Thus, the automatic intelligent monitoring platform of FHB will
be achieved.
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3. Ochodzki, P.; Twardawska, A.; Wiśniewska, H.; Góral, T. Resistance to Fusarium Head Blight, Kernel Damage, and Concentrations

of Fusarium Mycotoxins in the Grain of Winter Wheat Lines. Agronomy 2021, 11, 1690. [CrossRef]
4. Miao, J.; Zhang, G.P.; Zhang, S.J.; Ma, J.Q.; Wu, Y.Q. The orange wheat blossom midge promotes fusarium head blight disease,

posing a risk to wheat production in northern China. Acta Ecol. Sin. 2023, 43, 112–116. [CrossRef]
5. Chen, B.; Shen, X.; Li, Z.; Wang, J.; Li, X.; Xu, Z.; Shen, Y.; Lei, Y.; Huang, X.; Wang, X.; et al. Antibody generation and

rapid immunochromatography using time-resolved fluorescence microspheres for propiconazole: Fungicide abused as growth
regulator in vegetable. Foods 2022, 11, 324. [CrossRef] [PubMed]

6. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318.
[CrossRef]

7. Esgario, J.G.; Krohling, R.A.; Ventura, J.A. Deep learning for classification and severity estimation of coffee leaf biotic stress.
Comput. Electron. Agric. 2020, 169, 105162. [CrossRef]

8. Ji, M.; Zhang, K.; Wu, Q.; Deng, Z. Multi-label learning for crop leaf diseases recognition and severity estimation based on
convolutional neural networks. Soft Comput. 2020, 24, 15327–15340. [CrossRef]

9. Mi, Z.; Zhang, X.; Su, J.; Han, D.; Su, B. Wheat stripe rust grading by deep learning with attention mechanism and images from
mobile devices. Front. Plant Sci. 2020, 11, 558126. [CrossRef]

10. Zhang, D.; Wang, D.; Gu, C.; Jin, N.; Zhao, H.; Chen, G.; Liang, H.; Liang, D. Using neural network to identify the severity of
wheat Fusarium head blight in the field environment. Remote Sens. 2019, 11, 2375. [CrossRef]

11. Bao, W.; Yang, X.; Liang, D.; Hu, G.; Yang, X. Lightweight convolutional neural network model for field wheat ear disease
identification. Comput. Electron. Agric. 2021, 189, 106367. [CrossRef]

12. Hong, Q.; Jiang, L.; Zhang, Z.; Ji, S.; Gu, C.; Mao, W.; Li, W.; Liu, T.; Li, B.; Tan, C. A Lightweight Model for Wheat Ear Fusarium
Head Blight Detection Based on RGB Images. Remote Sens. 2022, 14, 3481. [CrossRef]

13. Liu, S.; Qiao, Y.; Li, J.; Zhang, H.; Zhang, M.; Wang, M. An Improved Lightweight Network for Real-Time Detection of Apple
Leaf Diseases in Natural Scenes. Agronomy 2022, 12, 2363. [CrossRef]

14. Cui, S.; Su, Y.L.; Duan, K.; Liu, Y. Maize leaf disease classification using CBAM and lightweight Autoencoder network. J. Ambient.
Intell. Humaniz. Comput. 2022, 1–11. [CrossRef]

15. Li, K.; Zhang, L.; Li, B.; Li, S.; Ma, J. Attention-optimized DeepLab V3+ for automatic estimation of cucumber disease severity.
Plant Methods 2022, 18, 1–16. [CrossRef]
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