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Abstract: Endophytic fungi live in inter-cellular spaces of healthy plant tissues without causing
any apparent symptoms of diseases for the host plant. Some fungal endophytes help their plant
hosts to survive under biotic and abiotic stresses. In this study, we collected healthy mango leaves
at the Honghe mango plantations (Yunnan Province) in the winter. A total of 34 different fungal
endophytic strains were isolated, and their phylogenetic placements were estimated based on the ITS
gene. Members of genus Chaetomium were the dominant fungal endophytes (26%). Common bacterial
plant pathogens (Erwinia amylovora and Pseudomonas syringae) and fungal plant pathogens (Botrytis
cinerea and Penicillium digitatum) were selected to test the antagonism of the fungal endophytes
isolated from mango leaves through co-cultivation in vitro assay. Three strains of Chaetomium sp. viz.
KUNCC22-0749, UNCC22-10750, and KUNCC22-10752 showed great inhibition against two bacterial
pathogens viz. Erwinia amylovora and Pseudomonas syringae, and Alternaria sp. KUNCC22-10760,
Chaetomium sp. KUNCC22-10749, Daldinia sp. KUNCC22-10744, and Rosellinia sp. KUNCC22-10751
also showed great to moderate antagonistic effects against two fungal pathogens viz. Botrytis cinerea
and Penicillium digitatum.

Keywords: antagonistic activities; Chaetomium; fungal endophytes; mango; Yunnan Province

1. Introduction

Phytopathogenic fungi are among the dominant agents of plant diseases that result
in enormous losses in yield and quality of field crops, fruits, and other edible plant mate-
rials [1]. Based on the mode of nutrition, phytopathogenic fungi are normally classified
into two major groups: biotrophic and necrotrophic pathogens. Biotrophic pathogens
(biotrophs) have close relationships with their hosts and are able to use living tissues to
obtain nutrients, while necrotrophic pathogens (necrotrophs) kill plant tissues and obtain
nutrients [2]. Fungal infections cause a wide variety of disease symptoms [3]. Green
mold and associated decay caused by Penicillium digitatum is the most devastating disease
in postharvest citrus fruits (oranges, tangerines, lemons, and grapefruit). About 90% of
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postharvest losses in citriculture have been observed to be caused by P. digitatum in arid
regions and tropical subclimates [4,5]. In addition, Botrytis cinerea (teleomorph Botryotinia
fuckeliana) has been reported to attack mainly more than 200 dicotyledonous plants, espe-
cially as the causal agent of grey mold or botrytis bunch rot in vineyards, causing serious
economic losses worldwide [6-8].

Phytopathogenic bacteria are important plant pathogens widespread throughout the
world [9]. Rajesh-Kannan et al. [10] estimated that about 150 bacterial species are responsi-
ble for different plant diseases, and they mainly belong to three families: Enterobacteriaceae,
Pseudomonaceae, and Xantomonadaceae. Erwinia amylovora (Enterobacteriaceae), a causal agent
of fire blight on a variety of host species in the Rosaceae, causes severe hazards to the
production of Malus, Pyracantha, Pyrus, and Rubus [11-13]. Moreover, Pseudomonas syringae
(Pseudomonaceae) includes 15 identified species and more than 60 pathovars [14]. Almost all
Pseudomonas syringae pathovars are able to infect over 180 plant species and are exceedingly
difficult to control, especially since they result in bacterial cankers on various economically
significant fruits crops from genera Actinidia, Mangifera, and Prunus [15-18]. Pseudomonas
syringae pv. syringae is known as the most polyphagous bacterium that has a broad host
range [17,19]. Mansfield et al. [20] mentioned that both E. amylovora and P. syringae are
listed among the top 10 plant pathogenic bacteria.

The word “endophyte” is derived from Greek, meaning inside or within plants [21].
Endophytic fungi live entirely within plant tissues without causing any apparent symp-
toms of diseases and emerge to sporulate at the plant or host-tissue senescence [22,23].
Several factors influence biological characteristics of endophytes, such as host species,
host developmental stage, inoculum density, and environmental conditions, and they play
a significant role in the control of plant pathogen communities [24]. Endophytic fungi
help plant hosts survive under biotic and abiotic stresses, and considerable evidence has
shown that some endophytic fungi have the ability to protect host plants from attacks
from pathogens and insects [25] and environmental stresses [26,27]. However, the delicate
relationships between most fungal endophytes and their plant hosts have still not been
well understood [28,29]. In addition, the secondary metabolites produced by endophytic
fungi appear to have potential as anticancer, insecticidal, antidiabetic, immunosuppressive,
and biocontrol agents. Therefore, the intensive studies of endophytic fungi will be helpful
in the industrial, pharmaceutical, medical, and agricultural sectors [30].

Mango-associated fungal endophytes have been poorly studied. Vieira et al. [31]
isolated 22 fungal endophytic strains of Colletotrichum associated with mango in South
China. Dashyal et al. [32] isolated 35 strains of endophytic fungi from the stem and leaves
of 10 mango varieties. In recent years, endophytic fungi have been regarded as exciting
novel sources of new bioactive compounds, with reports from a variety of hosts [33-35].
Nwakanma et al. [36] reported that secondary metabolites of endophytic fungi isolated
from bush mango leaves have antimicrobial activities. Phytopathogenic bacteria and fungi
are severe on economic crops, and chemical treatments are the most used control strate-
gies [1,9,37,38]. However, as a result of the widespread and repeated use of certain chemical
fungicides, a number of pathogenic strains have become fungicide-resistant, and fungicide
residues have caused environmental pollution and harmed soil and water animals [39].
Endophytic fungi are eco-friendly and effective biocontrol agents against various bac-
terial and fungal pathogens [40,41], while endophytic fungi associated with mango are
poorly studied. Therefore, investigating the diversity of endophytic fungi associated with
mango and screening the antagonistic strains are useful for controlling fungal and bacterial
pathogens in the field. The aims of this study were to investigate the endophytic fungi
associated with mango and screen endophytic strains with biocontrol potentials.

2. Materials and Methods
2.1. Sampling Mango Leaves and Endophytes Isolation

Fresh and healthy mango leaves were picked from well-managed trees in the Honghe
prefecture, Yunnan Province, in December 2020 (Figure 1). The local GPS and elevation
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information (102°50'11” E, 23°41’01” N, 500 4 m) was recorded, and 100 leaves were picked
from different mango trees and transported to the mycology laboratory in disposable
sterilized bags. Tibpromma et al. [42] was followed for the isolation of endophytic fungi.
The collected leaf samples were washed with tap water, cut into small pieces, and surface
sterilized in sodium hypochlorite (3%) for 1 min, followed by washing in sterilized water
and 75% ethanol for 1 min. Finally, they were washed in sterile distilled water 3 times
and dried in sterilized tissue papers. Four sterilized leaf pieces were inoculated to a
potato dextrose agar (PDA) medium and incubated at 27 °C for 1-2 days. Once the hypha
emerges from leaf tissues, the tips were picked up to new PDA plates [43]. The morphology
of colonies on PDA was taken with a camera of a Huawei P40 mobile phone (Huawei,
Shenzhen, China). Fungal cultures were deposited in the Kunming Institute of Botany
Culture Collection, China (KUNCC).

Figure 1. (a,b) Mango fruits and flowers with healthy leaves in Honghe, Yunnan Province, China.

2.2. DNA Extraction, PCR Amplification and Sequencing

After the fungi had grown for around a week on PDA plates, those cultures were used
for DNA extraction. The fresh mycelia (30-50 mg) were scraped from pure fungal colonies
and transferred into 1.5 mL sterilized microcentrifuge tubes. Genomic DNA was extracted
by the Biospin Fungus Genomic DNA Extraction Kit-BSC14S1 (BioFlux®, Hangzhou,
China), following the manufacturer’s guidelines. A part of extracted DNA was stored
at 4 °C for the instant PCR amplification, and the remaining portion was kept at —20 °C
for long-term storage. PCR mixture contained 12.5 pL of 2x Power Taq PCR MasterMix
(mixture of EasyTaqTM DNA Polymerase, dNTPs, 8.5 uL of double-distilled water (ddH,0),
optimized buffer (Beijing Bio Teke Corporation (Bio Teke), Beijing, China [44]) and 1 uL
of each forward and reverse primers (10 pmol), and 2 puL of DNA templet. Using the
primers ITS4/ITS5, the internal transcribed spacer (ITS) region was amplified [45]. The
PCR condition of ITS genes constituted an initial denaturation step of 3 min at 94 °C,
followed by 35 cycles of 30 s at 94 °C, 50 s at 55 °C, 1 min at 72 °C, and a final denaturation
step of 10 min at 72 °C. The PCR products were purified and sequenced at Beijing Bio
Teke Corporation.

2.3. Sequence Alignment and Phylogenetic Analyses

The reverse and forward sequences were checked in BioEdit v. 7.0.9.0 [46] and as-
sembled in the Geneious (Restricted) 9.1.2 (website: https:/ /www.geneious.com, accessed
on 20 May 2022). Each sequence was BLASTn searched in the GenBank (website: http:
/ /blast.ncbinlm.nih.gov/, accessed on 20 May 2022) to screen the taxa with the highest de-
gree of similarity. The ITS sequence alignment was made in the MAFFT online server (web-
site: www.ebi.ac.uk/Tools/mafft, accessed on 20 May 2022) [47] and minor alterations in
BioEdit 7.2.3 [46], whenever necessary. TrimAL v1.2 (website: http://trimal.cgenomics.org,
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accessed on 20 March 2022) was used to eliminate the uninformative gaps and unclear
regions in the data alignment. On the CIPRES Science Gateway v.3.3, maximum likeli-
hood analysis (ML) was performed (website: http:/ /www.phylo.org/portal2, accessed on
20 May 2022 [48]), selecting RAXML-HPC2 on XSEDE (8.2.12) [49] with the GTRGAMMA
substitution model with 1000 bootstrap iterations. FigTree v1.4.0 was used to display
phylogenetic trees [50], while Microsoft PowerPoint (Microsoft Inc., Redmond, WA, USA)
was used to edit the tree and reliable bootstrap support values were inserted from ML.
Newly generated sequences were deposited in GenBank.

2.4. Screening Antagonistic Endophytes by Dual Culture Assay

For screening antagonistic fungal endophytes, two bacterial (Pseudomonas syringae
and Erwinia amylovora) and two fungal (Penicillium digitatum and Botrytis cinerea) plant
pathogens were obtained from China General Microbiological Culture Collection Center
(CGMCQ) (Table 1). The 34 fungal endophytes and four phytopathogenic species were
respectively inoculated in the media (fungi: potato dextrose agar (PDA), bacteria: nutrient
agar (NA)) for 10 days at 27 °C to make sure all strains have the same growing age [51-54].
At 10 days, the mycelium discs of 3.0 mm diameter from both the endophytes and the
phytopathogenic fungi were taken out, and the plugs were co-inoculated equidistantly
in 85 mm PDA Petri dishes spaced 10 mm from the edge of the dish, while 3.0 mm
width of phytopathogenic bacteria were streaked in the opposite of fungal endophytes
in NA Petri dishes. All endophyte-phytopathogen antagonism tests were performed in
triplicate, and the plates (triplicate) that were only inoculated with bacterial and fungal
pathogens were used as the control groups. After incubating at 27 °C for 10 days, the
radial growth of bacterial/fungal pathogens was measured, provided the endophytic
fungi overrun the pathogens, and the measured value was obtained from the reverse
side. The antagonistic property of each endophyte was expressed as percentage inhibition
of radial growth of fungal pathogens and width of the bacterial streak (PIRG-P), using
the formula PIRG-P(%) = [(R1 — R2)/R1] x 100%, where: PIRG-P = Percentage inhibition;
R1 = The radial growth of the fungal pathogens in control plates/The width of bacterial
streak; R2 = The radial growth of the fungal pathogens/The width of bacterial streak at
10 days of antagonism trials [51-54].

Table 1. Bacterial and fungal pathogens from China General Microbiological Culture Collection
Center (CGMCCQ).

Species Strain References
. Pseudomonas syringae CGMCC: 1.3333 [55]
Bacterial pathogens Erwinia amylovora CGMCC: 1.7276 [20]
Funeal pathogens Penicillium digitatum CGMCC: 3.15410 [5]
ga:pathos Botrytis cinerea CGMCC: 3.3790 7]

2.5. Statistical Analysis

The inhibition rate was analyzed using IBM-SPSS (Statistic Product and Service So-
lutions) Statistics for Windows, version 29. 0. (SPSS Inc., Chicago, IL, USA). Data were
analyzed by the one-way ANOVA with LSD and Duncan tests at the significant level
p < 0.05. All values were expressed as means of three replicates & standard deviation
(S.D.). The visual bar chart was formed in GraphPad Prism software version 9.0 (GraphPad
Holdings, San Diego, CA, USA) statistical package.

3. Results
3.1. Diversity of Endophytic Fungi and Phylogenetic Analyses Based on the ITS Gene

In this study, we isolated 34 fungal endophytic strains, and their phylogenetic place-
ments were given based on the ITS locus. The colony morphology in the PDA of each
strain was exhibited beside ML (Maximum likelihood analysis) tree (Figure 2). The re-
sults show that the 34 strains belong to 3 different classes (Dothideomycetes, Pezizomycetes,
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and Sordariomycetes); 12 different orders (Amphisphaeriales, Botryosphaeriales, Calosphaeriales,
Capnodiales, Diaporthales, Glomerellales, Hypocreales, Mycosphaerellales, Pezizales, Pleosporales,
Sordariales, and Xylariales); and 20 different families. In addition, Chaetomiaceae (Chaetomium
spp.) isolates showed the highest diversity, which accounts for 26% (9 strains) among all
the isolates (Figure 3).
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Figure 2. The left side shows the phylogram generated from maximum likelihood analysis based
on an ITS sequence dataset. The tree is rooted with Candelariella blastidiata (LE-L11031). The ML
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bootstrap support values equal to or greater than 60% are shown at the nodes. Type strains are
indicated in bold. The right-side images show all the endophytic fungi cultures that were grown

on PDA at room temperature for two weeks and their culture collection numbers are written at the
bottom of the culture image.

= Sordariomycetes » Dothideomycetes lnner: CIaSS

s Pezizomycetes

= Sordariales = Botryosphaeriales

» Xylariales = Mycosphaerellales
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= Mycosphaerellaceae
= Pezizaceae

= Pleosporaceae

= Pleurostomataceae
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= Glomerellaceas
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» Cladosporiaceae

= Phaeosphaeriaceae

spericonizceae  Quitter: Family
= Niessliaceae

s Diaporthaceae

Nectriaceae

= Apiosporaceae

Figure 3. Classification of endophytic fungi (n = 34) associated with mango leaves.

3.2. In Vitro Biocontrol Experiments
3.2.1. Effect of Endophytes on the Growth of Erwinia amylovora (CGMCC: 1.7276)

Colonies of Erwinia amylovora were observed as white colonies in NA media. Chaetomium
sp. KUNCC22-10749 strain inhibited the growth of E. amylovora by forming a fast-growing
plentiful aerial mycelium within a short time (Figure 4b), at an inhibition rate of 50.00 =+ 1.63%
(Table 2). Chaetomium sp. KUNCC22-10750 strain inhibited the growth of E. amylovora by
forming a clear zone between the fungus and the bacterium (Figure 4c) at an inhibition rate of
58.49 £ 3.27% (Table 2).

3.2.2. Effect of Endophytes on the Growth of Pseudomonas syringae (CGMCC: 1.3333)

Pseudomonas syringae was visible as orange-yellow, slimy colonies in NA media.
Chaetomium sp. KUNCC22-10752 strain inhibited the growth of P. syringae (Figure 4e)
with an inhibition rate of 50.67 £ 2.00% (Table 2). The pathogenic strain became dry,
stopped growing, and covered with the mycelium of fungal endophytes.
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Table 2. The radial growth inhibition rates of fungal and bacterial pathogens. Inhibitions equal to or greater than 50% are in black bold.

Collection No.

Genera

GenBank Accession

Growth Inhibition Rate (GI) of 10 Days + SD (%)

Erwinia amylovora

Pseudomonas syringae

Botrytis cinerea

Penicillium digitatum

Number (ITS)
CGMCC: 1.7276 CGMCC 1.3333 CGMCC: 3.3790 CGMCC: 3.15410

KUNCC22-10741 Chaetomium ONb520744 18.86 +3.27 c-g 16.00 =4 - 31.54 4+ 5.06 I-n 17.75 £+ 2.65 h-1
KUNCC22-10742 Phyllosticta ON520745 13.20 £ 6.54 e—j 8.00 £ 4j—m 39.82 +4.17 d-1 31.34 +=2.11 cf
KUNCC22-10743 Annulohypoxylon ONb520746 22.64 + 3.27 c—e 13.33 +2.31 gj 37.61 +5.82 f-m 29.96 £ 6.39 c—g
KUNCC22-10744 Daldinia ON520747 7.54 £ 3.27 h 2.67 £2.311m 55.56 &+ 1.73 b 51.16 == 5.59 b
KUNCC22-10745 Xylaria ON520748 7.54 +1.63 h-j 18.67 +2.31 fg 29.88 4+ 2.53 mn 28.58 +2.11 c-h
KUNCC22-10746 Xylaria ONb520749 11.32 4 8.65 f 21.33 +2.31 ef 40.92 £ 4.17 d— 23.05 £ 8.10 ej
KUNCC22-10747 Cercospora ON520750 6.60 £ 2.83 ij 10.67 £+ 4.62 h-k 3292 £3.79jn 25.81 + 0.80 d—i
KUNCC22-10748 Cladosporium ON520751 13.20 £ 8.65 e—j 30.67 £ 2.31 b—d 33.20 4 0.96 i-n 20.29 + 2.88 f-k
KUNCC22-10749 Chaetomium ONb520752 50.00 = 1.63 b 29.33 +2.31 cd 52.02 £ 2.92 bc 38.25 +6.39 ¢
KUNCC22-10750 Chaetomium ON520753 58.49 4 3.27 a 4933 +231a 42.58 + 2.66 d-h 34.57 +4.23 cd
KUNCC22-10751 Rosellinia ON520754 9.43 + 5.66 gj 2.00 £2.11m 4755 +4.17 cd 60.83 + 2.88 a
KUNCC22-10752 Chaetomium ONb520755 4529 +3.27b 50.67 =+ 2.00 a 32.09 4+ 4.97 k—n 28.12 +2.77 c-h
KUNCC22-10753 Peziza ON520756 2453 +3.27 cd 18.67 £ 6.11 fg 4424 + 345 c-g 6.00 £2.77m
KUNCC22-10754 Phaeosphaeria ON520757 11.32 £ 8.65f 12.00 £ 4.00 g-k 43.13 +£1.26 d-h 27.66 = 2.11 c-i
KUNCC22-10755 Alternaria ON520758 26.42 +5.67 ¢ 36.00 + 4.00 bc 40.37 + 4.39 d-k 17.06 £+ 2.77 i-1
KUNCC22-10756 Fusarium ON520759 2453 +3.27 cd 17.33 £ 2.31 f-h 39.27 +1.26 d-1 16.05 £ 1.72i-1
KUNCC22-10757 Chaetomium ON520760 18.87 £11.79 c—g 7.33 £ 4.16j-m 32.09 + 6.63 k—n 33.65 + 9.97 c—e
KUNCC22-10758 Chaetomium ON520761 22.64 + 3.27 c—e 22.67 + 6.11 ef 36.51 £ 6.70 g-m 2811 £ 2.4 c-h
KUNCC22-10759 Chaetomium ON520762 16.98 & 6.54 c-h 10.67 £+ 2.31 h-k 45.34 + 3.31 c—f 3042 £9.81 c—g
KUNCC22-10760 Alternaria ON520763 20.75 + 5.67 c—f 32.00 £ 4.00 b—d 67.15 1+ 5.88 a 2996 £9.71 c-g
KUNCC22-10761 Chaetomium ONb520764 16.98 & 3.27 c-h 9.33 +2.311i-1 29.88 + 2.53 mn 20.74 + 1.6 -k
KUNCC22-10762 Periconia ON520765 9.43 £ 0.00 g 26.67 + 2.31 de 40.37 £ 1.66 d-k 37.8 £ 3.66 ¢
KUNCC22-10763 Pleurostoma ON520766 5.66 + 3.27jj 21.33 &= 4.62 ef 41.75 £ 4.25d-i 34.11 = 6.54 cd
KUNCC22-10765 Phaeosphaeria ONb520767 471 +£1.63j 17.33 & 2.31 f-h 42.86 + 4.61 d-h 10.60 =+ 8.45 k—-m
KUNCC22-10766 Nemania ON520768 19.81 £5.9 c—f 6.00 £+ 2.00 k-m 2712 +4.38n 21.67 £ 8.89 f+
KUNCC22-10767 Chaetomium ON520769 18.87 £ 6.54 c—g 32.00 £ 4.00 b—d 26.57 +5.06 n 23.97 +4.99 d—j
KUNCC22-10768 Arthrinium ON520770 1415+ 432 e 36.67 +7.57b 34.58 + 8.41 h-n 31.34 + 2.88 cf
KUNCC22-10769 Cladosporium ON520771 22.64 + 3.27 c—e 31.33 & 3.06 b—d 37.61 &+ 3.45 f-m 19.82 £2.77 g-k
KUNCC22-10770 Monocillium ON520772 7.54 £ 3.27 h-j 6.00 £ 5.29 k-m 38.72 +3.32 e-1 9.68 = 4.22 Im
KUNCC22-10771 Arthrinium ON520773 13.2 +3.27 e 3.33 £1.151m 39.54 + 0.83 d-1 21.67 £ 1.60 {5
KUNCC22-10772 Daldinia ON520774 471 +£1.63j 10.67 £+ 6.11 h-k 46.45 + 8.17 c—e 21.66 £ 11.51 f+
KUNCC22-10773 Pestalotiopsis ON520775 15.09 £ 5.66 d-i 21.33 4+ 2.31 ef 29.88 4+ 2.53 mn 28.40 + 8.16 c-h
KUNCC22-10774 Diaporthe ON520776 20.75 £ 5.67 cf 9.33 £ 2.311i-1 42.31 £ 0.48 d-h 25.81 £2.11d-i
KUNCC22-10775 Colletotrichum ON520777 22.64 + 3.27 c—e 2.67 £2.311m 31.54 £+ 6.69 I-n 14.30 +3.91j-m
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Figure 4. The images of two bacterial pathogens that were co-cultivated with the mango fungal
endophytes on NA plates. (a,d) Control groups; (b,c,e) Endophyte-phytopathogen antagonism tests.

3.2.3. Effect of Endophytes on the Growth of Botrytis cinerea (CGMCC: 3.3790)

The cultures of Botrytis cinerea were fast-growing, pale brown at the center, and white
at the margins, and reached a diameter of around 60 mm in PDA after 10 days, with-
out sporulating. Daldinia sp. KUNCC22-10744 strain was fast-growing and overlapped
Botrytis cinerea (Figure 5b) with an inhibition rate of 55.56 £ 1.73% (Table 2). Chaetomium
sp. KUNCC22-10749 strain inhibited the growth of B. cinerea (Figure 5c) with an inhibi-
tion rate of 52.02 & 2.92% (Table 2) producing abundant aerial mycelium. Alternaria sp.
KUNCC22-10760 strain inhibited the growth of B. cinerea (Figure 5d) with an inhibition rate
of 67.15 & 5.88% (Table 2) and the pathogen grew slowly, and mycelium was sparse.

3.2.4. Effect of Endophytes on the Growth of Penicillium digitatum (CGMCC: 3.15410)

The cultures of Penicillium digitatum were observed to be greenish, white at the margin,
and a single colony in PDA reached 35-40 mm in diameter with sporulation after 10 days.
Daldinia sp. KUNCC22-10744 strain was a fast-growing and overlapped pathogen (Figure 5f)
with an inhibition rate of 51.16 & 5.59% (Table 2). Rosellinia sp. KUNCC22-10751 strain was
fast-growing while pathogens grew slowly (Figure 5g) at an inhibition rate of 60.83 + 2.88%
(Table 2). Figures 69 show the Inhibition rates of different fungal endophytes to GCMCC:
1.7276, GCMCC: 1.3333, GCMCC: 3.3790, and GCMCC: 3.15410.
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Figure 5. The two fungal pathogens co-cultivated with the mango fungal endophytes on PDA plates.
(a,e) Control groups; (b—d,f,g) Endophyte-phytopathogen antagonism tests.
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Figure 6. Inhibition rates of different fungal endophytes to bacterial pathogen Erwinia amylovora (GCMCC: 1.7276). The bars denoted by the same letter are not
significantly different from each other.
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Figure 7. Inhibition rates of different fungal endophytes to bacterial pathogen Pseudomonas syringae (GCMCC1.3333). The bars denoted by the same letter are not
significantly different from each other.
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Figure 8. Inhibition rates of different fungal endophytes to fungal pathogen Botrytis cinerea (GCMCC: 3.3790). The bars denoted by the same letter are not significantly
different from each other.
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Figure 9. Inhibition rates of different fungal endophytes to fungal pathogen Penicillium digitatum (GCMCC: 3.15410). The bars denoted by the same letter are not
significantly different from each other.
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4. Discussion

The internal transcribed spacer (ITS) sequence has been generally recognized as a
fungal barcode because it is the most sequenced region of fungi and is often used for
identification, phylogenetics, and systematics [56,57]. Furthermore, the 5.85-ITS region
has previously been applied to the identification of endophytic fungal genera [58-61]. In
this study, 34 isolates were identified to the generic level based on combined ITS. The
nine different strains of Chaetomium were shown to be the dominant group, accounting for
26% of total strains (Figure 2). Chaetomium sp. strains viz. KUNCC22-10749, KUNCC22-
10750, and KUNCC22-10752 showed antagonism against bacterial pathogens in vitro, while
Chaetomium sp. KUNCC22-10749 is the only strain in this group that showed antagonism
against the fungal pathogen Botrytis cinerea in vitro. Chaetomium is the largest genus in the
family Chaetomiaceae and encompasses more than 350 species. Recently, this has become
an important research topic due to its high diversity and prominent potential capability
in biocontrol. The mechanisms of biocontrol of the endophytic Chaetomium spp. mainly
include antibiosis, competition for nutrients and space, mycoparasitism, and induction of
defense response in plants [62,63]. Species of Chaetomium have huge potential to control
plant and soil fungal pathogens [64-66]. For example, Chaetomium globosum has been
proven as a potential antagonist of Cochliobolus sativus, Venturia inaequalis, and Pythium
ultimum [67-69]. Chaetomium cupreum and C. globosum have been reported to control corn
leaf spot disease caused by Curvularia lunata, tomato wilt disease caused by Fusarium
oxysporum, sheath blight disease of rice caused by Rhizoctonia solani, and rice blast disease
caused by Pyricularia oryzae [70].

In this study, one of two Daldinia sp. strains KUNCC22-10744 strain exhibited signifi-
cant antagonistic properties against the fungal pathogens Botrytis cinerea and Penicillium
digitatum by competing for nutrition and space. Daldinia belongs to the family Hypoxylaceae,
and currently, 58 species are accepted in this genus [66]. Specific secondary metabolites are
constantly found in Daldinia sp., and they often have significant biological activities [71,72].
Liarzi et al. [73] isolated endophytic Daldinia concentrica from an olive tree, and its volatile
organic compounds (VOCs) demonstrated antimicrobial activity against various fungi
and oomyecetes.

In this study, two Alternaria strains were isolated, and the Alternaria sp. (KUNCC22-
10760 strain) was found to have prominent antagonistic properties against the fungal
pathogen Botrytis cinerea. Alternaria as a pathogenic fungal group often causes black spot
decay on hosts (including mango) [74,75]. However, Soltani and Hosseyni Moghaddam [76]
isolated endophytic Alternaria species from healthy Cupressaceae trees, and a further study
found their extracted metabolites exhibited significant growth inhibitory activities against
pathogenic bacteria and fungi. These endophytic Alternaria are abundant in biologically
active compounds that are possible to apply in medical and agricultural fields [77].

In this study, Rosellinia sp. KUNCC22-10751 strain exhibited prominent antagonistic
abilities against the fungal pathogen Botrytis cinerea. Species of Rosellinia such as Rosellinia
bunodes, R. necatrix, and R. pepo often cause root rots on many cash crops and trees [78].
Despite the fact that the endophytic species of Rosellinia have been shown to have potential
as biocontrol agents, this is rarely reported [79]. Nevertheless, a large number of metabolites
from endophytic Rosellinia species have been investigated recently [78,80,81].

5. Conclusions

Our study contributes to the knowledge of mango-associated endophytic fungi with
the potential as biocontrol agents. We isolated 34 different fungal endophytes from healthy
and fresh mango leaves, and the genus Chaetomium was reported as the dominant group.
In addition, three strains of Chaetomium sp. showed great in vitro inhibition against two
bacterial pathogens viz. Erwinia amylovora and Pseudomonas syringae, while the strains of
Alternaria sp., Chaetomium sp., Daldinia sp., and Rosellinia sp. showed great to moderate
in vitro antagonistic properties against fungi pathogens viz. Botrytis cinerea and Penicillium
digitatum. Therefore, future studies should especially focus on how the studies trans-
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late into in vivo action, such as inoculating those effective fungal endophytes on plant
pots (Mango seedlings or Arabidopsis thaliana) that were infected by selected fungal or
bacterial pathogens.
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