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Abstract: Increasing atmospheric temperature can significantly reduce global wheat productivity;
despite a mounting demand for wheat grain supplies. Developing genotypes with superior perfor-
mance under current and future hot climates is a key challenge for wheat breeders. Multidimensional
tools have supported plant breeders in increasing the genetic stability rate of agro-physiological
indices that influence wheat productivity. We used 25 agro-physiological indices to classify 20 bread
wheat genotypes for their heat stress tolerance. Agro-physiological indices and multidimensional
analyses to identify differences in genetic and phenotypic were used, combining these analyses to
reach selection criteria of accurate and credible. The 25 studied indices reflected high genotypic
and environmental variations. We used 16 indices, which have brought together high heritability
and genetic gain as indicators for screening heat-tolerant genotypes. Based on the seven principal
comprehensive indices of (D value), wheat genotypes were classified into three highly heat-tolerant,
four heat-tolerant, six moderately heat-tolerant, five heat-sensitive, and two highly heat-sensitive
wheat genotypes. Based on four critical indices [grain yield (GY), grain-filling duration (GFD), spike
length (SL) and canopy temperature (CT)] obtained from stepwise multiple linear regression (SMLR),
the genotypes were grouped as four genotypes highly heat-tolerant, six heat-tolerant, two moderately
heat-tolerant, four heat-sensitive and four highly heat-sensitive. The classification D value and
SMLR distances were significantly correlated based on the Mantel test, with a perfect match in nine
genotypes. SMLR indicated that a mathematical equation for the evaluation of wheat heat tolerance
was established: GY = 0.670 + 0.504× GFD + 0.334× SL− 0.466× CT (R2 = 0.739; average prediction
accuracy of 94.12%). SMLR-based classification of wheat genotypes for heat tolerance was further
verified through discriminant analysis, which showed that prior and posterior classification was
identical in eighteen genotypes. Cross-validation showed that prior and posterior classification was
identical in thirteen genotypes. Based on this study, we can recommend tolerated new wheat lines
(DHL25, DHL05, DHL23 and DHL08) and cultivar Pavone-76 as a promising genetic source for
heat-tolerant breeding programs.

Keywords: heat stress; bread wheat; agro-physiological indices; genetic parameters; multidimensional
analysis; cross-validation

1. Introduction

Agriculture is the fundamental economic sector in the Arab region, providing em-
ployment, food security, and income for residents of rural areas. The last few decades
have witnessed a cascading impact of climate change, resulting in a rapid shift in natural
ecosystems, agricultural productivity, and cultivation practices. Generally, the wheat crop
is adapted to a broad range of global climatic conditions. However, wheat cropping systems
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have started a marginal decline in grain yield, primarily because of groundwater depletion,
land degradation, and heat stress. In contrast, wheat demand has gradually increased, i.e., a
2% increase in annual wheat production is needed to feed the growing world population [1].
It is projected that wheat grain yield must be increased by 60% compared to today to meet
the supplies by 2050 [2]. A significant rise in the atmospheric temperature is one of the
most significant challenges for wheat producers around the globe as it seriously affects
grain yield and quality [2–6].

Wheat crops have a temperature requirement of 12–22 ◦C for most developmental
stages, notably during flowering and grain filling [7]. Heat stress constitutes one of the
main threats to sustainable wheat production. It is even more detrimental than drought as it
seriously impairs metabolic processes in all plant organs during most of the developmental
stages of the crop [8]. Late-cultivated wheat crops suffer from high canopy temperatures
(>31 ◦C) from anthesis to maturity, which negatively affects grain yield formation [1,9].
In wheat, a 3–4 ◦C rise in the seasonal minimum or maximum temperatures could de-
crease yield by 15–35% in Africa and Asia and by 25–35% in the Middle East across the
flowering, pollination, and grain-filling periods [1,10,11]. Asseng, et al. [12] and Djanaguira-
man et al. [8] have projected a 6% reduction in global wheat yield for each 1 ◦C increase
in the average current temperature. This impact will become more variable or extreme
through times and places. When such stress occurs during sensitive growth stages, such
as flowering or grain filling, yields are likely to be much reduced, especially with short
episodes of very high temperatures [4]. Heat stress significantly reduces leaf photosynthe-
sis, arresting overall plant growth and yield [13] by limiting carbohydrate formation and
supplies. A temperature above the optimal range damages the leaf thylakoid membrane,
reduces photosynthetic electron transfer, and arrests photochemical reactions [8,13–15].

High temperature during anthesis reduces grain number per spike by restricting
embryo development and inducing pollen sterility [1,16]. Post-anthesis (i.e., during the
grain-filling period) heat reduces grain-filling rate and duration by accelerating leaf senes-
cence [7,16,17]. Researchers often exploit multiple physiological mechanisms for improving
wheat performance in hot climates. Physiological traits such as early maturity, minimization
of canopy temperature, stay green, and high stem water-soluble carbohydrates accumu-
lation, coupled with high biomass accumulation, are likely to contribute to final grain
yield [1,7,9,17–19]. Early maturity is considered one of the main physiological responses of
wheat genotypes to high temperatures. This accelerates different physiological mechanisms
to contribute to grain yield production, although there was a negative correlation between
them [1]. Stay green trait is the principal source of chlorophyll contents in the leaf and
is considered important with a direct impact on grain yield and its components, but the
green area decreases under heat stress [17,20]. Likely, the plant may compensate for the
negative impact of heat-induced green area loss on final grain size by remobilizing the stem
water-soluble carbohydrates stockpiled [7,21]. Some wheat genotypes have the capacity
to cool the canopy during grain filling, which can access underground moisture, thereby
promoting evaporation and photosynthesis conservation under hot conditions [22]. Low
canopy temperature positively correlates with sustained grain yield formation under hot
environments in wheat genotypes [7,23,24].

Accordingly, these physiological traits could be used as an indirect selection tool for the
genetic improvement of wheat genotypes; and they are less affected by the environment and
have more genetic stability compared with grain yield traits [1,22,25]. Further exploration
of physiological traits is needed for detecting wheat genotypes that produce high yields
and adapt to high temperatures using these traits as selection criteria. This could only
be achieved by developing high-yielding, early maturing genotypes that have protracted
grain-filling duration, climate-smart, and abiotic stress tolerance [7,18]. Given the global
climate changes, these efforts should be promoted to counter the negative impacts of high
temperatures [26,27]. Efforts have been made to evaluate and test elite wheat genotypes
for their adaptability to heat and traits-linked, combined into typical varieties for both
high-yielding and heat tolerance [2,9,18]. Evaluation of the genetic parameters for agro-
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physiological response is important to determine the best genotypes used in breeding
programs to tolerate abiotic stress [1].

The application of multivariate analysis techniques and multidimensional methods to
achieve accuracy in verification and selection supports breeding programs and their success
by incorporating agro-physiological traits. This may provide a better understanding, and
an integrative approach that combines various parameters of heat adaptive traits and
their integration into breeding programs may help show desirable genotypes [6,28–30].
The use of a combination of analyses is needed for reliably studying phenotypic traits
generated through high computing-powered modeling of multidimensional data and to
provide a more comprehensive understanding of the complicated mechanisms under heat
stress [28,31,32]. Therefore, multivariate analysis techniques [principal component analysis
(PCA), multiple regression, path analysis, cluster analysis, multivariate analysis of variance
(MANOVA), and discriminant analysis] can serve as a model instrument for screening tests
and for separating sources of variation [29,33,34].

For instance, PCA reduces the number of variables of a data set and uses an orthogo-
nal transformation to convert a set of observations of possibly correlated variables into a
set of values of uncorrelated variables while preserving as much information as possible.
Multiple regression is used to determine the model’s overall fit (variance explained) and
the relative contribution of each variable to the total variance explained. Path analysis is
a straightforward extension of multiple regression [1]. It aims to provide estimates of the
magnitude and significance of hypothesized causal connections between sets of variables
and divide them into direct and indirect impacts. Cluster analysis is a method for collecting
similar genotypes into several clusters based on the values of several variables used. Dis-
criminant analysis and MANOVA are used to assess the extent of matching a classification
by prior knowledge of the membership of the genotype within each group and to predict
the classification position of new cases that have not been classified [29,35]. The main aims
of this study were (i) to develop a screening method to identify the contribution of the
key heat tolerance indices of wheat using multidimensional evaluation (ii) to evaluate and
cluster the heat tolerance of 20 wheat genotypes (iii) to verify the validity of classification
and predicting of new cases that have not been classified. The results presented here
would be significant for further screening and evaluation of heat tolerance wheat and for
improving wheat breeding that can be utilized to breed heat-tolerant varieties.

2. Materials and Methods
2.1. Experimental Design and Plant Materials

Field trials were conducted at the King Saud University Agricultural Research Station
(24◦42′ N, 44◦46′ E, 400 m asl) for two successive years (2018/2019 and 2019/2020). The
experimental design was a randomized complete block with three independent replicates.
Two successive experiments were performed each year, i.e., the optimum sowing (15 and
20 November in 2018 and 2019, respectively) and late sowing (15 and 20 December in
2018 and 19, respectively). The late-sown crops experienced an average temperature of
30.4–31.0/14.2–14.4 ◦C day/night during grain-filling duration in the two seasons. The
experimental unit (plot) consisted of five rows (3.0 m long) each, with the distance between
rows of 0.17 m, at a seedling rate of 360 germinating kernels m−2, and the fertilizing
rates used were180 kg ha−1 of N and 31 kg ha−1 of P2O5. The electrical conductivity of
soil texture (2.89 dS m−1). The temperatures during the growing season are presented in
Table S1. Twenty different wheat genotypes (6 varieties and 14 lines) were used in this
study. The six varieties were chosen based on the presence of broad genetic variations
between them concerning tolerance and/or sensitivity to heat, which were supplied by the
Agricultural Research Center, Egypt (Table S2). The Department of Agronomy supplied
the 14 doubled haploid lines (DHLs), Faculty of Agriculture, Al-Azhar University, Cairo,
Egypt, and previously published [36] and been used to assess heat tolerance (Table S2).
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2.2. Measurements of Traits and Data Collection

All 20 wheat genotypes were assessed using 25 physio-morphological and agronomic
attributes. The mean value of five samples and/or plants per genotype for measuring all
physio-morphological and some agronomic attributes were randomly selected from middle
rows to reduce environmental impact and repeated three times. Twelve physiological crop
attributes were estimated at the grain-filling stage. These include canopy temperature (CT),
leaf water content (LWC), relative water content (RWC), photosynthesis rate (Pn), transpi-
ration rate (E), stomatal conductance (Gs), intracellular CO2 concentration (Ci), stomatal
limitation value (Ls), peroxidase (POD), polyphenol oxidase (PPO), and catalase (CAT).
Briefly, CT was measured using an infrared thermometer (Therma CAM SC 3000 infrared
camera, FLIR System, USA). LWC and RWC were obtained by fresh weight (FW), turgid
weight (TW), and dry weight (DW) after oven drying at 48 h at 70 ◦C [37,38] deceptively.
Pn, E, Gs, and Ci were measured on the upper third of flag leaves by a Li-6400 gas exchange
system (Li-Cor, Inc., Lincoln, NE, USA) from 10:00 AM until 12 noon.

The stomatal limitation value (Ls) was calculated from the following equation [39];
Ls = (1 − Ci)/ atmospheric CO2 concentration

Antioxidant enzymes such as CAT, POD, and PPO were assessed from 0.5 g of fresh
leaf samples. The leaves were ground in liquid nitrogen and placed in an ice bath with
50 mM potassium phosphate buffer (pH 7.8), including 1% (w/v) polyvinylpolypyrrolidone,
and then centrifuged at 14,000× g rpm for 10 min at 4 ◦C for enzyme extractions. The
supernatant is used as an extract of assays for CAT, POD and PPO, as described by Aebi [40],
Chance and Maehly [41], and Duckworth and Coleman [42], respectively.

Four morphological attributes, i.e., green leaf number (GLN), flag leaf area (FLA),
green leaf area (GLA), and leaf area index (LAI), were estimated after the anthesis. FLA
and GLA were estimated using a leaf area meter (LI 3100; LI-COR Inc., Lincoln, NE, USA)
after separating all the green leaves from the stem. LAI was calculated by the following
formula: LAI = green leaf area / ground cover.

Ten agronomic attributes were estimated before and/or after harvest, namely the
days to heading (DH, days), days to maturity (DM, days), grain-filling duration (GFD,
days), plant height (PH, cm plant−1), spike length (SL, after excluding awns), number of
spikes (NS, m−2), number of spikelets (NSS, spike−1), number of kernels (NKS, spike−1),
thousand kernel weight (HKW, g) and grain yield (GY, ton ha−1). DH was recorded upon
reaching the 50% of plants to flowered, and DH was recorded upon reaching the 50% of
plants to peduncles yellow. GFD was calculated from the period between DM and DH.
After harvesting, the plants were threshed to measure NKS, HKW and GY traits. GY was
estimated from three rows to two-meters long.

2.3. Statistical Analysis of Evaluated Data

Based on the foregoing attributes data, the heat tolerance indices (HTI) of each of the
above attributes were calculated.

HTIij =
xij-under heat stress condition
xij-under optimum condition

(1)

where HTIij is the heat tolerance index (j) for genotype (i); xij-under heat stress condition
and xij-under optimum condition represent values of the index for the genotype evaluated
under optimum condition and heat treatments, respectively.

Analysis of variance for 26 indices was implemented using SAS v9.2 software (SAS
Institute, Inc., Cary, NC, USA) for each season. The combined analysis was implemented for
the two-season using Bartlett’s test to test the homogeneity of error variance between sea-
sons. Afterwards, the variance of the combined data of all indices was used for calculating
variance components and genetic parameters such as heritability (h2, broad sense), genetic
gain (%), genotypic coefficient of variability (GCV), and phenotypic coefficient of variability
(PCV), following t Fehr [43] and described by Al-Ashkar et al. [29]. Multidimensional mod-
eling was used to understand genotype × environment interactions and their contributions
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of the key indices to genotypic performance. The principal component analysis (PCA) was
performed based on data provided components (eigenvalue > 1) with the normalization
values of heat tolerance indices used in calculating comprehensive indices values. It was
also used for calculating the membership function value of heat tolerance. It was assessed
using multiple indices as the subordinate function value (µ) and provides a comprehensive
assessment using subordinate functions based on the theory of fuzzy mathematics [44].
The subordinate function µ was calculated using Equation (2).

µ =
xi − xmin

xmax − xmin
(2)

where xi indicates the ith comprehensive index; xmax and xmin indicate the maximum and
minimum value for the ith comprehensive index of all the genotypes, respectively.

In Equation (3), the weight function Wi was calculated and represents the relative
importance of the ith comprehensive index for a genotype; Pi represents the contribution of
the ith comprehensive index.

Wi =
Pi

∑n
i=1 Pi ,i=1, 2 , 3..........n

(3)

In Equation (4), the comprehensive index value for heat tolerance (D value) was
calculated separately for each genotype to detect their heat tolerance, which was used for
making clusters and evaluating heat tolerance.

D = ∑n
i=1[µ (xi) ∗Wi]i = 1, 2 , 3 . . . . . . . . . .n (4)

Stepwise multiple linear regression (SMLRA) and path analyses were used to identify
the main indices and their contribution, respectively, to confirm the accuracy and reliability
of clusters. The effective indices used in the calculation of cluster analysis (CA), building
upon the genetic dissimilarity matrix between genotypes (Euclidean distance and Ward’s
method of agglomeration) in five major groups to tolerance. The discriminant function
analysis (DFA) was used to reaffirm the classification of each genotype by analyzing main
indices (as quantitative variables) with the five major groups (as qualitative variables).
Statistical analysis (PCA, SMLRA, path analysis, CA, DFA, and multicollinearity test)
carried out by XLSTAT statistical package software (vers. 2019.1, Excel Add-ins soft SARL,
New York, NY, USA).

3. Results
3.1. Phenotypic Analysis of Heat Tolerance Index
3.1.1. Analysis of Variance and Genetic Parameters of the Studied Indices

Analysis of heat tolerance index data (Table 1) revealed highly significant (p < 0.01)
genotypic variations for all studied indices across the two seasons as sources of variance
differed across the genotypes under optimal and heat-stressed environments for all mea-
sured traits. Across the combined data of two seasons, the interaction was significant for
nineteen indices out of twenty-five; and non-significant for seven indices (DH, MD, GFD,
POD, PPO, CAT, and GY). Test of the homogeneity of error variance of heat tolerance index
between two seasons showed non-significant for twenty-two indices, but error variance was
heterogeneity for LAI, Gs, and GY. The broad-sense heritability (h2) showed high values
(>60%) for seventeen measured indices, which varied from 60.43% to 89.51% (Table 1). The
genetic gain (GG) showed high values (>20%) for nine measured indices, which varied from
20.05% (GFD) to 54.25% (Ls); and moderate values (>10%) for twelve measured indices,
which varied from 10.15% (DH) to 17.22% (Ci). The PCV and GCV were convergent for
most indices, and the PCV was larger relative to the GCV, except for three indices (GLN,
NSS, and NKS), which showed PCV values greater than GCV values twice.
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Table 1. Analysis of variance for heat tolerance index of measured traits, heritability, genetic gain, genotypic, and phenotypic coefficients of variability for traits of
20 wheat genotypes.

Source of Variations df CT LWC RWC Pn Gs Ci E Ls POD PPO CAT GLN FLA

Se
as

on
1 Replications 2 0.0023 0.0018 0.0017 0.0018 0.0012 0.0012 0.0013 0.0031 0.0030 0.0014 0.0028 0.0015 0.0016

Genotypes (G) 19 0.0104 0.0135 0.0092 0.0307 0.0797 0.0171 0.0449 0.4274 1.6312 0.5980 1.9533 0.0154 0.0103
Error 38 0.0015 0.0014 0.0013 0.0013 0.0008 0.0010 0.0009 0.0025 0.0019 0.0012 0.0023 0.0013 0.0012

Se
as

on
2 Replications 2 0.0028 0.0017 0.0017 0.0017 0.0014 0.0013 0.0013 0.0031 0.0029 0.0014 0.0027 0.0017 0.0014

Genotypes (G) 19 0.0346 0.0080 0.0099 0.0424 0.1201 0.0212 0.0689 0.2249 1.6030 0.5882 1.9203 0.0445 0.0368
Error 38 0.0026 0.0013 0.0012 0.0014 0.0015 0.0010 0.0010 0.0023 0.0019 0.0012 0.0023 0.0014 0.0011

C
om

bi
ne

d Seasons (S) 1 0.1535 0.0533 0.0319 0.0218 0.0355 0.0041 0.0028 0.0490 0.0012 0.0010 0.0010 0.0908 0.0618
Replications (Sea.) 4 0.0026 0.0018 0.0017 0.0018 0.0013 0.0013 0.0013 0.0031 0.0029 0.0014 0.0028 0.0016 0.0015
Genotypes (G) 19 0.0368 0.0178 0.0140 0.0660 0.1915 0.0363 0.1036 0.6125 0.8210 0.9820 0.8670 0.0340 0.0369
S ×G 19 0.0085 0.0041 0.0052 0.0072 0.0080 0.0018 0.0100 0.0410 0.0002 0.0001 0.0001 0.0261 0.0102
Error 76 0.0020 0.0014 0.0013 0.0013 0.0012 0.0010 0.0009 0.0024 0.0019 0.0012 0.0023 0.0013 0.0012

Heritability (h2 %) 64.53 60.43 60.61 80.10 89.51 77.94 84.43 86.66 62.05 83.66 85.61 27.50 61.88
Genetic gain (GG %) 14.95 10.95 10.87 22.05 43.21 17.22 31.12 54.25 50.44 37.60 44.10 5.76 13.78
G.C.V. % 9.03 6.83 6.78 11.96 22.17 9.47 16.44 28.29 31.08 19.96 23.14 5.33 8.50
Ph.C.V. % 11.24 8.79 8.71 13.36 23.43 10.73 17.89 30.39 39.46 21.82 25.00 10.17 10.81

Source of variations df GLA LAI DH MD GFD NS PH SL NSS NKS HW GY

Se
as

on
1 Replications 2 0.0016 0.0005 0.0018 0.0017 0.0016 0.0012 0.0015 0.0015 0.0013 0.0016 0.0013 0.0012

Genotypes (G) 19 0.0283 0.0441 0.0083 0.0062 0.0101 0.0299 0.0062 0.0240 0.0227 0.0139 0.0070 0.0260
Error 38 0.0013 0.0004 0.0022 0.0013 0.0017 0.0009 0.0013 0.0013 0.0012 0.0012 0.0010 0.0013

Se
as

on
2 Replications 2 0.0011 0.0008 0.0017 0.0015 0.0013 0.0011 0.0016 0.0034 0.0018 0.0016 0.0014 0.0008

Genotypes (G) 19 0.0593 0.0381 0.0081 0.0113 0.0438 0.0311 0.0177 0.1135 0.0135 0.0231 0.0090 0.0834
Error 38 0.0010 0.0007 0.0014 0.0012 0.0010 0.0008 0.0013 0.0023 0.0012 0.0014 0.0011 0.0008

C
om

bi
ne

d Seasons (S) 1 0.4502 0.1920 0.0001 0.0423 0.002 0.0214 0.0030 0.5210 0.0337 0.0636 0.0183 0.0560
Replications (Sea.) 4 0.0013 0.0007 0.0017 0.0016 0.0014 0.0011 0.0016 0.0024 0.0015 0.0016 0.0013 0.0010
Genotypes (G) 19 0.0582 0.0520 0.0154 0.0164 0.046 0.0414 0.0139 0.0501 0.0182 0.0244 0.0112 0.0816
S ×G 19 0.0293 0.0304 0.0009 0.0001 0.0070 0.0196 0.0100 0.0873 0.0183 0.0127 0.0047 0.0281
Error 76 0.0011 0.0005 0.0018 0.0013 0.0013 0.0009 0.0013 0.0018 0.0012 0.0013 0.0011 0.0011

Heritability (h2 %) 49.07 38.65 55.22 60.47 69.29 47.44 45.30 69.45 19.34 33.73 56.69 80.73
Genetic gain (GG %) 13.67 15.06 10.15 10.35 20.05 12.20 6.13 14.75 2.40 5.85 10.36 20.78
G.C.V. % 9.47 11.76 6.63 6.46 11.69 8.59 4.42 8.59 2.65 4.89 6.68 11.23
Ph.C.V. % 13.52 18.91 8.92 8.31 14.05 12.48 6.57 10.31 6.03 8.42 8.87 12.50

Values in bold indicate significance at p < 0.05.
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3.1.2. Heat Tolerance Index of Measured Parameters

The heat tolerance index showed highly significant variations between genotypes as
sources of variance due to changes between optimal and heat treatment for all measured
indices. Interestingly, in S1, S2, and across the combined data of two seasons, there was a
significant variation between large and small values for the majority of measured indices,
and with certain exceptions for some indices (DH, MD, HW, and CT), which showed
limited variation between large and small value. The large values were twice or more than
the small ones for the seven measured indices (LAI, Gs, E, POD, PPO, CAT, and GY), a
reference to the efficiency of these indices in the show genetic diversity between genotypes
used (Table 2). However, five indices (CT, Pn, POD, PPO, and CAT) in some genotypes were
higher (HTI > 1). Different indices within the same genotype and the same index within
different genotypes showed considerable variability in the heat-tolerant index. Thus, it is
difficult to make an accurate and reliable assessment of the heat tolerance of each genotype
using the HTI of a single index. The values for coefficients of experimental variation (CVe)
were small, ranging from 3.94% to 5.43.

3.2. Multidimensional Analyses in the Classification of Heat-Tolerant Genotypes
3.2.1. Principal Component Analysis

Kaiser–Meyer–Olkin measure of sampling adequacy showed a high value (KMO > 0.5).
Based on the absolute value of each eigenvector, the PCA grouped the estimated variables
(25 indices) into seven principal comprehensive indices (eigenvalue > 1), which had contri-
bution rates of 35.47% (PCI1), 15.99% (PCI2), 10.88% (PCI3), 7.89% (PCI4), 5.20% (PCI5),
4.38% (PCI6), and 4.28% (PCI7). The cumulative contribution rate reached 84.09% (Table 3).
PCI1 was related to DH, MD, GFD, NS, PH, GLN, LAF, LAI, SL, RWC, HW CT, Ls, PPO,
CAT, and GY. PCI2 was related to Gs, Ci, and E. PCI3 was related to NSS and Pn; PCI4
was related to LWC and NKS; PCI5 and PCI6 were related to GLA and POD, respectively
(Table 2). Figure 1 shows the correlations between variables (RWC and Ci) with factors
(PCA1 and PCA2) were the highest value for squared cosines (0.885 and 0.759), respectively.
So, the vectors were for RWC and Ci longer and acute with factors. As shown in Table 3,
the seven principal comprehensive indices (PCI) were calculated for each genotype.

According to Equation (2), the subordinate function µ values were computed for
comprehensive scores of each genotype. These values explain the heat tolerance of each
genotype. Genotypic heat tolerance can be assessed based on the subordinate function µ

value within the same comprehensive index. If the µ(xi) is 1.000, then the genotype has the
highest heat tolerance; if the µ(xi) is 0.000, the genotype has the highest heat sensitivity.
For PCI1, genotype DHL08 had the highest µ(x1) of 1.000, which showed that it had the
highest heat tolerance (Table 4). The DHL01 had the smallest µ(x1) of 0.000, which showed
that it had the highest heat sensitivity. However, in PCI2, genotype DHL02 had the highest
µ(x1) of 1.000, and KSU106 had the smallest µ(x1) of 0.000. The evaluation result under
each comprehensive index was aligned with our phenotypic results but differed from one
PCI to another.

To maximize the effectiveness of comprehensive evaluation for the heat tolerance of
used wheat genotypes was needed, the weight factor was computed for seven compre-
hensive indexes (W1: 0.422, W2: 0.190, W3: 0.129, W4: 0.094, W5: 0.062, W6: 0.052 and
W7: 0.051) (Table 3) according to Equation (3) to maximize the effectiveness of the heat
tolerance evaluation technique. A comprehensive evaluation value D was computed for
heat tolerance (Table 4) according to Equation (4). The D value for twenty genotypes varied
from 0.686 (HT) to 0.176 (HS). The cluster analysis from D values was then used to classify
genotypes into five main clusters (Figure 2).
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Table 2. Means ± standard deviation, ranges of the 20 genotypes of two seasons and their combined for 25 indices.

Indices
S1 S2 Combined Data

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD CV

CT 0.998 1.081 0.989 ± 0.059 0.950 1.131 0.988 ± 0.107 0.980 1.213 0.972 ± 0.045 4.60
LWC 0.804 0.974 0.955 ± 0.067 0.831 0.910 0.891 ± 0.051 0.826 0.962 0.913 ± 0.037 4.10
RWC 0.807 0.950 0.922 ± 0.055 0.769 0.891 0.889 ± 0.057 0.829 0.935 0.906 ± 0.036 3.98

Pn 0.700 0.987 0.895 ± 0.101 0.741 0.996 0.921 ± 0.118 0.721 1.050 0.908 ± 0.036 3.97
Gs 0.377 0.871 0.704 ± 0.163 0.386 0.881 0.738 ± 0.200 0.382 0.995 0.722 ± 0.035 4.80
Ci 0.657 0.917 0.795 ± 0.076 0.654 0.904 0.808 ± 0.084 0.656 0.877 0.802 ± 0.032 3.94
E 0.465 0.830 0.754 ± 0.122 0.433 0.850 0.764 ± 0.151 0.449 0.946 0.760 ± 0.030 3.95
Ls 0.745 0.981 0.932 ± 0.377 0.745 0.970 0.901 ± 0.273 0.745 0.959 0.903 ± 0.049 5.43

POD 0.072 1.146 0.832 ± 0.737 0.071 1.145 0.825 ± 0.731 0.072 1.154 0.829 ± 0.044 5.26
PPO 0.085 1.164 0.768 ± 0.446 0.084 1.162 0.762 ± 0.442 0.085 1.068 0.865 ± 0.035 4.00
CAT 0.103 1.153 0.915 ± 0.807 0.102 1.197 0.909 ± 0.800 0.103 1.627 0.912 ± 0.048 5.26
GLN 0.693 0.920 0.889 ± 0.072 0.705 0.930 0.904 ± 0.121 0.760 0.994 0.902 ± 0.036 4.00
FLA 0.687 0.928 0.884 ± 0.059 0.615 0.918 0.838 ± 0.110 0.703 0.920 0.861 ± 0.035 4.02
GLA 0.612 0.991 0.888 ± 0.097 0.449 0.970 0.796 ± 0.140 0.610 0.913 0.826 ± 0.033 4.02
LAI 0.329 0.712 0.471 ± 0.121 0.328 0.661 0.551 ± 0.112 0.345 0.671 0.511 ± 0.022 4.37
DH 0.838 0.948 0.835 ± 0.053 0.858 0.945 0.934 ± 0.052 0.848 0.978 0.870 ± 0.042 4.87
MD 0.848 0.911 0.812 ± 0.045 0.787 0.933 0.837 ± 0.061 0.817 0.952 0.845 ± 0.036 4.27
GFD 0.693 0.926 0.779 ± 0.058 0.575 0.958 0.769 ± 0.120 0.694 0.983 0.712 ± 0.036 5.06
NS 0.583 0.794 0.752 ± 0.100 0.559 0.809 0.726 ± 0.101 0.596 0.813 0.739 ± 0.030 4.06
PH 0.793 0.873 0.855 ± 0.046 0.736 0.854 0.804 ± 0.076 0.824 0.928 0.889 ± 0.036 4.05
SL 0.751 0.959 0.911 ± 0.089 0.770 0.947 0.907 ± 0.194 0.803 0.959 0.912 ± 0.042 4.65

NSS 0.664 0.892 0.851 ± 0.087 0.754 0.913 0.884 ± 0.067 0.760 0.881 0.857 ± 0.035 4.04
NKS 0.764 0.979 0.883 ± 0.068 0.756 0.980 0.927 ± 0.087 0.760 0.981 0.905 ± 0.036 3.98
HW 0.711 0.817 0.803 ± 0.048 0.720 0.845 0.828 ± 0.054 0.742 0.852 0.816 ± 0.033 4.06
GY 0.444 0.894 0.776 ± 0.092 0.436 0.851 0.704 ± 0.166 0.440 0.899 0.740 ± 0.033 4.48

Canopy temperature (CT), leaf water content (LWC), relative water content (RWC), photosynthesis rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci), transpiration
rate (E), stomatal limitation value (Ls), peroxidase (POD), polyphenol oxidase (PPO), catalase (CAT), green leaf number (GLN), flag leaf area (FLA), and green leaf area (GLA), leaf area
index (LAI), days to heading (DH), days to maturity (DM), grain-filling duration (GFD), plant height (PH), spike length (SL), number of spikes (NS), number of spikelets (NSS), number
of kernels (NKS), thousand-kernel weight (HKW), and grain yield (GY).
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Table 3. Eigenvectors and percentage of accumulated contribution of principal components.

PCI1 PCI2 PCI3 PCI4 PCI5 PCI6 PCI7

Eigenvalue 9.221 4.157 2.829 2.053 1.352 1.138 1.114
Variability (%) 35.465 15.989 10.883 7.896 5.199 4.378 4.283
Cumulative % 35.465 51.454 62.336 70.232 75.431 79.809 84.092

Eigenvectors:

CT −0.210 0.200 0.162 0.158 0.056 0.012 −0.305
LWC 0.138 0.171 0.217 0.355 0.177 0.101 0.237
RWC 0.310 0.060 0.001 0.016 0.095 −0.169 −0.070
Pn 0.128 −0.195 −0.320 0.274 −0.038 0.148 0.114
Gs −0.040 0.371 −0.235 −0.111 −0.277 −0.125 0.083
Ci −0.028 0.427 −0.151 0.023 0.214 0.075 −0.090
E −0.012 0.390 −0.225 −0.179 −0.160 −0.187 0.134
Ls 0.248 −0.040 0.165 −0.102 0.108 −0.071 0.033
POD 0.102 0.070 0.085 −0.314 −0.391 0.517 0.132
PPO 0.181 0.086 −0.236 −0.327 0.024 −0.122 0.324
CAT 0.225 −0.070 −0.256 0.294 −0.089 0.167 0.014
GLN 0.246 0.053 −0.019 −0.311 0.174 0.150 −0.318
FLA 0.233 0.175 0.131 0.065 0.065 0.171 0.278
GLA 0.145 0.098 −0.169 −0.001 0.559 0.371 0.143
LAI 0.193 −0.081 0.290 −0.096 −0.244 0.151 0.009
DH 0.239 0.061 0.145 −0.136 0.028 −0.272 −0.352
MD 0.288 0.059 0.131 0.065 0.093 −0.079 −0.138
GFD 0.186 −0.192 −0.261 0.168 0.031 −0.194 −0.138
NS 0.233 0.116 0.077 −0.011 −0.084 0.157 −0.270
PH 0.276 −0.044 −0.133 −0.127 0.082 −0.119 −0.034
SL 0.225 0.155 0.171 0.044 −0.160 0.091 −0.111
NSS 0.055 0.010 0.392 −0.039 0.125 −0.273 0.442
NKS 0.056 0.228 0.158 0.438 −0.266 0.035 −0.026
HW 0.257 0.100 −0.035 0.168 −0.155 −0.337 0.149
GY 0.235 −0.142 −0.237 0.108 −0.254 0.033 −0.023

Canopy temperature (CT), leaf water content (LWC), relative water content (RWC), photosynthesis rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci), transpiration
rate (E), stomatal limitation value (Ls), peroxidase (POD), polyphenol oxidase (PPO), catalase (CAT), green leaf number (GLN), flag leaf area (FLA), and green leaf area (GLA), leaf area
index (LAI), days to heading (DH), days to maturity (DM), grain-filling duration (GFD), plant height (PH), spike length (SL), number of spikes (NS), number of spikelets (NSS), number
of kernels (NKS), thousand-kernel weight (HKW), and grain yield (GY).
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Table 4. The values of comprehensive index (PCIi), index weight, P µ(xi), D and regression D′ for each wheat genotype.

Genotypes
The Values of Comprehensive Index (PCIi) Membership Function Value D

PCI1 PCI2 PCI3 PCI4 PCI5 PCI6 PCI7 P µ(x1) P µ(x2) P µ(x3) P µ(x4) P µ(x5) P µ(x6) P µ(x7) Value

DHL12 −0.449 1.653 0.442 1.106 0.901 0.023 −0.370 0.508 0.629 0.694 0.708 0.754 0.318 0.381 0.510
DHL02 −0.474 4.236 0.920 2.481 −1.287 −0.491 1.226 0.506 1.000 0.780 1.000 0.256 0.195 0.766 0.638
DHL25 −0.100 −1.192 0.085 0.607 0.077 −0.143 2.194 0.538 0.220 0.630 0.602 0.567 0.278 1.000 0.458
DHL07 −0.455 0.579 −0.132 −0.576 −0.699 −0.814 1.068 0.508 0.475 0.591 0.350 0.390 0.117 0.728 0.451
DHL26 −4.260 −2.042 −1.307 −2.225 −0.509 −0.405 0.760 0.178 0.098 0.379 0.000 0.433 0.215 0.654 0.176
Gemmeiza-9 −1.151 −0.275 0.927 1.222 1.670 0.183 0.635 0.447 0.352 0.782 0.733 0.930 0.356 0.623 0.458
DHL11 −3.398 0.644 2.012 0.148 −1.776 −0.577 −1.813 0.253 0.484 0.977 0.504 0.145 0.174 0.032 0.374
KSU106 −3.055 −2.727 0.150 1.117 1.979 2.086 −0.195 0.282 0.000 0.642 0.710 1.000 0.811 0.423 0.293
Gemmeiza-12 −3.858 1.622 2.139 −1.332 1.873 −0.452 −0.286 0.213 0.625 1.000 0.190 0.976 0.204 0.401 0.377
DHL01 −6.311 −0.143 −2.197 1.552 −0.591 −0.665 −0.435 0.000 0.371 0.219 0.803 0.415 0.153 0.365 0.193
DHL14 −0.906 −0.395 −0.419 −1.227 −2.410 2.878 0.532 0.468 0.335 0.539 0.212 0.000 1.000 0.598 0.381
DHL29 2.112 2.032 −2.439 −1.936 1.441 −0.849 0.989 0.730 0.683 0.175 0.062 0.877 0.109 0.709 0.503
DHL15 2.674 0.093 −3.411 0.491 −0.425 −0.787 −0.282 0.779 0.405 0.000 0.577 0.452 0.124 0.402 0.480
DHL06 1.781 −1.032 −2.367 −0.815 0.173 0.159 −1.258 0.701 0.244 0.188 0.300 0.589 0.350 0.166 0.404
Misr1 1.812 −2.579 1.851 −0.721 −0.101 −0.588 −0.118 0.704 0.021 0.948 0.320 0.526 0.171 0.441 0.476
DHL05 2.589 2.069 −1.560 1.179 0.565 1.023 −1.944 0.771 0.689 0.333 0.723 0.678 0.557 0.000 0.569
DHL23 3.730 3.361 1.646 −1.906 0.079 1.464 0.305 0.870 0.874 0.911 0.068 0.567 0.662 0.544 0.686
Sakha-93 1.116 −0.655 1.634 −1.723 −0.290 −1.305 −1.433 0.644 0.298 0.909 0.107 0.483 0.000 0.124 0.462
Pavone-76 3.377 −2.693 1.080 0.542 −0.323 −0.456 0.345 0.840 0.005 0.809 0.588 0.476 0.203 0.553 0.543
DHL08 5.228 −2.556 0.946 2.017 −0.346 −0.282 0.080 1.000 0.025 0.785 0.901 0.470 0.245 0.489 0.638
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Cluster I was classified as highly tolerant (HT, with the highest value of D ≥ 0.638),
consisting of three genotypes (DHL02, DHL23, DHL08); cluster II was classified as toler-
ant (T, with values of 0.638 > D ≥ 0.503), consisting of four genotypes (DHL12, DHL29,
DHL05, and Pavone-76), Cluster III was classified as moderately tolerant (I, with val-
ues of 0.503 > D ≥ 0.458), consisting of six genotypes (DHL25, DHL07, Gemmeiza-9,
DHL15, Misr1, and Sakha-93), Cluster IV was classified as sensitive (S, with values of
0.458 > D ≥ 0.293), consisting of five genotypes (DHL11, KSU106, Gemmeiza-12, DHL14,
and DHL06). The genotypes DHL26 and DHL01 had lower D values (D < 0.293) and were
placed into Cluster VI and designated as a highly sensitive (HS) group (Figure 2).

3.2.2. Identification of Indices Related to Yield Tolerance Index

We investigated the relationship between the heat tolerance indices (HTIs) of each
index with the GY index. Seven HTIs (MD, GFD, PH, RWC, SL, HW, and Pn) showed
a significant positive correlation, but the CT index was a significant negative correlation
(Figure 3). The relationships between all indices were analyzed using SMLR in each
genotype, as independent indices, in order to understand the best-measured and heat
tolerance-related indices and their contribution to GY index performance as a dependent
index (Table 5). The results of SMLR showed that indices GFD, SL, and CT only from the
eight were directly relevant to the GY index (R2 of the SMLR model was 0.739, p < 0.0001),
and their contribution rates were 0.529, 0.074, and 0.136, respectively (Table 5). The three
indices of the GY index variation are partitioned into direct effects of each index and
multiple indirect effects with the other indices using path coefficient analysis.
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Table 5. Stepwise regression and path coefficient analyses for grain yield (dependent index) with
three yield-related traits (independent indices) for combined data across the two seasons.

Source
Stepwise Regression

Path Coefficient

Partitioning the Correlation R2

Regression
Coefficient p-Value R2 Par. R2 Com.

Direct
Effect

Indirect
Effect

Correlation
Value

Direct
Effect

Intercept 0.670 0.033
GFD 0.504 0.007 0.529 0.529 0.460 0.345 0.805 0.211
SL 0.334 0.049 0.074 0.603 0.276 0.222 0.498 0.076
CT −0.466 0.009 0.136 0.739 −0.437 −0.241 −0.677 0.191

Indirect
effect 0.261

Total R2 0.739 0.739
Residual 0.511 0.511

Coefficient partial determination (R2 Par.), cumulative coefficient determination (R2 Com.), Values in bold indicate
at significance.

This contribution had a direct influence value of 478 (GFD, alone possessed 0.211 of
them) and an indirect influence value of 0.261. The R2 value was (0.739), which is the same
as the SMLR model, with a noise value of 0.511, suggesting that these three indices could
be used as important selection criteria to determine the extent of the tolerance of wheat
genotypes for heat. According to Equation of the model (GY, Table 5), GY = 0.670 + 0.504
× GFD + 0.334 × SL − 0.466 × CT, the predicted regression GY value, error value, and
relative error value ranged from 0.663 to 0.972, from −0.142 to 0.081, from −0.261 to 0.105,
respectively. Evaluation accuracy (%) ranged from 73.917 to 98.570, with an average value
of 94.12 (Table 6).

Table 6. The stepwise linear regression analysis was applied to establish optimal regression equation
(GY) for predictions, residuals, and evaluation accuracy (%).

Genotypes
Dependent Indices

GY Regression
“GY” Value

Predicted
Error Value

Relative
Error Value

Evaluation
Accuracy (%)GFD SL CT

DHL12 0.694 0.845 1.315 0.769 0.689 0.081 0.105 89.49
DHL02 0.695 0.896 1.286 0.736 0.720 0.016 0.021 97.86
DHL25 0.798 0.907 1.078 0.840 0.873 −0.032 −0.038 96.16
DHL07 0.783 0.751 1.007 0.811 0.846 −0.035 −0.043 95.72
DHL26 0.694 0.709 1.171 0.773 0.711 0.062 0.080 92.03

Gemmeiza-9 0.758 0.752 1.155 0.775 0.764 0.011 0.014 98.57
DHL11 0.606 0.870 1.293 0.648 0.663 −0.015 −0.023 97.73
KSU106 0.667 0.707 1.199 0.662 0.683 −0.021 −0.032 96.85

Gemmeiza-12 0.709 0.794 1.300 0.545 0.687 −0.142 −0.261 73.92
DHL01 0.725 0.640 1.250 0.729 0.666 0.063 0.086 91.39
DHL14 0.751 0.863 1.137 0.846 0.807 0.039 0.046 95.36
DHL29 0.783 0.805 1.083 0.736 0.829 −0.093 −0.126 87.37
DHL15 0.975 0.859 1.086 0.929 0.942 −0.013 −0.014 98.57
DHL06 0.817 0.851 1.029 0.919 0.886 0.033 0.036 96.41
Misr1 0.783 0.850 1.082 0.820 0.844 −0.024 −0.029 97.08

DHL05 0.852 0.929 1.198 0.920 0.851 0.069 0.075 92.53
DHL23 0.715 0.857 1.099 0.777 0.805 −0.028 −0.036 96.40

Sakha-93 0.757 0.863 1.185 0.814 0.787 0.027 0.033 96.69
Pavone-76 0.898 0.903 1.090 0.869 0.916 −0.047 −0.054 94.55

DHL08 0.929 0.929 1.022 0.951 0.972 −0.022 −0.023 97.73
Average 94.12
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3.2.3. Clustering and Genetic Relationships between the Genotypes for Heat Tolerance

Based on SMLR analysis, we decided to use the tolerance index of the four indices
(GFD, CAT, SL, and GY) for cluster analysis for heat tolerance of 20 wheat genotypes using
genetics dissimilarity matrix (Euclidean distance and Ward’s method of agglomeration).
Cluster analysis showed five major groups based on the heat tolerance range of wheat
genotypes with a dissimilarity coefficient of 2.130. Cluster I, classified as highly tolerant
(HT), consists of four genotypes (DHL05, DHL23, Pavone-76, and DHL08); cluster II or
tolerant (T) with six genotypes (DHL12, DHL25, DHL29, DHL06, Misr1, and Sakha-93),
cluster III of moderately tolerant (I) two genotypes (DHL07 and DHL15), cluster IV or
sensitive (S), of four genotypes (DHL02, DHL11, Gemmeiza-12, and DHL14). Cluster VI
was classified as highly sensitive (HS), consisting of four genotypes (DHL26, Gemmeiza-9,
KSU106, and DHL01) (Figure 4).
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The clustering result was substantially aligned with our phenotypic results. The classi-
fication of heat tolerance index for both PCA and clustering were significantly correlated
(r = 0.502, p < 0.0001), building upon the Mantel test. Phenotypic variation between the
five heat groups indicated significantly different performances for four indices (Figure 5).
The mean comparison for each index showed significant differences in HT with S and HS
groups for four indices, except for group S, which was insignificant for the SL index. There
were insignificant differences between the T and I groups, except for group I, which was
significant for the SL index. Group T vs. I exhibited insignificant differences in four indices.
Group S vs. HS exhibited insignificant differences in GFD and GY indices and SL and CT
indices (Figure 5).

3.2.4. Differentiation of Heat Groups by Discriminant Function Analysis

Multicollinearity statistics were acceptable, ranging from 0.278 to 0.696 for tolerance;
and 1.436 to 3.598 for VIF (Table 7). Unidimensional test of equality of the means of the five
groups by four indices (GFD, SL, CT, and GY) was significant with a low Lambda level, with
values ranging from 0.216 (p < 0.0001) to 0.404 (p < 0.006). This indicates the possibility of
predicting the performance of group members based on cluster analysis. The discriminant
functions (two-dimensional) of five groups and four indices were closely related to the
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prediction of group members into the heat groupings for the 20 genotypes used in this
study (Figure 4). The first and second canonical discriminant functions (Can) explained
54.325% and 43.385% (cumulative, 97,710), respectively, of the overall phenotypic variations
(eigenvalues > 1) (Table 8). Bartlett’s statistic was significant for the first (54.926, p = 0.000)
and second (27.670, p = 0.001) canonical. Canonical correlations were highly significant at
0.921 (Can1) and 0.903 (Can2). Loading the four indices to canonical discriminant functions
(DF-Can1) showed that SL and CT were positively correlated, and GFD and GY were
negatively correlated, reflecting that DF-Can1 discriminated between genotypes based on
SL and CT. DF-Can2 was inextricably linked to GFD, SL, and GY but negatively correlated
to CT, reflecting that DF-Can2 discriminates the genotypes based on GFD, SL, and GY.
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The maximum distinction between group means I and S (3.681 vs. −2.940) was ob-
served in DF-Can1, and between group means HT and HS (2.056 vs. −3.080) was observed
in DF-Can2. S group with a positive DF-Can1 value was heat sensitive; conversely, four
groups (HS, I, T, and HT) with DF-Can1 negative values. In the plot of heat groups with
DF-Can1 and DF-Can2, group I was placed halfway between HS and HT (Figure 6). Group
S had a positive value of DF-Can1 (3.681), indicating that it had high mean values for
SL and CT indices and a negative DF-Can2 (−0.949) value due to low CT. The HT, T,
and I groups were against the S group, which had a negative value for DF-Can1 (−0.017,
−0.357, and −2.940) and a positive value for DF-Can2 (2.056, 1.088, and 0.682), respectively.
The HS group had negative values for the two DF-Can (−1.659 and −3.080), respectively
(Table 8). After finding the DF-Can, the classification of the five groups was verified,
which showed that prior and posterior classification was identical in eighteen genotypes
(% correct = 90%) and different in the two genotypes (DHL25 and DHL23). The values
of membership probabilities (>0.5) indicated compatibility between prior and posterior
classification (Table 9). The membership probabilities values = 1 in five genotypes (DHL02,
DHL26, DHL11, Gemmeiza-12, and DHL01) and when it is less than 0.5 to be transferred
to the appropriate classification. Cross-validation showed that prior and posterior classi-
fication was identical in thirteen genotypes (% correct = 65%) and different in the seven
genotypes (DHL25, DHL07, DHL15, DHL06, DHL05, DHL23, and DHL08) (Table 9).
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Table 7. Multicollinearity statistics and unidimensional test of equality of the means of the classes of
heat group to canonical discriminant function.

Statistic GFD SL CT GY

Multicollinearity statistics:

Tolerance 0.321 0.696 0.465 0.278
VIF 3.114 1.436 2.151 3.598

Unidimensional test of equality of the means of the classes:

Lambda 0.377 0.220 0.216 0.404
F 6.195 13.319 13.584 5.536

DF1 4 4 4 4
DF2 15 15 15 15

p-value 0.004 <0.0001 <0.0001 0.006

Table 8. Total canonical structure of eigenvalue, canonical discriminant function, bartlett’s statistic,
and class means of heat group to canonical discriminant function.

Parameters Can1 Can2 Can3

Eigenvalue 5.551 4.433 0.200
Discrimination (%) 54.325 43.385 1.959

Cumulative % 54.325 97.710 99.669

Bartlett’s statistic 54.926 27.670 3.128
p-value 0.000 0.001 0.537

Canonical correlations 0.921 0.903 0.408

Variables/Factors correlations:

GFD −0.497 0.668 0.543
SL 0.425 0.875 0.062
CT 0.732 −0.629 0.181
GY −0.505 0.673 0.083

Heat Group

HS −1.659 −3.080 −0.044
HT −0.017 2.056 0.312

I −2.940 0.682 0.667
S 3.681 −0.949 0.173
T −0.357 1.088 −0.516
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Table 9. Posterior probability of membership in heat groupings by linear discriminant analysis.

Genotypes

Classification Cross-Validation

Prior Posterior
Membership Probabilities

Posterior
Membership Probabilities

Pr(HS) Pr(HT) Pr(I) Pr(S) Pr(T) HS HT I S T

DHL12 S S 0.000 0.000 0.000 0.999 0.001 S 0.001 0.004 0.000 0.972 0.023

DHL02 S S 0.000 0.000 0.000 1.000 0.000 S 0.000 0.000 0.000 0.999 0.001

DHL25 T HT 0.000 0.520 0.000 0.000 0.480 HT 0.000 0.703 0.000 0.000 0.297

DHL07 I I 0.008 0.001 0.955 0.000 0.036 HS 0.637 0.000 0.000 0.000 0.363

DHL26 HS HS 1.000 0.000 0.000 0.000 0.000 HS 0.999 0.000 0.001 0.000 0.001

Gemmeiza-9 HS HS 0.928 0.001 0.029 0.000 0.042 HS 0.865 0.001 0.062 0.000 0.072

DHL11 S S 0.000 0.000 0.000 1.000 0.000 S 0.000 0.000 0.000 1.000 0.000

KSU106 HS HS 0.999 0.000 0.000 0.000 0.001 HS 0.993 0.000 0.000 0.000 0.006

Gemmeiza-12 S S 0.000 0.000 0.000 1.000 0.000 S 0.001 0.000 0.000 0.999 0.000

DHL01 HS HS 1.000 0.000 0.000 0.000 0.000 HS 1.000 0.000 0.000 0.000 0.000

DHL14 T T 0.000 0.169 0.001 0.000 0.830 T 0.000 0.215 0.001 0.000 0.783

DHL29 T T 0.001 0.112 0.043 0.000 0.844 T 0.003 0.177 0.129 0.000 0.691

DHL15 I I 0.000 0.105 0.845 0.000 0.050 HT 0.000 0.894 0.000 0.000 0.106

DHL06 T T 0.000 0.114 0.226 0.000 0.660 I 0.000 0.100 0.742 0.000 0.158

Misr1 T T 0.000 0.188 0.008 0.000 0.804 T 0.000 0.204 0.010 0.000 0.787

DHL05 HT HT 0.000 0.755 0.000 0.003 0.242 T 0.000 0.273 0.000 0.035 0.692

DHL23 HT T 0.000 0.133 0.000 0.000 0.867 T 0.000 0.003 0.000 0.001 0.996

Sakha-93 T T 0.000 0.231 0.000 0.020 0.749 T 0.001 0.418 0.000 0.025 0.556

Pavone-76 HT HT 0.000 0.766 0.005 0.000 0.230 HT 0.000 0.671 0.009 0.000 0.320

DHL08 HT HT 0.000 0.813 0.018 0.000 0.170 T 0.000 0.395 0.181 0.000 0.424

Bold letters indicate misclassified wheat genotypes.
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4. Discussion

Plant responses to stress are very complicated; it incorporates a set of temporal scales,
from in just a few seconds to largely noticed evolutionary processes. We understand at
least three clear time scales of plant response to stress, i.e., response to stress, acclimation,
and adaptation. A plant’s response to stress varies with the developmental stage and
genotype used, and the plant’s ability to survive under stress conditions is associated with
stress tolerance [45]. Developing heat-tolerant genotypes is among the main goals of plant
breeders, given that the final grain yield is affected by many genetic and environmental
factors. Plant breeders rely on explained attributes associated with GY as screening criteria,
which may provide greater information in the selection process of more sustainable and
heat-tolerant genotypes [46,47]. There is a crucial need for a comprehensive understanding
of the indirect approach behavior based on incorporating multiple morpho-physiological
plant traits associated with heat tolerance with yield and its components. This can assist in
targeting major traits, which may help genetic gain for grain yield for countries with high
ambient temperatures. The accurate selection of explained attributes is efficient if there are
strong associations with GY and high-value heritability and genetic gain [45,48,49].

Based on one-way ANOVA for heat tolerance index in S1 and S2, there were highly
significant differences (p < 0.01) for genotypes for all indices, with a significant variation
between large and small values for the majority of measured indices, reflecting the efficiency
of these indices on the show genetic diversity between genotypes used (Tables 1 and 2).
The interactions in combined ANOVA between genotypes and seasons were significant,
with nineteen indices out of twenty-six, suggesting that the genotypes’ heat tolerance
index differed from season to season (Table 1). Test of the homogeneity between two
seasons showed insignificant for 22 indices, suggesting that the combined data can be
shown without exposing seasons data. Plant breeder depends primarily on the trait’s
genetic stability (heritability, genetic gain and GCV). The 17 studied indices showed high
heritability (h2 > 60%), genetic gain (nine of them were high >20% and/or eight of them
were moderate >10%), and GCV and PCV were very close. This indicates that the genotypic
variations primarily arise from the genetic control indices. These indices, therefore, can
reliably be used as selection criteria for the evaluation of heat tolerance [28,33,48], notably
if the measurement method is quick, easy, and low-budget [34]. The values for coefficients
of experimental variation (CVe) were small, ranging from 3.94% to 5.43 (Table 2). These
results show small variability within experimental units, and the number of replicates used
was appropriate [50,51].

The studied wheat genotypes exhibited wide variation in heat tolerance. The stress
tolerance index, typically used as a criterion to evaluate tolerance, has been used for
screening genotypes in multiple recent literatures [29,35,45,52]. They have relied on quite
fewer genotypes compared to our study. Although the number of applied genotypes
could sound insufficient, it gave rise to reliable selection criteria and accurate results
when multivariate analysis techniques and multidimensional methods were conducted for
discriminating their heat tolerance [29,52–54]. In this study, we conducted a comprehensive
assessment of wheat heat tolerance by many multivariate analyses with a view to achieving
a more accurate classification. The angle between the vectors of indices was acute (less
than 90◦) for the GY index with most indices, which indicates a positive correlation of
these traits with GY. In contrast, the angle between the vector of the four indices (CT,
Gs, Ci, and E) was for GY higher than 90◦, which indicated their negative correlation
with GY (Figure 1). By PCA, the 25 indices were transformed into seven comprehensive
indices (eigenvalue > 1) (Table 3), and the weight factor for each comprehensive index
was determined (Table 3). Then, for each wheat genotype, the comprehensive evaluation
value D to identify heat-tolerant capacity was calculated by the combination membership
function analysis (Table 4). A high D value indicated higher heat tolerance capacity. Thus,
the D value and the results of hierarchical cluster analysis were used to evaluate the
heat tolerance of the 20 tested genotypes (Figure 2). The heat tolerance of wheat was
determined, and studied genotypes were divided into five groups—three genotypes HT
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(DHL02, DHL23, DHL08), four genotypes T (DHL12, DHL29, DHL05, and Pavone-76), six
genotypes I (DHL25, DHL07, Gemmeiza-9, DHL15, Misr1, and Sakha-93), four genotypes S
(DHL11, KSU106, Gemmeiza-12, DHL14 and DHL06), and two genotypes HS (DHL26 and
DHL01). This method was more confident than other traditional assessment metrics [52,55].

Heat tolerance is a comprehensive quantitative trait and a complex trait affected by
many genetic and environmental factors and their interactions [56]. Thus, using only one
index poorly reflects wheat genotypes’ heat tolerance, and the significant correlations
between indices indicate overlap with others to heat stress [1,35]. We used other statistical
analyses to further the accuracy of our results, i.e., the use of 16 morph-physiological and
agronomic indices (MD, GFD, FLA, SL, LWC, RWC, CT, Pn, Gs, Ci, E, Ls, POD, PPO, CAT,
and GY) as stress indicators for screening heat-tolerant genotypes. Out of these, nine indices,
i.e., DH, NS, PH, GLN, GLA, LAI, NSS, NKS, and HW, were excluded from other statistical
analyses because of their low heritability level and/or genetic gain with wide variation
between GCV and PCV. Moreover, the 16 single HTIs showed highly significant differences
among the 20 tested genotypes (Table 1). The seven indices of MD, GFD, PH, RWC, SL,
HW, and Pn were correlated significantly positively with the GY index, while the CT index
had a negative correlation (Figure 3). SMLR and path coefficient are effective tools for
understanding the relationships between independent and dependent variables [1,57]. They
have also found that a simple correlation analysis with interactions between independent
and dependent indices may not help successful breeding programs [58]. We analyzed the
relationships between 16 indices using SMLR for each genotype as independent indices to
understand the best-measured and heat tolerance-related indices and their contribution
to GY index performance as a dependent index (Table 5). The SMLR results showed that
indices GFD, SL and CT only from the eight were directly relevant to the GY index (R2

of the SMLR model was 0.739, p < 0.0001), and their contribution rates were 0.529, 0.074,
and 0.136, respectively (Table 5). We further conducted path analysis to separate the
three indices (GFD, SL, and CT) for their direct and indirect impact. A direct effect of the
correlation between the interpreted indices shows a direct connection among these indices
and suggests their use in the selection process [1,59]. We found that the direct and indirect
impacts were close for GDF and SL, but for CT, the direct impact was two-fold the indirect
impact (Table 5).

The R2 values were 0.478 and 0.261 for direct and indirect impacts, respectively, and
most of the impact was directly related to the GFD index. So, we realized that GFD, SL, and
CT are good indices for predicting yield index and dependable to appraise the genotypic
heat tolerance for their valuable contribution to the predicting process (Table 5). Naturally,
the different genotypes perform from one index to another, but at least it will relate to one
index [1]. In the same genotype, some traits might show a positive correlation, whereas
others may show a negative correlation. As a result, we noticed the equation of the model
(GY, Table 5), GY = 0.670 + 0.504 × GFD + 0.334 × SL − 0.466 × CT, and which showed
that the predicted regression GY value, error value, and relative error value ranged from
0.663 to 0.972, from −0.142 to 0.081, from −0.261 to 0.105, respectively, with genotypes
evaluation accuracy (%) ranging from 73.917 to 98.570 with an average value of 94.12
(Table 6), apparently, according to Yu et al. [52]. Indices such as GFD, SL, and CT are valu-
able indicators of overall plant performance; they consider radiation use efficiency, plant
competition, photosynthesis, and evapotranspiration rates for computing plant growth
and development [17,33]. Increasing GFD (from anthesis to maturity) is a critical target
in plant breeding under heat stress. Therefore, plant breeders seek to break the negative
correlation between DH and GY by obtaining high-yielding and early flowering bread
wheat genotypes under heat stress [1]. GFD is a robust index for identifying genotypes of
heat tolerance, given the interdependencies with morpho-physiological and early traits
under heat stress. It has a strong relationship with SL and helps photosynthesis through
awns. In this vein, CT is a strong index because closely linked to photosynthetic capacity,
chlorophyll content, and several traits connected with high heat in plants [60–62]. The
genotypes with the capacity to reduce CT and gas exchange are highly desirable, because
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of the efficiency indicator in gas exchange and transpiration as a leaf-cooling response
under stress [63,64]. CT is a robust physiological index used in wheat breeding programs
as a low-budget nondestructive tool for identifying heat-tolerant genotypes [60,61,65]. In
wheat, genotypic variations for CT suggest the capacity of wheat genotypes also varies for
transporting water cross-vascular system, regulating stomata aperture, metabolism, root
biomass and depth, and source–sink balance [66]. Hence, the low CT trait should be the
key focus of plant breeding programs for screening heat-tolerant wheat genotypes.

Based on the results of the SMLR analysis, we used the four tolerance indexes (GFD,
CAT, SL, and GY) to create a cluster analysis for heat tolerance in the 20 wheat genotypes
using a genetics dissimilarity matrix (Figure 4). The heat tolerance index for both PCA and
clustering were significantly correlated (r = 0.502, p < 0.0001), building upon the Mantel
test. Cluster analysis showed five major groups based on the tolerance range of wheat
genotypes for heat. The HT, S, and HS groups represented four genotypes each, and T
and I groups represented six and two genotypes, respectively. Six genotypes (DHL25,
KSU106, Misr1, DHL05, Sakha-93, and Pavone-76) within groups showed deviation out
to the nearest group compared to the classification of based comprehensive evaluation
value D, but the genotypes (DHL12, DHL02, Gemmeiza-9, DHL14, and DHL06) showed
deviation a lot further. Nine (DHL07, DHL26, DHL11, Gemmeiza-12, DHL01, DHL29,
DHL15, DHL23, and DHL08) genotypes out of 20 were completely identical in the same
categories obtained from comprehensive evaluation value D. Phenotypic variation between
the five heat groups by one-way ANOVA indicated significantly different performances for
the four indices (Figure 5). The group HT vs S in the SL index, HT vs T and I in GFD, CT,
and GY indices, T vs I in the four indices, and S vs HS in GFD and GY indices had the same
heat tolerance responses.

Many researchers have used cluster analysis for ranking the tolerant wheat genotypes
based on their agro-physiological parameters [6,28,29,67,68]. However, cross-validation of
the aggregation method was not employed to enhance classification reliability. In addition,
identifying the differences between tolerance levels is unstable because heat tolerance is
a complex inheritance and limited screening techniques [35,45,69]. So, FA was used to
understand aggregation better and assess the extent of distinctions between heat categories
to enhance classification reliability for heat tolerance. Fisher linear discriminant analysis
(FLDA) is similar to MANOVA work; in the beginning, it computes the Mahalanobis
distance of each genotype to a category and then uses this distance to classify a genotype
into the category with the smallest generalized squared distance [68,70]. The homogene-
ity test for covariance matrices was significant (0.043 < p < 0.0001), and we conducted
quadratic discriminant analysis, which resulted in a 0.00% error rate. This confirms that the
classification of genotypes using clustering based on normalization values was a robust
analysis. Lambda values were low (0.006 < p < 0.0001), which indicated the possibility
of predicting group members based on the cluster analysis (Table 7). As indicated by DF,
there were also strong contributions (cumulative, 97.71) and clear separations between the
heat tolerance categories (Table 8). Our study suggested that DF-Can1 differentiates the
genotypes based on SL and CT while DF-Can2 discriminates based on GFD, SL, and GY.
The classification of the five groups was verified, which showed that prior and posterior
classification was identical in eighteen genotypes (% correct = 90%) and different in the two
genotypes (DHL25 and DHL23) (the values of membership probabilities > 0.5) (Table 9).
Cross-validation showed that prior and posterior classification was identical in thirteen
genotypes (% correct = 65%) and different in the seven genotypes (DHL25, DHL07, DHL15,
DHL06, DHL05, DHL23, and DHL08). Therefore, DF could serve as a useful statistical
tool for identifying genetic resources of heat tolerance using accurate and credible selec-
tion criteria [29,35,68]. Since heat-tolerant trait is very complicated and affected by many
genetic and environmental factors and their interactions, an overall understanding of the
genetic basis and plant responses to this stress and their interaction with the environment
is needed [6,71–73]. We will be using recently discovered statistical methods in a future
study with more environmental indices such as the multi-trait genotype-ideotype distance
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index (MGIDI), the weighted average of absolute scores (WAASB) index, and a superiority
index that allows weighting between mean performance and stability (WAASBY) to help
breeders make appropriate decisions for selecting more stable genotypes and commended
in multi-environment trials [72–74].

5. Conclusions

In this study, we studied genotypic × environmental interactions in wheat using
25 indices with homogeneity of error variance in 22 indices. We found that 16 indices
combined high heritability and genetic gain, which can be used as indicators for screening
heat-tolerant genotypes. The classification D value and SMLR distances were significantly
correlated based on the Mantel test, with a perfect match in nine genotypes. The SMLR-
based classification of studied wheat genotypes into five distinct groups was verified
through discriminant analysis, which showed that prior and posterior classification was
identical in eighteen genotypes and different in the two genotypes. Cross-validation
showed that prior and posterior classification was identical in thirteen genotypes and
different in the seven genotypes. The tolerated new wheat lines (DHL25, DHL05, DHL23,
and DHL08) and cultivar Pavone-76 could be recommended as a promising genetic source
for heat-tolerant breeding programs.
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//www.mdpi.com/article/10.3390/agronomy13010154/s1, : title; Table S1: Monthly temperature
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Author Contributions: Conceived and designed the experiments, I.A.-A.; performed the experiments,
I.A.-A., A.I., M.S.; analyzed the data, I.A.-A., M S., A.A.-D.; morpho-physiological measurements,
I.A.-A., M.S., A.I., M.A. and A.G.; edited the manuscript, I.A.-A. and N.U.; final approval of the
version to be published, I.A.-A. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry
of Education in Saudi Arabia for funding this research work through the project no. (IFKSURG-2-4).

Data Availability Statement: All data is contained within the article or Supplementary Material.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia for funding this research work through the project no.
(IFKSURG-2-4).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Ashkar, I.; Alotaibi, M.; Refay, Y.; Ghazy, A.; Zakri, A.; Al-Doss, A. Selection criteria for high-yielding and early-flowering

bread wheat hybrids under heat stress. PLoS ONE 2020, 15, e0236351. [CrossRef] [PubMed]
2. Riaz, M.W.; Yang, L.; Yousaf, M.I.; Sami, A.; Mei, X.D.; Shah, L.; Rehman, S.; Xue, L.; Si, H.; Ma, C. Effects of Heat Stress on

Growth, Physiology of Plants, Yield and Grain Quality of Different Spring Wheat (Triticum aestivum L.) Genotypes. Sustainability
2021, 13, 2972. [CrossRef]

3. Teixeira, E.I.; Fischer, G.; van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to
climate change. Agric. Forest Meteorol. 2013, 170, 206–215. [CrossRef]

4. Dubey, R.; Pathak, H.; Chakrabarti, B.; Singh, S.; Gupta, D.K.; Harit, R.C. Impact of terminal heat stress on wheat yield in India
and options for adaptation. Agric. Syst. 2020, 181, 102826. [CrossRef]

5. Fernie, E.; Tan, D.K.; Liu, S.Y.; Ullah, N.; Khoddami, A.J.A. Post-Anthesis Heat Influences Grain Yield, Physical and Nutritional
Quality in Wheat: A Review. Agriculture 2022, 12, 886. [CrossRef]

6. Al-Ashkar, I.; Sallam, M.; Al-Suhaibani, N.; Ibrahim, A.; Alsadon, A.; Al-Doss, A.J.A. Multiple Stresses of Wheat in the Detection
of Traits and Genotypes of High-Performance and Stability for a Complex Interplay of Environment and Genotypes. Agronomy
2022, 12, 2252. [CrossRef]

7. Tariq, A.; Ashraf, I.; Ahmed, M.; Muscolo, A.; Basra, S.; Reynolds, M. Evaluation of Physiological and Morphological Traits for
Improving Spring Wheat Adaptation to Terminal Heat Stress. Plants 2021, 10, 455.

https://www.mdpi.com/article/10.3390/agronomy13010154/s1
https://www.mdpi.com/article/10.3390/agronomy13010154/s1
http://doi.org/10.1371/journal.pone.0236351
http://www.ncbi.nlm.nih.gov/pubmed/32785293
http://doi.org/10.3390/su13052972
http://doi.org/10.1016/j.agrformet.2011.09.002
http://doi.org/10.1016/j.agsy.2020.102826
http://doi.org/10.3390/agriculture12060886
http://doi.org/10.3390/agronomy12102252


Agronomy 2023, 13, 154 22 of 24

8. Djanaguiraman, M.; Narayanan, S.; Erdayani, E.; Prasad, P.V.V. Effects of high temperature stress during anthesis and grain filling
periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 2020, 20, 268. [CrossRef] [PubMed]

9. Joshi, A.K.; Mishra, B.; Chatrath, R.; Ferrara, G.O.; Singh, R.P. Wheat improvement in India: Present status, emerging challenges
and future prospects. Euphytica 2007, 157, 431–446. [CrossRef]

10. Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of
heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [CrossRef]

11. Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase
reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [CrossRef]

12. Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012.
[CrossRef]

13. Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223.
[CrossRef]

14. Djanaguiraman, M.; Boyle, D.L.; Welti, R.; Jagadish, S.V.K.; Prasad, P.V.V. Decreased photosynthetic rate under high temperature
in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biol. 2018, 18, 55. [CrossRef]

15. Yadav, M.R.; Choudhary, M.; Singh, J.; Lal, M.K.; Jha, P.K.; Udawat, P.; Gupta, N.K.; Rajput, V.D.; Garg, N.K.; Maheshwari, C.; et al.
Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates. Int. J. Mol. Sci. 2022, 23, 2838.
[CrossRef]

16. Tashiro, T.; Wardlaw, I.F. The Response to High-Temperature Shock and Humidity Changes Prior to and during the Early Stages
of Grain Development in Wheat. Aust. J. Plant Physiol. 1990, 17, 551–561. [CrossRef]

17. Lopes, M.S.; Reynolds, M.P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized
difference vegetation index) independently from phenology. J. Exp. Bot. 2012, 63, 3789–3798. [CrossRef]

18. Mondal, S.; Singh, R.P.; Crossa, J.; Huerta-Espino, J.; Sharma, I.; Chatrath, R.; Singh, G.P.; Sohu, V.S.; Mavi, G.S.; Sukuru, V.S.P.; et al.
Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. Field Crop. Res. 2013,
151, 19–26. [CrossRef]

19. Barakat, M.N.; Al-Doss, A.A.; Moustafa, K.A.; Motawei, M.I.; Al-Ashkar, I.M.; Al-Otayk, S.M.; Alamri, M.S.; Mergoum, M.
Mapping Wheat Qtls for Grain Yield Related Traits under High Temperature Stress. Genetika 2020, 52, 1107–1125. [CrossRef]

20. Talukder, S.K.; Babar, M.A.; Vijayalakshmi, K.; Poland, J.; Prasad, P.V.; Bowden, R.; Fritz, A. Mapping QTL for the traits associated
with heat tolerance in wheat (Triticum aestivum L.). BMC Genet. 2014, 15, 97. [CrossRef]

21. Blum, A.; Sinmena, B.; Mayer, J.; Golan, G.; Shpiler, L. Stem Reserve Mobilization Supports Wheat-Grain Filling under Heat-Stress.
Aust. J. Plant Physiol. 1994, 21, 771–781. [CrossRef]

22. Pinto, R.S.; Reynolds, M.P.; Mathews, K.L.; McIntyre, C.L.; Olivares-Villegas, J.J.; Chapman, S.C. Heat and drought adaptive QTL
in a wheat population designed to minimize confounding agronomic effects. Theor. Appl. Genet. 2010, 121, 1001–1021. [CrossRef]

23. Pinto, R.S.; Reynolds, M.P. Common genetic basis for canopy temperature depression under heat and drought stress associated
with optimized root distribution in bread wheat. Theor. Appl. Genet. 2015, 128, 575–585. [CrossRef]

24. Kumari, M.; Pudake, R.N.; Singh, V.P.; Joshi, A.K. Association of staygreen trait with canopy temperature depression and yield
traits under terminal heat stress in wheat (Triticum aestivum L.). Euphytica 2013, 190, 87–97. [CrossRef]

25. Pinto, R.S.; Lopes, M.S.; Collins, N.C.; Reynolds, M.P. Modelling and genetic dissection of staygreen under heat stress. Theor.
Appl. Genet. 2016, 129, 2055–2074. [CrossRef]

26. Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White,
J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [CrossRef]

27. Kumar, S.; Kumari, P.; Kumar, U.; Grover, M.; Singh, A.K.; Singh, R.; Sengar, R.S. Molecular approaches for designing heat
tolerant wheat. J. Plant Biochem. Biot. 2013, 22, 359–371. [CrossRef]

28. Abdolshahi, R.; Nazari, M.; Safarian, A.; Sadathossini, T.; Salarpour, M.; Amiri, H. Integrated selection criteria for drought
tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crop Res. 2015, 174, 20–29.
[CrossRef]

29. Al-Ashkar, I.; Alderfasi, A.; El-Hendawy, S.; Al-Suhaibani, N.; El-Kafafi, S.; Seleiman, M.F. Detecting Salt Tolerance in Doubled
Haploid Wheat Lines. Agronomy 2019, 9, 211. [CrossRef]

30. Chakraborty, K.; Mondal, S.; Ray, S.; Samal, P.; Pradhan, B.; Chattopadhyay, K.; Kar, M.K.; Swain, P.; Sarkar, R.K. Tissue tolerance
coupled with ionic discrimination can potentially minimize the energy cost of salinity tolerance in rice. Front. Plant Sci. 2020,
11, 265. [CrossRef]

31. Dadshani, S.; Sharma, R.C.; Baum, M.; Ogbonnaya, F.C.; Léon, J.; Ballvora, A. Multi-dimensional evaluation of response to salt
stress in wheat. PLoS ONE 2019, 14, e0222659. [CrossRef]

32. Al-Ashkar, I.; Romdhane, W.B.; El-Said, R.A.; Ghazy, A.; Attia, K.; Al-Doss, A. Agro-Physiologic Responses and Stress-Related
Gene Expression of Four Doubled Haploid Wheat Lines under Salinity Stress Conditions. Biology 2021, 10, 56. [CrossRef]

33. El-Hendawy, S.; Al-Suhaibani, N.; Al-Ashkar, I.; Alotaibi, M.; Tahir, M.U.; Solieman, T.; Hassan, W.M. Combining Genetic
Analysis and Multivariate Modeling to Evaluate Spectral Reflectance Indices as Indirect Selection Tools in Wheat Breeding under
Water Deficit Stress Conditions. Remote Sens. 2020, 12, 1480. [CrossRef]
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