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Abstract: In hyper-arid and arid zones, management of crop water requirements is considered a vital
component for sustaining crop production. The efficiency of the irrigation method and the application
of many kinds of organic matter are practices that should be followed in Egypt to maximize the
use of irrigation water. Two field experiments were conducted during the two successive winter
seasons of 2020/2021 and 2021/2022 to study the effect of drip irrigation systems and of several types
of compost on yield and yield attributes of four cultivars of wheat in newly reclaimed sandy soils.
Studied factors were irrigation levels based on the amount of water evapotranspiration (ET) (I1, I2, I3)
and the application of compost types (Com1, Com2 and Com3) on four bread wheat cultivars. The
parameters measured at each irrigation level were: heading date (day), plant height (cm2), number
of spikes/m2, number of grains/spike, 1000-grain weight (g), grain yield (t/fed.), Biological yield
(kg/fed.) and harvest index (%). The farmyard manure (Com3) gave the maximum values under
irrigation shortages, reflected in producing the maximum values for traits measured in the 2020/2021
season as compared to (Com1) or (Com2) applications, which scored lower values for the traits for
the different cultivars for wheat. The interaction (I1, I2) × Com3 × (Mis1, Mis2) led to a significant
increase during both seasons for all the yield and yield components studied. A drip irrigation system
at the level of 80% of ET and application of Com3 is recommended to optimize wheat productivity
from the unit area. The savings in water irrigation would allow expansion of the cultivated area to
decrease the gap between local crop production and local requirements.

Keywords: wheat; cultivars; evapotranspiration; compost; machine planter; yield; yield attributes

1. Introduction

Bread wheat Triticum aestivum L. is the world’s most important grain, covering more
of the earth’s surface than any other food crop [1]. It is an essential staple crop around the
world [2]. The bread wheat yield is affected by global climatic change [3]. The productivity
of wheat is influenced by various biotic or abiotic stresses [4]. The global requirement
for wheat by the year 2020 is forecast to be around 950 million tones to meet the food
requirements imposed by the increase in population growth. This target will be achieved
only if global wheat production is increased by 2.5% per annum [5]. Egypt has a cultivated
area of 9.7 million feddans, of which approximately 6.5 million feddans are concentrated
in the Delta and receive surface irrigation, and 3.2 million feddans are newly reclaimed
soils that receive pressurized irrigation (sprinkler or pivot and drip irrigation) [6]. It is clear
that the use of non-conventional water resources is becoming a necessity [7]. The use of
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saline or sodic water in agriculture increases the total volume of irrigation water in many
areas [8] but soil management is essential to prevent adverse impacts [9]. The success of
saline water use in irrigation requires the development of many new scientific practices,
new guidelines on its use that cope with the prevailing local conditions, and new strategies
that facilitate its use on a relatively large scale [10].

In Egypt, agriculture uses more than 83% of freshwater resources. Despite water
scarcity and the fact that Egypt’s share in the Nile waters is predetermined, water-use
efficiency is low, due to high water losses [11]. Wheat has been the main winter crop
for more than 7000 years in Egypt and is considered to be a strategic commodity [12]. It
provides more than one-third of the daily caloric intake. The cultivated fields with wheat
supply only 40 to 50% of Egypt’s annual domestic demand. Therefore, field production
needs to be increased to cover the demanded consumption [13]. The grain is used as food
for humans, and the straw as fodder for animals. Wheat has special importance in Egypt
because the local production is not sufficient to face the annual requirements [14]. Egypt
imports wheat grain for more than 50% of its needs because the area of local production
is limited.; therefore, attempts to increase wheat production are quite important. Such
increases could be achieved through horizontal and vertical expansion. The cultivated area
covers about 3.6 million fadden (fed). Wheat in the winter season of 2021/2022 produced
an average of 3 t/fed. Recently, Egypt has made progress in wheat development. Farmers
have reported good results from improved land and water management practices, and new
wheat varieties that combine high yield, suitability for mechanization, disease resistance,
and high yield quality have been released, increasing the role of the private sector in
agricultural investment and reclaiming the desert.

The growing interest in using natural resources makes organic manures of particular
importance. The recycling of organic wastes for the maintenance of soil health by hygienic
methods is vital for increasing crop production and the welfare of mankind. The incorpo-
ration of organic remains in the form of compost, farmyard manure, cereal residue, and
green manure is known to improve the physical, chemical, and biological properties of
the soil. Fischer and Glaser [15] reported that composting is the most important and re-
warding method for increasing agricultural output through raising the level of soil fertility
by improving: (a) the long-term structural stability, (b) moisture retention of the soil, and
(c) increasing the supply of nutrients. Composting agricultural residues may lead to reduc-
ing global warming through reduced use of agricultural chemicals and fertilizers reduces
the production of fertilizers and agricultural chemicals, leading to reduced greenhouse gas
emissions [16].

There are three main irrigation systems, namely: surface (or gravity) irrigation, sprin-
kler irrigation, and drip irrigation. Drip irrigation is highly efficient because only the
immediate root zone of each plant is wetted. This system also allows the precise application
of water-soluble fertilizers and other agricultural chemicals. Drip irrigation is reported
to help increase yield gains up to 100%, water savings of up to 40–80%, and associated
fertilizer, pesticide, and labor savings over conventional irrigation systems [17]. Several
possible approaches, such as irrigation technologies and efficient irrigation scheduling [18],
may be adapted for more effective use of limited water supplies. The great challenge of the
agricultural sector in Egypt is to produce more food from less water. Drip irrigation system
has successfully been used to irrigate a wide range of crops [19]. Therefore, the specific
objectives of the study were to study the effect of the drip irrigation method and many
kinds of compost applications on different verities of bread wheat on wheat irrigation water
use efficiency, yield and yield components net income to recommend an effective irrigation
water management strategy for wheat grown under newly reclaimed sandy soil conditions.
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2. Materials and Methods
2.1. Site Description

Two field experiments were conducted at the Elisha village, El-Nubaria Province, El-
Behira Governorate, Egypt (Figure 1), during the 2020/2021 and 2021/2022 wheat growing
seasons (latitude 30◦30′23′ ′ N and longitude 30◦19′07′ ′ E.
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Figure 1. Location of the experimental farm in the El-Nubaria region, Egypt.

The experimental area has an arid climate with cool winters and hot dry summers.
Table 1 summarizes the monthly mean climatic data for the two growing seasons 2020/2021
and 2021/2022 (which are nearly the same) for El-Nubaria city. The data on maximum
and minimum temperature, relative humidity, and wind speed were obtained from “The
Central Laboratory of Meteorology” which is related to the Ministry of Agriculture. No
rainfall can be assumed for the two seasons because the amount was very small, and the
duration did not exceed a few minutes.

Table 1. Growing season climate data by month at the experimental site.

Growing
Seasons Month

Solar
Radiation

(W/m2)

Relative
Humidity Precipitation

(mm)
Wind Speed (m/sec) Air Temp (C)

% Aver. Max. Max. Min. Aver.

2020/21

November 46.2 60.3 2.1 2.1 4.7 32.1 10.3 21.2

December 49.7 64.2 1.8 2.0 5.3 23.5 9.7 16.6

January 52.4 65.5 1.5 2.3 6.2 23.7 6.9 15.3

February 69.9 56.0 1.8 2.6 5.6 25.6 7.8 16.7

March 98.3 55.8 4.2 2.8 7.3 27.9 8.1 18.0

April 112.5 53.1 2.5 2.7 6.4 31.6 12.6 22.1

2021/22

November 45.8 61.1 1.8 2.1 4.3 31.7 9.9 20.8

December 49.7 63.7 0.8 1.8 5.2 24.1 8.5 16.3

January 50.1 62.5 0.5 2.7 7.2 23.6 8.8 16.2

February 69.2 58.2 3.6 3.1 5.8 24.1 10.3 17.2

March 96.8 57.7 7.3 2.1 5.7 27.5 11.5 19.5

April 111.6 53.8 0.5 2.3 6.2 31.1 11.7 21.4

2.2. Experimental Details

The soil of the experimental site is classified as sandy soil. Some physical and chemical
properties of the experimental soil were measured following (Chapman and Pratt [20])
(Tables 2 and 3, respectively).
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Table 2. Main physical properties of the soil at the experimental site.

Soil Depth
(cm) Bulk Density (Mg m−3)

Hydraulic
Conductivity (m s−1)

Particle Size (%) Texture
ClassCoarse Sand Fine Sand Clay + Silt

2020/2021 season

0–15 1.34 5.1 × 10−6 49.7 45.9 4.4 Sandy
15–30 1.36 5.6 × 10−6 54.1 42.8 3.1 Sandy
30–45 1.45 5.8 × 10−6 37.5 56.8 5.7 Sandy

2021/2022 season

0–15 1.33 5.2 × 10−6 48. 9 46.5 4.6 Sandy
15–30 1.35 5.5 × 10−6 54.5 43.2 2.3 Sandy
30–45 1.46 5.8 × 10−6 36.3 57.3 6.4 Sandy

Table 3. Chemical properties of the soil at the experimental site.

Soil Depth
(cm)

PH (1:2.5) EC (ds/m) CEC
(cmol/kg) CaCO3% OM%

2020/2021 season

0–15 8.40 2.41 13 8.9 0.51
15–30 8.22 2.68 17 4.5 0.31
30–45 8.13 3.10 16 5.1 0.29

2021/2022 season

0–15 8.32 2.53 12 7.4 0.42
15–30 8.21 2.65 17 4.8 0.36
30–45 8.20 3.02 15 5.6 0.30

2.3. Layout of Experiment Design

The drip irrigation system was estimated according to the meteorological data of
the Central Laboratory for Agricultural Climate (CLAC). Using the Penman–Monteith
equation, the evapotranspiration rate (ET) was found to be 2450 m3/fed/season for drip
irrigation, as shown in Figure 2.
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Figure 2. Daily irrigation water requirements for the wheat plant under drip and sprinkler irrigation systems.

Site characteristics including the latitude (+ for north and − for south), longitude
(+ for west and − for east) and elevation (m) above sea level must be input. The re-
quired weather data includeshourly solar radiation (MJ m−2h−1), mean air temperature
(◦C), mean wind speed (m s−1) andmean dew point temperature (◦C). The air and dew
point temperatures should be measured atbetween 1.5 and 2.0 m height and the wind speed
should be measured at 2.0 m height. For windspeeds measured at some height other than 2.0 m,
the wind speed at 2 m height (u2) can beestimated as Penman-Monteith (hourly) Reference
Evapotranspiration Equations for Estimating ETos and ETrs with Hourly Weather Data. Avail-
able from: https://www.researchgate.net/publication/237412886_Penman-Monteith_hourly_

https://www.researchgate.net/publication/237412886_Penman-Monteith_hourly_Reference_Evapotranspiration_Equations_for_Estimating_ETos_and_ETrs_with_Hourly_Weather_Data
https://www.researchgate.net/publication/237412886_Penman-Monteith_hourly_Reference_Evapotranspiration_Equations_for_Estimating_ETos_and_ETrs_with_Hourly_Weather_Data
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Reference_Evapotranspiration_Equations_for_Estimating_ETos_and_ETrs_with_Hourly_Weather_
Data [accessed on 30 December 2022].

U2 = uz{4.87/In(67.8zw − 5.42)}

where uz = wind speed (m s−1) at height zw (m) above the ground
The experiment design was a split plot design with four replications. The main plots

were randomly assigned to the three levels of irrigation water applied, equaling 100%
ET = 2450 m3/fed (I1), 80% ET = 1960 m3/fed (I2) and 70% ET = 1715 m3/fed (I3) of
(ET) evapotranspiration at 2450 m3 per season, by using the drip irrigation method. The
compost types were: facilities compost (Com1), cucumber canopy compost (Com2) and
farmyard manure (Com3) applied at a rate of 10 m3 in each sub plot as follows: 25 cm deep
from soil surface level turned up with the soil (25 cm + turn). Four bread wheat cultivars
(Sakha 95 (S95), Giza 171 (G171), Misr 1 (Mis1) and Misr 2 (Mis2) were distributed in the
sub plots. Each plot area was 3.6 m wide (12 rows × 30 cm apart) and 3.5 m long (12.6 m2),
and plants were 8 cm apart. A distance of 2 m was left as a border between the treatments.

The wheat was sown on 20 November 2020 and 19 November 2021 for the two succes-
sive growing seasons, respectively, using a machine planter. The fertilizer applications were
based on soil analysis recommendations. All plots received the same amount of fertilizer,
i.e., calcium super-phosphate (Abou Zaabal For Specialized Chemicals, Cairo, Egypt) (15.5%
P2 O5) at the rate of 200 /fed was applied before sowing to the soil. Nitrogen fertilizer in
the form of ammonium nitrate (Abu Qir Fertilizers Company, Cairo, Egypt)(33.5% N) was
applied at the rate of 100 kg N /fed at five equal doses before the second, third, fourth, fifth,
and sixth irrigations. Potassium sulfate (Yara International ASA, Oslo, Norway) (48.52%
K2 O) was applied at the rate of 50 kg/fed before the first and third irrigations in two equal
doses. All other agricultural practices for wheat crop production were carried out according
to the recommendations of the Egypt Ministry of Agriculture and Land Reclamation.

Data and their recording procedure:
Agronomic traits: Days to heading, plant height (cm), the number of spikes/m2,

the number of grains/spike, 1000-grain weight (g), grain yield (t/fed), biological yield
(t/fed) and irrigation water use efficiency (kg/m3). The harvest index (HI) was estimated
at harvest.

Quality traits: Grain protein content was determined by using a modified micro-
Kjeldahl apparatus. The crude protein percentage in wheat grains was calculated by
multiplying the total nitrogen percentage by 5.75 according to the procedures outlined in
A.O.A.C. [21].

Analysis of data was done by computer, using the ANOVA program for statistical
analysis. The differences among means for all traits were tested for significance at a 5%
level according to (Gomez and Gomez [22]).

3. Results

I.A. Effect of water irrigation amount (ET) on the yield and yield components attributes
for wheat plants during the 2020/2021 and 2021/2022 seasons.

The results in Tables 4–8 and Figures 3–6 showed that irrigation of wheat plants during
the 2020/2021 and 2021/2022 seasons at the level of 100% from ET significantly led to an
increase and gave the maximum values for wheat heading date (day) (101.49 and 101.53,
respectively), plant height (cm2) (119.23 and 121.77, respectively), number of spikes/m2

(360 and 365.25, respectively), number of grains/spike (66.42 and 67.33, respectively),
1000-grain weight (g) (46.25 and 46.66, respectively), grain yield (t/fed) (3925 and 4014,
respectively), biological yield (kg/fed) (10,924 and 11,089, respectively) and harvest index
(%) (36.05 and 36.33, respectively) as compared to the other studied water irrigation levels
(I2 or I3) during both seasons. However, the greatest percent protein (13.42 and 13.47%,
respectively) and irrigation water use efficiency (1.98 and 2.01, respectively) were achieved
with the I2 treatment in both seasons.

https://www.researchgate.net/publication/237412886_Penman-Monteith_hourly_Reference_Evapotranspiration_Equations_for_Estimating_ETos_and_ETrs_with_Hourly_Weather_Data
https://www.researchgate.net/publication/237412886_Penman-Monteith_hourly_Reference_Evapotranspiration_Equations_for_Estimating_ETos_and_ETrs_with_Hourly_Weather_Data
https://www.researchgate.net/publication/237412886_Penman-Monteith_hourly_Reference_Evapotranspiration_Equations_for_Estimating_ETos_and_ETrs_with_Hourly_Weather_Data
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Table 4. ET irrigation and different compost affecting heading date (day) and plant height (cm2) with four cultivars for wheat.

Treatment
Heading Date (Day) Plant Height (cm2)

Season 2020/2021 Season 2021/2022 Season 2020/2021 Season 2021/2022

ET Compost S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

I1

Com-1 97.14 96.22 97.82 103.71 98.72 98.14 97.28 96.87 104.25 99.14 117.36 112.42 116.81 121.34 116.98 116.21 116.78 118.92 121.21 118.28

Com-2 102.52 100.18 97.46 104.29 101.11 103.52 102.18 97.89 105.21 102.20 118.35 118.36 119.21 124.42 120.09 119.39 120.54 124.25 126.27 122.61

Com-3 105.95 102.23 104.12 106.21 104.63 105.35 101.23 100.12 106.28 103.25 119.54 119.25 118.29 125.35 120.61 120.96 122.38 125.38 128.93 124.41

mean 101.87 99.54 99.80 104.74 101.49 102.34 100.23 98.29 105.25 101.53 118.42 116.68 118.10 123.70 119.23 118.85 119.90 122.85 125.47 121.77

I2

Com-1 96.80 93.30 100.10 101.20 97.85 95.18 92.25 96.78 101.21 96.36 113.90 115.30 114.80 119.70 115.93 114.20 114.12 113.21 117.21 114.69

Com-2 96.90 92.70 98.60 103.80 98.00 101.20 94.70 99.50 102.30 99.43 114.50 116.80 112.30 117.60 115.30 115.30 116.40 116.80 120.10 117.15

Com-3 100.60 94.60 98.20 104.80 99.55 98.90 95.60 100.20 102.70 99.35 118.80 118.20 116.60 121.90 118.88 119.10 117.80 117.40 122.40 119.18

mean 98.10 93.53 98.97 103.27 98.47 98.43 94.18 98.83 102.07 98.38 115.73 116.77 114.57 119.73 116.70 116.20 116.11 115.80 119.90 117.00

I3

Com-1 93.40 87.90 93.70 92.20 91.80 95.60 89.60 94.60 95.30 93.78 113.20 112.40 99.60 109.10 108.58 115.30 113.21 101.80 110.70 110.25

Com-2 92.80 87.30 92.80 91.90 91.20 97.40 88.60 95.70 95.60 94.33 113.80 111.70 98.80 110.60 108.73 114.80 114.80 103.10 114.30 111.75

Com-3 95.30 90.60 94.80 93.38 93.52 98.70 88.20 96.70 96.40 95.00 115.80 116.80 105.80 114.20 113.15 118.70 117.30 105.50 116.30 114.45

mean 93.83 88.60 93.77 92.49 92.17 97.23 88.80 95.67 95.77 94.37 114.27 113.63 101.40 111.30 110.15 116.27 115.10 103.47 113.77 112.15

G.M.V 97.93 93.89 97.51 100.17 97.38 99.33 94.40 97.60 101.03 98.09 116.14 115.69 111.36 118.25 115.36 117.11 117.04 114.04 119.71 116.97

Overall Compost × Cultivars

S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

Com-1 95.78 92.47 97.21 99.04 96.12 96.31 93.04 96.08 100.25 96.42 114.82 113.37 110.40 116.71 113.83 115.24 114.70 111.31 116.37 114.41

Com-2 97.41 93.39 96.29 100.00 96.77 100.71 95.16 97.70 101.04 98.65 115.55 115.62 110.10 117.54 114.70 116.50 117.25 114.72 120.22 117.17

Com-3 100.62 95.81 99.04 101.46 99.23 100.98 95.01 99.01 101.79 99.20 118.05 118.08 113.56 120.48 117.54 119.59 119.16 116.09 122.54 119.35

mean 97.93 93.89 97.51 100.17 97.38 99.33 94.40 97.60 101.03 98.09 116.14 115.69 111.36 118.25 115.36 117.11 117.04 114.04 119.71 116.97

LSD at 5% for

I 1.73 1.64 2.02 1.14

Compost (Com) 1.25 0.69 1.14 0.62

I * Com 2.30 1.48 1.94 0.92

Cultivars (Cul) 1.57 2.02 2.31 1.72

I * (Cul) 2.02 2.13 0.28 1.36

Com * (Cul) 1.85 1.38 2.11 1.82

I * Com * (Cul) 2.43 2.46 3.11 3.31



Agronomy 2023, 13, 139 7 of 16

Table 5. ET irrigation and different compost affecting the number of spikes/m2 and number of grains/spike with four cultivars for wheat.

Treatment
Number of Spikes/m2 Number of Grains/Spike

Season 2020/2021 Season 2021/2022 Season 2020/2021 Season 2021/2022

ET Compost S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

I1

Com-1 341.00 323.00 348.00 353.00 341.25 343.00 330.00 356.00 368.00 349.25 68.00 63.00 64.00 66.00 65.25 69.00 65.00 64.00 65.00 65.75

Com-2 361.00 331.00 341.00 369.00 350.50 367.00 341.00 352.00 374.00 358.50 67.00 62.00 65.00 69.00 65.75 68.00 64.00 63.00 67.00 65.50

Com-3 389.00 365.00 391.00 408.00 388.25 389.00 361.00 389.00 413.00 388.00 69.00 64.00 68.00 72.00 68.25 71.00 69.00 71.00 72.00 70.75

mean 363.67 339.67 360.00 376.67 360.00 366.33 344.00 365.67 385.00 365.25 68.00 63.00 65.67 69.00 66.42 69.33 66.00 66.00 68.00 67.33

I2

Com-1 331.00 341.00 349.00 362.00 345.75 329.00 331.00 352.00 365.00 344.25 65.00 63.00 63.00 65.00 64.00 68.00 60.00 65.00 68.00 65.25

Com-2 326.00 342.00 353.00 358.00 344.75 337.00 332.00 368.00 366.00 350.75 67.00 63.00 65.00 68.00 65.75 68.00 64.00 66.00 70.00 67.00

Com-3 384.00 357.00 396.00 397.00 383.50 389.00 349.00 388.00 386.00 378.00 71.00 65.00 69.00 71.00 69.00 70.00 66.00 71.00 71.00 69.50

mean 347.00 346.67 366.00 372.33 358.00 351.67 337.33 369.33 372.33 357.67 67.67 63.67 65.67 68.00 66.25 68.67 63.33 67.33 69.67 67.25

I3

Com-1 323.00 285.00 305.00 318.00 307.75 334.00 335.00 310.00 325.00 326.00 65.00 55.00 62.00 62.00 61.00 66.00 56.00 64.00 65.00 62.75

Com-2 314.00 287.00 312.00 327.00 310.00 321.00 275.00 327.00 335.00 314.50 66.00 56.00 64.00 65.00 62.75 65.00 55.00 65.00 67.00 63.00

Com-3 347.00 308.00 359.00 367.00 345.25 355.00 314.00 368.00 378.00 353.75 67.00 58.00 67.00 68.00 65.00 68.00 57.00 69.00 68.00 65.50

mean 328.00 293.33 325.33 337.33 321.00 336.67 308.00 335.00 346.00 331.42 66.00 56.33 64.33 65.00 62.92 66.33 56.00 66.00 66.67 63.75

G.M.V 346.22 326.56 350.44 362.11 346.33 351.56 329.78 356.67 367.78 351.44 67.22 61.00 65.22 67.33 65.19 68.11 61.78 66.44 68.11 66.11

Overall Compost × Cultivars

S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

Com-1 331.67 316.33 334.00 344.33 331.58 335.33 332.00 339.33 352.67 339.83 66.00 60.33 63.00 64.33 63.42 67.67 60.33 64.33 66.00 64.58

Com-2 333.67 320.00 335.33 351.33 335.08 341.67 316.00 349.00 358.33 341.25 66.67 60.33 64.67 67.33 64.75 67.00 61.00 64.67 68.00 65.17

Com-3 373.33 343.33 382.00 390.67 372.33 377.67 341.33 381.67 392.33 373.25 69.00 62.33 68.00 70.33 67.42 69.67 64.00 70.33 70.33 68.58

mean 346.22 326.56 350.44 362.11 346.33 351.56 329.78 356.67 367.78 351.44 67.22 61.00 65.22 67.33 65.19 68.11 61.78 66.44 68.11 66.11

LSD at 5% for

I 3.21 2.17 1.04 0.28

Compost (Com) 2.75 1.82 1.02 0.71

I * Com 3.60 2.81 2.11 1.03

Cultivars (Cul) 2.84 3.12 0.81 2.15

I * (Cul) 3.3.2 2.14 2.19 1.91

Com * (Cul) 2.85 2.41 2.01 2.71

SI * Com * (Cul) 3.85 3.05 2.31 2.03
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Table 6. ET irrigation and different compost affecting 1000-grain weight (g) and grain yield (t /fed) with four cultivars for wheat.

Treatment
1000-Grain Weight (g) Grain Yield (kg Fed)

Season 2020/2021 Season 2021/2022 Season 2020/2021 Season 2021/2022

ET Compost S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

I1

Com-1 41.21 49.32 47.82 43.87 45.56 41.78 49.58 48.08 44.21 45.91 3.37 3.76 3.89 3.46 3.62 3.48 3.74 3.77 3.77 3.69

Com-2 40.52 49.85 48.21 44.83 45.85 41.36 50.34 48.62 44.67 46.25 3.49 3.82 3.99 3.94 3.81 3.80 4.00 3.99 4.08 3.97

Com-3 42.84 51.81 48.97 45.72 47.34 43.29 51.95 49.28 46.71 47.81 4.08 4.18 4.54 4.58 4.35 4.29 4.28 4.59 4.39 4.39

mean 41.52 50.33 48.33 44.81 46.25 42.14 50.62 48.66 45.20 46.66 3.65 3.92 4.14 3.99 3.93 3.86 4.01 4.11 4.08 4.01

I2

Com-1 40.82 49.84 46.67 44.28 45.40 41.53 49.78 47.21 45.32 45.96 3.49 3.78 3.81 3.59 3.67 3.38 3.78 3.71 4.01 3.72

Com-2 41.63 49.65 47.82 44.78 45.97 41.75 50.21 46.89 44.93 45.95 3.45 3.65 3.89 3.87 3.72 3.49 3.83 3.81 3.98 3.78

Com-3 42.40 51.59 48.29 45.91 47.05 42.56 51.20 47.67 46.23 46.92 4.02 4.12 4.48 4.42 4.26 4.15 4.18 4.51 4.35 4.30

mean 41.62 50.36 47.59 44.99 46.14 41.95 50.40 47.26 45.49 46.27 3.65 3.85 4.06 3.96 3.88 3.67 3.93 4.01 4.11 3.93

I3

Com-1 40.71 48.94 45.89 42.21 44.44 40.32 48.92 45.72 42.53 44.37 3.10 2.75 3.24 3.12 3.05 3.20 2.90 3.30 3.33 3.18

Com-2 40.92 49,78 44.92 41.47 42.44 40.56 49.89 45.90 42.41 44.69 3.18 2.93 3.24 3.20 3.14 3.07 3.02 3.31 3.35 3.19

Com-3 41.86 50.78 46.79 43.89 45.83 41.54 51.09 46.92 44.30 45.96 3.44 3.28 4.00 3.90 3.66 3.56 3.38 4.12 3.95 3.75

mean 41.16 49.86 45.87 42.52 44.23 40.81 49.97 46.18 43.08 45.01 3.24 2.98 3.50 3.41 3.28 3.28 3.10 3.58 3.54 3.37

G.M.V 41.43 50.18 47.26 44.11 45.75 41.63 50.33 47.37 44.59 45.98 3.51 3.59 3.90 3.79 3.70 3.60 3.68 3.90 3.91 3.77

Overall Compost × Cultivars

S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

Com-1 40.91 49.37 46.79 43.45 45.13 41.21 49.43 47.00 44.02 45.42 3.51 3.59 3.90 3.79 3.70 3.60 3.68 3.90 3.91 3.77

Com-2 41.02 49.76 46.98 43.69 44.75 41.22 50.15 47.14 44.00 45.63 3.32 3.43 3.65 3.39 3.45 3.36 3.47 3.59 3.70 3.53

Com-3 42.37 51.39 48.02 45.17 46.74 42.46 51.41 47.96 45.75 46.90 3.37 3.47 3.71 3.67 3.55 3.45 3.62 3.70 3.80 3.64

mean 41.43 50.18 47.26 44.11 45.75 41.63 50.33 47.37 44.59 45.98 3.85 3.86 4.34 4.30 4.09 4.00 3.94 4.41 4.23 4.15

LSD at 5% for

I 0.19 0.25 0.033 0.036

Compost (Com) 0.53 0.13 0.032 0.031

I * Com 0.75 0.65 0.035 0.047

Cultivars (Cul-) 1.07 1.37 0.029 0.031

I * (Cul-) 1.27 2.07 0.038 0.033

Com * (Cul-) 2.35 2.19 0.040 0.039

I * Com * (Cul-) 3.31 4.20 0.046 0.047
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Table 7. ET irrigation and different compost affecting biological yield (t/fed) (grain + straw) and harvest index (%) with four cultivars for wheat.

Treatment
Biological Yield (kg/Fed.) = (Grain + Straw) Harvest Index (%)

Season 2020/2021 Season 2021/2022 Season 2020/2021 Season 2021/2022

ET Compost S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

I1

Com-1 9.22 10.55 10.26 10.64 10.17 9.33 10.41 9.96 11.67 10.34 36.60 35.67 37.94 32.51 35.68 37.34 35.91 37.81 32.31 35.84

Com-2 9.40 10.75 10.36 12.16 10.67 10.20 10.99 10.34 12.49 11.01 37.10 35.55 38.51 32.35 35.88 37.23 36.37 38.56 32.65 36.20

Com-3 10.73 11.56 11.58 13.88 11.94 11.22 11.60 11.62 13.25 11.92 38.01 36.15 39.21 33.02 36.60 38.23 36.88 39.51 33.12 36.94

mean 9783 10.952 10,733 12,229 10,924 10,248 11,001 10,638 12,470 11,089 37.24 35.79 38.55 32.63 36.05 37.60 36.39 38.63 32.69 36.33

I2

Com-1 9.49 10.85 10.31 11.03 10.42 9.08 10.50 10.02 12.34 10.49 36.80 34.85 36.94 32.56 35.29 37.21 35.97 36.99 32.46 35.66

Com-2 9.39 10.23 10.31 11.84 10.44 9.26 10.55 10.08 12.12 10.50 36.70 35.72 37.74 32.71 35.72 37.63 36.32 37.84 32.81 36.15

Com-3 10.55 11.28 11.52 13.23 11.65 10.87 11.33 11.60 12.97 11.69 38.12 36.52 38.86 33.41 36.73 38.16 36.87 38.89 33.52 36.86

mean 9812 10,783 10,714 12,034 10,836 9736 10,791 10,566 12,477 10,892 37.21 35.70 37.85 32.89 35.91 37.67 36.39 37.91 32.93 36.22

I3

Com-1 8.82 8.04 8.78 9.99 8.91 8.97 8.44 9.01 10.69 9.28 35.15 34.15 36.94 31.23 34.37 35.72 34.42 36.64 31.13 34.48

Com-2 9.04 8.66 8.71 10.29 9.18 8.63 8.72 8.90 10.81 9.27 35.12 33.85 37.24 31.12 34.33 35.56 34.62 37.14 31.02 34.59

Com-3 9.35 9.26 10.57 12.12 10.32 9.92 9.55 10.87 12.23 10.64 36.85 35.36 37.86 32.21 35.57 35.89 35.39 37.89 32.31 35.37

mean 9.07 8.65 9.35 10.80 9.47 9.17 8.90 9.59 11.24 9.73 35.71 34.45 37.35 31.52 34.76 35.72 34.81 37.22 31.49 34.81

G.M.V 9.56 10.13 10.27 11.69 10.41 9.72 10.23 10.27 12.06 10.57 36.72 35.31 37.92 32.35 35.57 37.00 35.86 37.92 32.37 35.79

Overall Compost ×Cultivars

S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

Com-1 9.18 9.81 9.78 10.55 9.83 9.12 9.78 9.66 11.57 10.03 36.18 34.89 37.27 32.10 35.11 36.76 35.43 37.15 31.97 35.33

Com-2 9.28 9.88 9.79 11.43 10.10 9.37 10.09 9.77 11.81 10.26 36.31 35.04 37.83 32.06 35.31 36.81 35.77 37.85 32.16 35.65

Com-3 10.21 10.70 11.22 13.08 11.30 10.67 10.83 11.36 12.82 11.42 37.66 36.01 38.64 32.88 36.30 37.43 36.38 38.76 32.98 36.39

mean 9.56 10.13 10.27 11.69 10.41 9.72 10.23 10.27 12.06 10.57 36.72 35.31 37.92 32.35 35.57 37.00 35.86 37.92 32.37 35.79

LSD at 5% for

I 0.032 0.030 0.32 0.28

Compost (Com) 0.046 0.051 0.18 0.31

I * Com 0.062 0.063 0.23 0.29

Cultivars (Cul) 0.090 0.086 0.37 0.38

I * (Cul) 0.074 0.072 0.24 0.41

Com * (Cul) 0.103 0.098 0.61 0.45

I * Com* (Cul) 0.054 0.050 0.51 0.62
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Table 8. ET irrigation and different compost affecting irrigation water use efficiency (kg/m3) and protein (%) with four cultivars for wheat.

Treatment
Irrigation Water Use Efficiency (kg/m3) Protein (%)

Season 2020/2021 Season 2021/2022 Season 2020/2021 Season 2021/2022

ET Compost S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

I1

Com-1 1.38 1.54 1.59 1.41 1.48 1.42 1.53 1.54 1.54 1.51 12.05 14.20 13.65 12.76 13.17 12.09 14.26 13.55 12.79 13.17

Com-2 1.42 1.56 1.63 1.61 1.56 1.46 1.56 1.51 1.63 1.54 12.09 14.42 13.84 12.85 13.30 12.29 14.32 13.89 12.85 13.34

Com-3 1.67 1.71 1.85 1.87 1.78 1.75 1.71 1.78 1.73 1.74 12.31 14.63 14.02 13.05 13.50 12.42 14.73 13.92 13.15 13.56

mean 1.49 1.60 1.69 1.63 1.60 1.54 1.60 1.61 1.63 1.60 12.15 14.42 13.84 12.89 13.32 12.27 14.44 13.79 12.93 13.36

I2

Com-1 1.78 1.93 1.94 1.83 1.87 1.72 1.93 1.89 2.04 1.90 12.12 14.51 13.56 12.89 13.27 12.18 14.56 13.46 12.92 13.28

Com-2 1.76 1.86 1.99 1.98 1.90 1.78 1.95 1.95 2.03 1.93 12.18 14.39 14.06 13.13 13.44 12.28 14.41 14.01 13.23 13.48

Com-3 2.05 2.10 2.28 2.26 2.17 2.12 2.13 2.30 2.22 2.19 12.30 14.72 14.12 13.09 13.56 12.33 14.82 14.22 13.19 13.64

mean 1.86 1.96 2.07 2.02 1.98 1.87 2.00 2.05 2.10 2.01 12.20 14.54 13.91 13.04 13.42 12.26 14.60 13.90 13.11 13.47

I3

Com-1 1.81 1.60 1.89 1.82 1.78 1.87 1.69 1.92 1.94 1.86 12.21 14.16 13.45 12.56 13.10 12.11 14.26 13.35 12.46 13.05

Com-2 1.85 1.71 1.89 1.87 1.83 1.79 1.76 1.93 1.37 1.71 12.16 14.28 13.31 12.87 13.16 12.25 14.37 13.41 12.77 13.20

Com-3 2.01 1.91 2.33 2.28 2.13 2.08 1.97 2.40 1.61 2.02 12.45 14.69 13.89 12.93 13.49 12.49 14.72 13.88 12.83 13.48

mean 1.89 1.74 2.04 1.99 1.91 1.91 1.81 2.08 1.64 1.86 12.27 14.38 13.55 12.79 13.25 12.28 14.45 13.55 12.69 13.24

G.M.V 1.75 1.77 1.93 1.88 1.83 1.78 1.80 1.91 1.79 1.82 12.21 14.44 13.77 12.90 13.33 12.27 14.49 13.74 12.91 13.35

Overall Compost ×Cultivars

S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean S95 G171 Mis1 Mis2 Mean

Com-1 1.66 1.69 1.81 1.69 1.71 1.67 1.72 1.78 1.84 1.75 12.13 14.29 13.55 12.74 13.18 12.13 14.36 13.45 12.72 13.17

Com-2 1.68 1.71 1.83 1.82 1.76 1.71 1.78 1.83 1.69 1.73 12.14 14.36 13.74 12.95 13.30 12.27 14.37 13.77 12.95 13.34

Com-3 1.91 1.91 2.16 2.13 2.03 1.98 1.95 2.19 1.87 1.98 12.35 14.68 14.01 13.02 13.52 12.41 14.76 14.01 13.06 13.56

mean 1.75 1.77 1.93 1.88 1.83 1.78 1.80 1.91 1.79 1.82 12.21 14.44 13.77 12.90 13.33 12.27 14.49 13.74 12.91 13.35

LSD at 5% for

I 0.07 0.12 NS NS

Compost (Com) 0.05 NS 0.25 0.14

I * Com 0.09 0.12 0.31 0.31

Cultivars (Cul) 0.10 NS 0.45 0.42

I * (Cul) 0.12 0.23 0.41 0.75

Com * (Cul) 0.12 0.16 0.37 0.92

I * Com * (Cul) 0.15 0.22 0.57 1.03
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Figure 3. The effect of irrigation and different composts on biological yield (kg/fed) for four cultivars
for wheat in 2021/2022.
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wheat in 2021/2022.
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Figure 5. The effect of irrigation and different composts on number of grains/spike for four cultivars
for wheat 2021/2022.
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These results may be due to the effect of water irrigation at 100% of ET on enhancing
cell division and reproductive organs, which led to increased plant height, number of
spikes/m2, number of grains/spikes, 1000-grain weight (g) Grain yield (t/fed.) and biolog-
ical yield (kg/fed). These results were are similar to those of Hargreaves and Samani [23],
Ghare et al. [24], Bhunia et al. [25], Kumar and Abraham [26], and Damor et al. [27].

I.B. Impact of compost types on the yield and yield components attributes for wheat
plants during both seasons.

As recorded in Tables 4–8, there are significant effects of compost types on all studied
characters. It is interesting to note that the farmyard manure (Com3) gave the maximum val-
ues for wheat grain yield (t/fed) (4087 and 4145) for 2020/2021 and 2021/2022, respectively.
The 2020/2021 Com3 effect was shown in acceleration, plant height (cm2) (117.54), number
of spikes/m2 (372.33), number of grains/spike (67.42), 1000-grain weight (g) (46.74), grain
yield (t/fed) (4087), biological yield (kg/fed) (11,302) and I.W.U.E (2.03) compared to Com1
or Com2 applications, which scored lower values for those traits.

The results in 2021 /2022 followed the same pattern. Results also showed that applica-
tion of farmyard manure led to (1) increased availability of phosphorus because the direct
application may prevent fixation in the soil Flavio (2004), (2) overcoming the low holding
capacity defect of sandy soil, which allowed the wheat plants to get needed P as shown by
the different composts enhancing the studied characters. These findings are in agreement
with those of El-Gamal [28], Tahoun et al. [29], Baasiri et al. [30] and Khan et al. [31].

I.C. Effect of different wheat cultivars on the yield and yield components characteristics
during the 2020/2021 and 2021/2022 seasons.

Wheat cultivars exerted a significant effect on the number of spikes/m2, the number
of grains/spike, 1000-grain weight, grain yield (t/fed), straw yield, and harvest index in
both seasons (Tables 4–8). The relative ranking of cultivars for the mentioned traits was
inconsistent in the two seasons. The Misr 2 and Misr 1 cultivars had the greatest number
of spikes/m2, grain yield (t/fed), and biological yield (kg/fed) in both seasons, while the
Giza 171 cultivar produced the heaviest 1000-grain weight. However, the Sakha 95 cultivar
recorded the lowest values of 1000-grain weight and grain yield in both seasons. There
was a significant difference in grain yield among Giza 171, Sakha 95, Misr 2, and Misr 1
cultivars in both seasons. The superiority of these cultivars might have resulted from their
better growth and all or some yield attributes. Data indicated that the 1000-grain weight
appeared to be independent of grain yield. The varietal difference in yield and its attributes
were also found by previous researchers such as Poudel et al. [32], El-Kherbawy et al. [33],
Kandil et al. [34], Gunes et al. [35] and Eman and Shaker [36].

II.1. Effect of the different first-order interaction between studied factors (I × Com.,
I × Cul. and Com. × Cul.) on some studied yield and yield components

As explained before, the results of the previous studies pointed out the positive effect
of each treatment on saving water irrigation, so the different levels of interaction effects
will be very useful to learn about its effects.

Results recorded in Tables 4–8 showed that all the first-order interactions significantly
affected the all yield and yield components characters during both seasons. Regarding the
I × Com interaction effect, the results showed that the compost application by the farmyard
manure (Com3) led to:

a. Improved utilization of water irrigation under the condition of 100% of ET as fertilized
with (Com3) compared to Com1 and Com2 applications as reflected in a significant
increase during the 2020/2021 season for the number of spikes/m2 by (13.86 and
10.77%), number of grains/spike by (4.6 and 3.8%), grain yield (t/fed.) by (19.99
and 14.13%), biological yield (kg/fed.) by (17.42 and 11.92) and irrigation water use
efficiency(kg/m3) by (20.27 and 14.10%), respectively. Results in 2021 and 2022 took
the same trend. Under the condition of water irrigation shortage of I2 (80% ET) or I3
(70% of ET), the same farmyard manure application (Com3) helped the wheat plants
to dodge the harmful water stress Baasiri et al. [30] through the 2020/2021 season.
Results during the 2021/2022 season confirmed the same patterns.
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b. The interaction between ET rates and wheat cultivars had a significant effect on
heading date (day), plant height (cm2), number of spikes/m2, number of grains/spike,
1000-grain weight (g), grain yield (t/fed), biological yield (kg/fed), harvest index
(%), iirigation water use efficiency(kg/m3) and protein (%) in both seasons. It is
important to report that the combinations of I1 ×Mis2 or I2 ×Mis2 scored the greatest
values of the most studied characters during both seasons as compared to the I3 ×
Mis2 treatment. The lowest grain yield was obtained from G 171 on ET at 70% in
both seasons.

c. Regarding the compost kinds×wheat cultivars interaction effect, results in Table 4 up
to 8 show that the Com3 ×Mis2 application showed its superiority through maximum
values for heading date (day) (98.59 and 101.79), plant height (cm2) (120.48 and 122.54),
number of spikes/m2 (390.67 and 392.33), number of grains/spike (70.33 and 70.33)
and biological yield (kg/fed) (13,076 and 12,819 kg/fed) during the 2020/2021 and
2021/2022 seasons, respectively. Similar conclusions were reported by the other inves-
tigators Kandil et al. [34], and El-Hamdi et al. [37]. Some of the other treatments were
near the above-mentioned values (the difference between them were insignificant)
and the others were lower by the level of significance.

III.1. The second-order interaction effect (I × Com × Cul) on the studied yield and
yield components for wheat:

Results recorded in Tables 4–8 observed that the application of Com3 ×Mis1 or
Com3 ×Mis2 under the effect of either I1, I2, or I3 led to a significant increase for all
the yield and yield components under study during both seasons. These results are in
agreement with those stated by Bayoumy et al. [38].

4. Conclusions

From the above information, it was observed that drip irrigation requires less irri-
gation water compared to the conventional irrigation method and also ensures uniform
distribution of water to the crops, which resulted in increased growth, yield, and water
use efficiency. It may be concluded that it is very important to use water judiciously via
modern irrigation technologies in arid and semi-arid regions and added compost (farmyard
manure) to raise production efficiency. Limited water resources are available and, in this
situation, drip irrigation was found to be the most suitable for getting maximum productiv-
ity with increased water use efficiency and higher economic returns. Drip irrigation system
at the level of 80% and feeding plants by the application of Com3 are recommended for
optimizing wheat productivity from the unit area, and using the savings in water irrigation
to expand the cultivated area of that crop to decrease the gap between local production and
local needs.
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