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Abstract: Soil organic matter (SOM) stocks are crucial for soil fertility and food provision and also
contribute to climate change adaptation and mitigation. However, assessing SOM changes in cropping
systems is difficult due to the varying quantity and quality of input data. SOM processes have been
described by several models, but these are complex and require high amounts of input data. In this
work, we identified and selected frameworks that simulate SOM pools and stocks as well as the effects
of different management practices. We also required that the frameworks be easily accessible for farm-
related end users and require limited and accessible amounts of input data. In all, six frameworks met
our inclusion criteria: SOCRATES (Soil Organic Carbon Reserves and Transformations in EcoSystems),
CCB (CANDY and-Carbon Balance), AMG, CENTURY, CQESTR, and RothC (Rothamsted Carbon
Model). We collected information on these frameworks and compared them in terms of their
accessibility, the model time steps used, the nutrient cycles included in the simulation, the number
of SOM pools, and the agricultural management options included. Our results showed that CCB
was the most robust of the frameworks considered, while AMG, CQESTR, and RothC performed the
least well. However, all frameworks have strengths which may match the specific requirements and
abilities of individual users.
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1. Introduction

Recent initiatives, such as the United Nations declaring 2015 as the International Year
of Soils, and the French “4 per 1000” initiative, illustrate a worldwide desire to increase
soil organic matter stocks for soil fertility and food security purposes, as well as for climate
change adaptation and mitigation. Soil organic matter (SOM) plays a central role in soil
fertility and soil water retention [1], and thus contributes to agroecosystem productivity
and to food security. SOM also enables agroecosystems to adapt to a changing climate
with less frequent, less regular, and more extreme rainfall, as well as associated erosion
problems [2–4]. The quantitative data of soil organic carbon (SOC) pools [5] and fluxes [6]
show that small changes in world SOC stocks could either aggravate or mitigate global
greenhouse gas (GHG) emissions, an idea suggested by Balesdent et al. (1999) [7], and
further developed in recent articles [8–12].

Maintaining the long-term productivity of soil is an important goal in sustainable
agriculture [13]. SOM is a key factor in arable crop production systems [14]. For this reason,
a knowledge of its structure, functions and dynamics helps to increase soil quality [15].
However, assessing SOM changes in cropping systems (CSs) is challenging. SOM content
in soil changes slowly because added organic matter is subject to various processes, so that
the SOM pools that are built up in the soil are quite different to the organic matter that is
added in terms of both quantity and content. In addition, SOM encompasses all organically
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based compounds that can be found in the soil matrix. These diverse chemical and physical
characteristics, which also involve living organisms such as microbes, make the SOM pool
one of the most complex entities to measure and/or simulate. When assessed in the labora-
tory, different SOM pools are often individualized by their affinity to extract products or
differentiated on the basis of methods that separate pools with different physical properties.
Chemical methods isolate specific fractions such as microbial biomass, carbohydrates [16],
polysaccharides [17,18], and fluvic/humic acids [19] or more encompassing fractions
such as active organic carbon [19,20], hot-water extractable organic C [21,22], biologically
active C [23], labile organic matter [24,25], chemically stabilized organic C [18], and re-
calcitrant organic matter [16,19]. Some of these fractions are used to evaluate short-term
consequences related to land-use changes and different agricultural/soil management prac-
tices (including conservation agriculture) while also serving as soil quality indicators [26,27].
Physical methods separate SOM fractions based on size and/or density, suggesting that
different aggregates are impacted differently. These methods often separate particulate
organic matter (POM)—which is considered very responsive to the quantity and quality
of crop residues added to the soil [17,21,28]—from minerals associated organic carbon
(MAOC) [21] which are also affected by the addition of crop residues [28] and, in some
cases, by tillage practices [18].

At the same time, several models and approaches have been developed for describing
soil processes and simulating SOM pools. These include mathematical representations
of physical, chemical, and biological processes, requiring large and complicated input
datasets [29]. SOM pools in models are often individualized according to different decom-
position rates, but the link between simulated SOM pools and actual laboratory measure-
ments remains weak, thus limiting model performance. In short, models can simulate with
high accuracy the concentration and dynamics of different pools, such as SOM, over long
time periods. However, these are not only time consuming, but also require input data that
are not easily collected or measured.

Farmers and other farm-related stakeholders often face difficulties in using these
frameworks to obtain practical advice and to determine the management practices they
should adopt to maintain and improve SOM in their soils. In this regard, simpler frame-
works may be useful, even if their level of accuracy is lower. Many such frameworks have
been suggested that differ in terms of processes simulated, means of input data collection,
output availability, etc. The objectives of this study are twofold; first, to select and character-
ize frameworks that have been used to assess SOM changes at the farm level and which are
user friendly for farmers; second, to compare these frameworks and establish appropriate
conditions for improved use.

2. Materials and Methods
2.1. Framework Selection Criteria

To achieve the first goal of this work, we established 5 criteria to narrow our choice of
frameworks simulating SOM pools and stocks. Using these criteria, we sought the following:

1. Frameworks that simulate SOM concentrations and stocks in different cropping
systems with different management practices and options. It is important that the
framework is able to simulate SOM for different crops managed in different ways
by individual farmers. The management choices made by farmers critically affect
the accumulation of SOM in soils. The inclusion of such choices in the framework is
therefore essential if useful guidance for farmers is to be obtained.

2. Frameworks that simulate a maximum of 3 SOM pools. It is important not to operate
with frameworks that consider more than 3 pools. The separation of SOM pools in
models and in nature involves different processes, and any link between simulated
and measured pools is difficult to obtain.

3. Frameworks that are applicable at the farm level and are able to provide local answers
to farmers under specific local conditions.
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4. Frameworks that include a platform already accessible for users, either online or
through download. This ensures that the framework is readily available and user
friendly for farmers.

5. Frameworks requiring low amounts of easily accessible data for input. This ensures
that the framework is not an overcomplicated model which might be very accurate
but requires too much input data to be of practical benefit.

To identify suitable frameworks simulating SOM pools, we searched published articles
related to SOM pool assessment and measurement. This search was first carried out
among review papers and then, among relevant articles cited in the review papers. Only
frameworks fulfilling the above criteria were considered. These were then described in
terms of general information such as authors, download links, type of product, model
time step, cycles included, number of SOM pools, soil management options included, and
the overall model scheme. We also set out the input data required for each framework,
covering such essential variables as soil properties and climatic information, as well as
details of crops and crop management.

2.2. Framework Comparison

The second goal of our study was to compare the selected frameworks and highlight
those which were most robust, i.e., those which showed high scores in the majority of com-
pared characteristics. Firstly, we described the different selected frameworks in terms of the
following characteristics: (1) Type of product—how accessible the product is for users, i.e.,
whether it is an online tool, or downloadable software; (2) model time step—whether the
model uses a daily, weekly, monthly or annual step; (3) cycles included—whether carbon, ni-
trogen, phosphorus, etc., are simulated in the model; (4) SOM pools—the number and type
of SOM pools simulated; and (5) soil management practices simulated—the options that the
model is able to simulate. It is worth noting here that a framework might have advantages,
such as being a simple online product accessible to users without a scientific background,
and limitations, such as a low number of cycles and/or SOM pools simulated. Secondly,
we sought to provide an overview of the average performance of each framework. For this
purpose, we scored each framework on the relevant characteristics described above (type
of product, model time step, cycles included, SOM pools and soil management practices
simulated) with values between 1 and the highest number for each characteristic (ranging
from the least to the most complete performance in that characteristic). This evaluation
provided useful framework performance information for each individual characteristic and
formed the basis of an overall score for all integrated characteristics.

3. Frameworks Assessing SOM

In total, six frameworks satisfied our selection criteria, namely: Soil Organic Carbon
Reserves and Transformations in EcoSystems (SOCRATES), CANDY and Carbon Balance
(CCB), AMG, CENTURY, CQESTR, and RothC. The main characteristics of each of these
frameworks are described below. Table 1 presents the required input for each framework
(required soil properties, climatic information, and crop/management details of the field).
Table 2 shows general and systematic information including the link to each framework, the
type of product provided, the model time step used, the cycles included in the modeling,
and the number of SOM pools included, as well as the soil management practices simulated.
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Table 1. Input data required for all 6 frameworks, categorized by soil properties, climatic information,
and details of crops and/or crop management.

Framework
Input Data

Soil Properties Climatic Information Crop and/or Management Details

SOCRATES Soil clay content or CEC, bulk
density, initial soil organic C

Average annual precipitation,
mean annual temperature Crop yield, crop types

CCB

Bulk and substrate density, soil
moisture at field capacity and
wilting point, texture indicator,
saturated conductivity

Air temperature, global
radiation, precipitation

Crop rotation and average yields
before initial point

AMG
Clay and carbonate contents, pH,
SOC content, C:N ratio, bulk
density of soil and depth

Mean annual temperature,
precipitation,
evapotranspiration

Crop yields and crop residues
management, soil tillage (depth),
irrigation, EOM application (type,
rate, and date)

CENTURY Soil texture, initial soil C, N, P, and
S levels, soil N inputs

Atmospheric N inputs, air
temperature, precipitation

Lignin content of plant material,
plant N, P, and S content

CQESTR
Number and depth of layers, initial
SOC, recent SOC, soil bulk density,
soil texture, soil drainage

Temperature, precipitation
Above- and below-ground biomass
additions, N content of residues
and amendments

RothC Depth of soil layers, clay content,
soil cover

Air temperature, precipitation,
pan evaporation

Plant residues and/or farmyard
manure, decomposability of the
incoming plant material: DPM/RPM
1 ratio

1 Decomposable plant material (DPM) and resistant plant material (RPM).

3.1. Soil Organic Carbon Reserves and Transformations in EcoSystems (SOCRATES)

SOCRATES is a process-based simulation model developed in Australia, designed
to estimate changes in topsoil organic carbon (SOC) using a minimal dataset set of soil,
climate, and biological inputs [30,31]. The software is available online and simulates the
carbon cycle with three SOM pools: two microbial pools (unprotected and protected pools)
and the humus fraction. The parameters used in the simulation are already fixed for
certain conditions based on previous studies and/or are calculated from input data such
as soil temperature and soil moisture. The input data required include the following: soil
properties (i.e., soil clay content or CEC, bulk density, and initial SOC); climatic data such as
average annual precipitation and mean annual temperature; and, finally, crop type and crop
yield obtained (if available). The model also allows the simulation of tillage management
interference with the SOM pools. SOCRATES was successful in predicting SOC changes in
eighteen long-term studies of crops, pasture, and forestry in North America, Europe, and
Australasia. These trials ranged from 8 to 86 years in duration and covered a wide range of
climates and soil types [30].

3.2. CANDY Carbon Balance

The CANDY Carbon Balance (CCB) model was developed in Germany to give farmers
a tool to calculate short-term dynamics of nitrogen transformations and long-term changes
in soil carbon content [32–34]. It is a software product with a detailed description that
simulates the carbon and nitrogen cycles and includes three SOM pools based on their
decomposition potential: an active pool, where the mineralization takes place; a stabilized
pool, representing the passive but decomposable part of the SOM; and a long-term stabi-
lized pool that is regarded as inert. The process modeling parameters have previously been
set for different conditions, including a wide range of sources of fresh organic matter (FOM),
and this has been successfully validated in some studies [35]. The input data required
to run the model include the following: soil properties (bulk and substrate density, soil
moisture at field capacity and wilting point, texture indicator, and saturated conductivity);
climatic information (air temperature, global radiation, and precipitation); and, finally, crop
characteristics (crop rotation details and average yields.) The CANDY Carbon Balance
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(CCB) model has been validated using a dataset from 40 long-term experiments carried out
in Central Europe, including 391 treatments with a total of 4794 Corg observations [32].

3.3. AMG

This framework was developed in France and represents another example of an Excel
tool which simulates the evolution of the carbon content of soils on a field scale for a
given cropping system [36]. AMG is a decision support tool: the farmer can see the long-
term effects of alternative practices, compared with those he/she currently applies. It
simulates the carbon cycle through only two SOM pools, one active and the other stable.
The parameters required for the process modeling are dependent on, and calculated from,
input data (soil, plant, and climate) provided by the users. Input data for parameterization
and initial conditions include soil properties (clay and carbonate contents, pH, SOC content,
bulk density, and carbon/nitrogen ratio), climatic variables (mean annual temperature,
precipitation, and evapotranspiration), crop information (crop yield and crop residue
management), and management practice options (soil tillage depth, irrigation periods, and
exogenous organic matter (EOM) application (type, rate, and date)). An examination of
costs, physical constraints, or forms of work organization associated with various technical
options can also be included, and this can modify recommendations provided by the
framework, adapting them either to the context of operation, or to the means and objectives
of the farmer. This tool has already proved effective for SOC prediction in long-term field
experiments with EOM application [36] and for various possibilities of crop rotations [37].

3.4. CENTURY

CENTURY Agroecosystem Version 4.0 is a software product developed in the USA
to deal with a wide range of cropping system rotations and tillage practices. It is used
for system analysis of the effects of management and global change on productivity and
sustainability of agroecosystems [38,39]. It simulates carbon, nitrogen, phosphorus and
sulfur cycles and also tackles organic matter decomposition processes by simulating three
SOM pools: active, slow, and passive fractions. Parameterization is dependent on data
available in the literature and on input data concerning soil, plant, and climate conditions.
To successfully run the model, users need to know soil texture and initial soil carbon (C)
nitrogen (N), phosphorus (P) and sulfur (S) concentrations, as well as atmospheric and soil
N inputs. The lignin content of plant material, as well as plant N, P, and S content, is also
required. Essential climatic variables include air temperature and precipitation. The latest
release of the model is able to simulate complex agricultural management systems including
crop rotations, tillage practices, fertilization, irrigation, grazing, and harvest methods. Long-
term experimental studies have shown that CENTURY can simulate different fertilization
effects on SOC dynamics under variable climate and soil conditions [39].

3.5. CQESTR

The C model CQESTR, pronounced ‘sequester’, was developed in the USA to evaluate
the effect of agricultural management practices on short- and long-term SOM dynamics [40].
It is available as a software product which simulates the carbon cycle using only one pool of
SOM that is modeled in a continuum. The information required to run the model includes
the number and depth of the soil layers considered by the user, and the soil properties of
these layers, i.e., initial SOC, bulk density, soil texture, and soil drainage. Required climatic
factors include temperature and precipitation, as well as boundary conditions, above-
and below-ground biomass additions, and the N content of residues and amendments.
Management practices included in the model are tillage and crop rotation. The model was
calibrated with results of a long-term experiment using soil carbon data and then validated
at 11 independent sites, showing that simulated and measured values were very close [41].
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Table 2. Frameworks characterization showing its authors affiliation, type of product, model time step, cycles simulated, number of SOM pools included, type of
management simulated, and the model scheme.

Characteristics

Soil Organic Carbon
Reserves and

Transformations in
EcoSystems

(SOCRATES)

CANDY and Carbon
Balance (CCB) AMG CENTURY CQESTR RothC

Affiliation of authors

School of Natural Resource
Sciences, Queensland

University of Technology
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3.6. RothC

This model was developed in the UK to simulate organic carbon in non-waterlogged
topsoil dependent on the influence of factors such as soil type, temperature, soil moisture
and plant cover on the turnover process. It is available as a software product for download
and simulates the carbon cycle with three pools for SOM: microbial biomass, humified
organic matter, and inert organic matter. Additionally, there is an input of fresh organic
matter through residues and/or manure [42]. The input data includes information on the
depth of layers simulated as well as their clay content and soil cover. Required climatic
information includes temperature, precipitation and pan evaporation. Boundary conditions
require information on the input material added to the soil, in particular its decomposability,
expressed as the ratio of decomposable plant material (DPM) and resistant plant material
(DPM/RPM) [43]. Aguilera et al. [44] presented details of SOC balance in an area of
cultivated land in Spain from 1900 to 2008, as a model of Mediterranean-type industrialized
agriculture. They combined RothC model parameters with humification coefficients using
the humified soil organic carbon model (HSOC) to simulate changes in SOC stocks. RothC
was also combined with two empirical approaches for quantifying carbon inputs from
above- and below-ground crop residues and tested on 439 SOC data series from 36 long-
term arable field experiments in Central and Northern Europe. Although the validation
showed good correlation between simulated and measured values, the results also showed
that an overestimation of C sequestration from above-ground crop residues [45].

4. Comparison of the Frameworks
4.1. Framework Characteristics

The six frameworks described in this work were selected because of their availability,
ease of use, and ability to present a complex environment such as soil in simple terms. How-
ever, and as summarized in Table 2, the six compared frameworks all exhibit differences in
five important characteristics, which we now set out in detail.

4.1.1. Type of Product

The most easily accessible framework is SOCRATES, because any user (with or without
modeling knowledge) can access the online page and provide the required information.
The information required to run the model is minimal, which makes it convenient for
occasional users. AMG is provided as an Excel tool, which is also convenient for those
individuals without a technical modeling background. These include many farmers who
seek information on SOM evolution in their fields. Finally, all the other frameworks are
accessible through download or as software products, and this involves a higher level of
difficulty for users without a technical background (Table 2). However, these frameworks
are still simpler and require fewer input data than other more sophisticated models which
are available, such as SWAT (Soil and Water Assessment Tool) [46], RZWQM (Root Zone
Water Quality Model) [47], and MohidLand [48].

4.1.2. Model Time Step

Both CCB and CQUEST have a daily time step, which means that the model calculates
pools and flows for each day. This enables the consideration of daily variations in weather
(such as temperature and rain) which can be substantial. By such means, the quality of
results can be improved [49]. The SOCRATES framework provides a weekly time step.
However, the user does not need to enter data on a weekly basis. Instead, the framework
works internally using available weather data from the location provided by the user.
CENTURY and ROTHC both operate with monthly time steps, while AMG uses an annual
time step, representing a gradient of precision loss in calculating the SOM outputs in a
specific field. Although smaller time steps may, in general, indicate that the model has a
higher output precision, it may also imply that some input data must be provided with
more detail, as is the case for climatic information (Table 1).
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4.1.3. Cycles Included

The carbon cycle is closely interconnected with the cycles of nitrogen, phosphorus,
sulfur, and other nutrient elements. The concentration and specification of pools from
other nutrients also affects the concentration of SOM in different soil layers [50]. For this
reason, integrating non-carbon cycles into the model leads to higher precision in modeling
the processes that govern SOM concentration, such as organic matter decomposition
and microbial immobilization [51]. Frameworks that can simulate more than just the
carbon cycle will produce higher precision in SOM simulation, because they are able to
capture more interactions [52]. However, the inclusion of such cycles requires a higher
number of input data and/or data from the literature related to the newly included pools.
For this reason, we consider CENTURY to be the most complete framework, because it
also includes nitrogen, phosphorus and sulfur. In this regard, CCB can be considered
an intermediate framework, because it includes only nitrogen in addition to carbon. The
remaining frameworks include the carbon cycle only, and thus maintain a simpler approach.

4.1.4. SOM Pools

Complex models can easily include many SOM pools in their simulation. The un-
derlying idea is to capture the complexity of the organic matter decomposition gradient
that exists in soils [53]. On the one hand, easily decomposable SOM has a short lifetime,
is normally more abundant in the upper layers, and often forms complexes with other
compounds. On the other hand, recalcitrant organic matter is more frequently found in
subsoil, and can endure for a longer period [54]. Between these two extremes, there is a
continuum of other SOM pools, each with its own specific decomposition rate. Due to the
difficulty of simulating all of them, modelers often break them into a discrete gradient with
variable decomposition rates [55]. However, increasing the number of SOM pools also
increases the requirement for input data that are not easily available, such as the initial
concentration of each of these pools both within soil layers and along the layers [56]. All
frameworks analyzed here include a maximum of three SOM pools to decrease complexity.
CENTURY, RothC, CCB and SOCRATES all include three pools, with low, medium and
high decomposition rates, and therefore capture the degradation gradient. AMG includes
only two pools: one highly degradable, and the other more recalcitrant. Finally, CQETR
includes a single pool only.

4.1.5. Soil Management Practices Simulated

The inclusion of management options is a positive attribute of any framework. Farm-
ers, stakeholders and other end users are typically interested in forecasting the effects of
agricultural management practices which they may choose to implement concerning the
amount of SOM in farm fields. Any method used to achieve this should not only calculate
levels of organic matter under current conditions but should also predict its future concen-
trations under various hypothetical conditions. CCB simulates five different management
choices concerning tillage, fertilization, irrigation, cultivation, and harvest methods. CEN-
TURY includes four management options, and AMG includes three. CQESTR and RothC
both include two options concerning tillage and the input of organic manure and plant
residues. Finally, SOCRATES simulates only tillage, and its range is therefore more limited
compared to the others.

It is also of interest to analyze the different soil management options simulated by
the different frameworks. The prediction of operations likely to improve crop yield is
a valuable asset in the assessment of economic sustainability [57]. The simulation of
fertilization [58] and irrigation [59] effects is especially important, because of issues related
to the changing price and availability of fertilizers and water. The ability to simulate these
effects constitutes the most important advantage of the CCB, AMG and RothC frameworks.
However, simulation of other operations such as tillage [60], residue cover [61] and the
input of organic fertilizer and/or manure [62] can be also appealing for farmers.
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4.2. Framework Scoring Evaluation

The previous comparison showed that each framework has its own input data require-
ments (Table 1), strengths, and weaknesses with respect to the particular skills and goals of
users (Table 2).

In general, all the frameworks considered are applicable and useful. If a farmer wishes
to simulate the SOM concentrations in his/her land and does not have any background
in information science, then the SOCRATES tool is the best option. However, if a specific
agricultural stakeholder is interested in the SOM effect on other nutrient cycles (especially
concerning fertilizer dose application) then CENTURY is the best option, though it may
lack some precision in its assessment of other characteristics (Table 2). When comparing the
scores achieved by each framework for each characteristic (Figure 1), we find that the CCB
framework attains the highest accumulated total, and is thus best able to fulfill all char-
acteristics, although with a lower score on the product accessibility. It is closely followed
by CENTURY and SOCRATES, which achieved similar scores (13 and 11, respectively)
but which differ in terms of their strengths and weaknesses. While SOCRATES has very
good product accessibility and is able to simulate several SOM pools, CENTURY is strong
in terms of the number of cycles included in the simulation, as well as the number and
variety of agricultural management options simulated. Finally, we find equally low scores
for AMG, CQUEST, and ROTHC. While AMG achieves generally low and medium scores
across all characteristics, CQUEST is very strong in terms of its time steps but weak in the
remaining characteristics. RothC also scores highly in terms of the SOM pools simulated
but less well in respect of the other characteristics (Figure 1).
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5. Conclusions

In this study, six simple and user-friendly frameworks simulating SOM pools in
different cropping systems were selected, characterized, and compared: SOCRATES, CCB,
AMG, CENTURY, CQRESR, and RothC.

All frameworks analyzed here are available in an online platform, simulate a max-
imum of three SOM pools, are applicable at the farm level, include the simulation of
different management practices, and require a low amount of input data to operate. Despite
these common attributes, they nonetheless differ in many other characteristics, which are
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representative of the framework philosophy and goals. These characteristics include the
number of SOM pools simulated, the time step used, the nutrient cycles included in the
modeling and the type of soil management practice involved.

When comparing the frameworks based on these characteristics, it becomes clear
that, depending on the user’s needs and skills, each one might represent the best choice
for individual farmers or related stakeholders. However, when analyzing the average
performance of the six frameworks, we conclude that the CCB framework is the most
robust, with high scores in all characteristics except for product accessibility, while AMG,
CQRSTR and RothC all score poorly in several characteristics, indicating weakness in
these areas.
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