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Abstract: Early prediction of the growth and development of plants is important for the intelligent
breeding process, yet accurate prediction and simulation of plant phenotypes is difficult. In this
work, a prediction model of plant growth and development based on spatiotemporal long short-term
memory (ST-LSTM) and memory in memory network (MIM) was proposed to predict the image
sequences of future growth and development including plant organs such as ears. A novel dataset
of wheat growth and development was also compiled. The performance of the prediction model
of plant growth and development was evaluated by calculating structural similarity index measure
(SSIM), mean square error (MSE), and peak signal to noise ratio (PSNR) between the predicted and
real plant images. Moreover, the optimal number of time steps and the optimal time interval between
steps were determined for the proposed model on the wheat growth and development dataset. Under
the optimal setting, the SSIM values surpassed 84% for all time steps. The mean of MSE values was
46.11 and the MSE values were below 68 for all time steps. The mean of PSNR values was 30.67.
When the number of prediction steps was set to eight, the prediction model had the best prediction
performance on the public Panicoid Phenomap-1 dataset. The SSIM values surpassed 78% for all
time steps. The mean of MSE values was 77.78 and the MSE values were below 118 for all time steps.
The mean of PSNR values was 29.03. The results showed a high degree of similarity between the
predicted images and the real images of plant growth and development and verified the validity,
reliability, and feasibility of the proposed model. The study shows the potential to provide the plant
phenotyping community with an efficient tool that can perform high-throughput phenotyping and
predict future plant growth.

Keywords: prediction model; machine learning; plant growth and development

1. Introduction

Plant growth is a dynamic and complex physiological, biochemical, and metabolic
process [1]. Plant phenotyping can assess the complex traits of plant growth and measure
individual quantitative parameters [2,3]. These data can be used to quantify small changes
in crop growth in a short or long period of time and provide technical support for timely
and accurate planting management and plant breeding. Plants grow slowly under natural
conditions, which limits experimental cycles. Predicting plant growth and development
early and measuring phenotypic traits holds the potential to speed up experimental plant
cycles and accelerate plant breeding by reducing the time of plant growth, imaging, and
measurement [4,5]. Predicting plant growth and development will be promising to solve
the issues of long cycle, low efficiency, and great uncertainty in the plant breeding industry.

Deep learning models provide the possibility for prediction and simulation of pheno-
typic traits [6–9]. The effects of environmental factors on plant growth and development
were predicted by time-series prediction models. In addition, Yang et al. established
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predictive models based on long short-term memory (LSTM) and Convolutional LSTM
(ConvLSTM) to predict sunshine hours [10]. Their proposed model could predict the sun-
shine hours, accumulated precipitation, and average temperature in the next year. At the
same time, a data-driven model was developed to predict each growth stage in the work.
However, these studies concentrate on prediction and simulation of dynamic changes of a
deterministic factor and cannot visualize plant growth and development.

A first attempt was made to predict plant growth and development using historical
plant images based on ConvLSTM [5]. Then, the growth change in plant leaves and roots
was predicted from time-series images using the generative adversarial network (GAN) [4].
Nevertheless, the images of the growth and development were predicted by these models
based on the mask of plants. The texture and color information of plants were ignored
during the prediction.

Another generative growth model based on conditional generative adversarial net-
works was proposed to predict the future appearance of individual plants [11]. A model
using the cycle-consistent generative adversarial network (CycleGAN) was proposed to
forecast a probable time-series of images with an advancing disease spread [12]. Although
realistic looking and reliable images of future plant growth stages were generated by these
GAN models, the structural similarity between the generated and real plant images still
needs to be improved. Another line of thinking, the prediction model of plant growth and
development based on spatiotemporal long short-term memory (ST-LSTM, a variant of
the ConvLSTM) was proposed to predict images of future growth and development [13].
The structural similarity between the generated and real plant images was relatively good.
However, the timeliness of the prediction by this model was insufficient and the prediction
image was blurry. This is because these predictive models discard long-term non-stationary
trend information in memory states, resulting in catastrophic forgetting. The processes
of plant growth and development can be highly non-stationary in many ways. Examples
include low-level non-stationarity such as spatial correlations or temporal dependencies of
local pixel values of plant images and high-level variations such as the accumulation and
stress adaption of plant growth and development.

The memory in memory network (MIM) was proposed to learn higher-order non-
stationarity from spatiotemporal dynamics [14]. MIM uses two cascaded recurrent models
to handle the non-stationary and approximately stationary components in the spatiotempo-
ral domain. MIM could compensate for the defects in the lack of ability of LSTM-based vari-
ants to model non-stationary trends in the spatiotemporal domain. The above-mentioned
studies have been conducted predominantly on the prediction of future growth and devel-
opment of Brassicaceae, such as Arabidopsis thaliana. The current prediction models still
have some problems to improve. Therefore, a prediction model based on ST-LSTM and
MIM was proposed in this work.

The major contributions in this work are described as follows.

(1) A novel dataset of wheat growth and development was compiled. The prediction
model of plant growth and development was proposed based on ST-LSTM and MIM
to predict images of future plant growth.

(2) The performance of the prediction model of plant growth and development was evalu-
ated by calculating SSIM, MSE, and PSNR between the predicted and real plant images.
The leaf number, projected area, and length and width of the minimum bounding
rectangle of the predicted and real images were also measured and compared to assess
whether the prediction of plant growth and development was biologically accurate.

(3) Comparison of evaluation results between the proposed model and the existing
models (i.e., a model based only on ConvLSTM [5] and a model based only on
ST-LSTM [13]) was conducted.
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2. Materials and Methods
2.1. Dataset

In this work, a novel dataset of wheat growth and development was given, including
the multi-view wheat dataset and the successive-view wheat dataset. The multi-view wheat
dataset was composed of successive images of four different varieties of wheat: Fielder,
Shannong28 (SN28), Jimai22 (JM22), and Kenong199 (KN199). All wheat samples were
cultivated in the growth chamber under controlled conditions (23 ◦C, 16/8 light/dark,
30 Klux, 90% humidity). Every pot of wheat was constantly monitored via an image
acquisition platform, which we designed and installed at the growth chamber, as shown in
Figure 1a. The image sequences of wheat growth and development in the multi-view wheat
dataset were imaged weekly from eight fixed-side views. The obtained sequence for each
plant from one view involved eight successive images (Figure 1c). The number of sequences
in the dataset was 592. The successive-view wheat dataset composed of successive images
of Fielder was also given. The two samples of Fielder were cultivated in the same growth
chamber. The images of Fielder samples were taken every half hour from the same view
after the two-leaf stage. The obtained sequence for each plant involved 3886 successive
images (Figure 1d).

After collecting successive images of wheat growth and development, images were
pre-processed to remove the background to avoid any influence of the background on the
prediction of growth and development, as shown in Figure 1b. The wheat images in RGB
color space were converted into HSV color space. Image segmentation was performed
using K-means clustering. A color filter was applied to the HSV images for the extraction
of wheat (the green range of images).

The experiment was also conducted on the Panicoid Phenomap-1 dataset [15], which
contained 39 varieties of panicoid grain crops. The total group number of panicoid grain
crops in the Panicoid Phenomap-1 dataset was 176. The images of panicoid grain crops
were captured from 0-degree and 90-degree side views once per day for 29 days. These
panicoid grain crops were segmented from the background by auto-thresholding using the
Otsu algorithm, and the background was removed by setting it to black. Pre-processed
examples of the Panicoid Phenomap-1 dataset content are shown in Figure 1e.
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Figure 1. Flowchart of dataset construction and examples of the given dataset content. (a) Data
acquisition using an image acquisition platform we designed and installed at the growth chamber.
(b) Image pre-processing to obtain plant images without background. (c) Examples of the multi-view
wheat dataset content. (d) Examples of the successive-view wheat dataset content. (e) Pre-processed
examples of the Panicoid Phenomap-1 dataset content.
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2.2. Formulation of Plant Growth and Development Predicting Problem

The prediction of plant growth and development could be regarded as a spatiotem-
poral sequence forecasting problem. The goal of the prediction model is to use the j past
images (It−j+1:t) to predict the k future images of plant growth and development ( Ît+1:t+k).
The prediction process is defined as Equation (1).

Ît+1, · · · , Ît+k = argmax
It+1,··· ,It+k

p(It+1, · · · , It+k|I t−j+1, · · · It) (1)

where It is the RGB image of the plant at time t and represented by a tensor It ∈ R3×m×n,
Ît+1 is the predicted image of the plant at time t + 1.

2.3. Prediction Model of Plant Growth and Development

On the tightly coupled spatiotemporal correlation of plant growth and development, a
prediction model based on ST-LSTM and MIM was proposed by taking the timing images of
plant growth and development as the research object, as shown in Figure 2. The prediction
model based on ST-LSTM and MIM could learn stationary variations and the higher-order
non-stationarity variations from the dynamics of plant growth and development.
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Figure 2. Structural diagram of the prediction model for plant growth and development. Yellow
arrows: the diagonal state transition paths of Hl−1

p−1 for differential modeling. Green arrows: the

horizontal transition paths of the memory cells Cl
p, Dl

p and Sl
p−1. Red arrows: the zigzag state

transition paths of Ml−1
p .

The prediction model consisted of the input layer, the ST-LSTM layer, the MIM layer,
the convolutional layer, and the output layer. Three ST-LSTM layers were stacked and
each contained 64 ST-LSTM units. Two MIM layers were stacked and each contained
64 MIM units. The input of the prediction model was the j past time-series RGB images
of plant growth and development (It−j+1:t), and the output was the predicted k future
images of growth and development ( Ît+1:t+k). The hidden presentations of spatiotemporal
stationarity variations in the time-series images were generated by the ST-LSTM layers.
Then, the temporal differencing obtained by subtracting the hidden state Hl−1

p−1 from the

hidden state Hl−1
p was used as the input of the MIM layers. The temporal features and

spatiotemporal features were extracted by the MIM layers. The non-stationarity variations
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of the temporal differencing were captured to improve the ability to extract temporal
features. As predicted, time-series images of plant growth and development had the same
dimensionality as the input, all the temporal and spatiotemporal states were concatenated
and fed into a 1 × 1 convolutional layer to generate the final prediction.

The ST-LSTM was proposed on the basis of ConvLSTM and introduced a gate-
controlled dual memory structure to extract and memorize temporal and spatiotemporal
representations simultaneously. A sample of the ST-LSTM unit is shown in Figure 3a. The
equations of ST-LSTM are shown as Equations (2)–(11), where ‘∗’ denotes the convolution
operator and ‘◦’ denotes the Hadamard product. The outputs from the ST-LSTM cell were
two memory states (Cl

p and Ml
p) and a hidden state (Hl

p). Cl
p was the temporal memory that

was delivered from the p − 1 node of the same hidden layer. Ml
p was the spatiotemporal

memory conveyed vertically from the previous layer at the same time step. These memory
states were derived from different directions and concatenated. Different from simple
memory concatenation, the ST-LSTM unit used a shared output gate for both memory
types to enable seamless memory fusion.

gp = tanh(ωxg ∗ Xp + ωhg ∗ Hl
p−1 + bg), (2)

ip = σ(ωxi ∗ Hl−1
p + ωhi ∗ Hl

p−1 + bi) (3)

fp = σ(ωx f ∗ Xp + ωh f ∗ Hl
p−1 + b f ) (4)

Cl
p = fp � Cl

p−1 + ip � gp (5)

g′p = tanh(ωxg ∗ Hl−1
p + ωmg ∗Ml−1

p + bg) (6)

i′p = σ(ωxi ∗ Hl−1
p + ωmi ∗Ml−1

p + bi) (7)

f ′p = σ(ωx f ∗ Hl−1
p + ωm f ∗Ml−1

p + b f ) (8)

Ml
p = f ′t �Ml−1

p + i′p � g′p (9)

op = σ(ωxo ∗ Xp + ωho ∗ Hl
p−1 + ωco ∗ Cl

p + ωmo ∗Ml
p + bo) (10)

Hl
p = op � tanh(ω1×1 ∗

[
Cl

p, Ml
p

]
) (11)
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Based on the idea of difference-stationary assumption, the MIM was proposed to
model the non-stationary variations using a series of cascaded memory transitions, as
shown in Figure 3b. Two cascaded, self-renewed memory models (non-stationary model
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and stationary model) were proposed in the MIM to replace the temporal forget gate Cl
p

in the ST-LSTM. Key calculations of the MIM block are shown as Equations (12)–(20).
The temporal differencing (Hl−1

p − Hl−1
p−1) obtained by subtracting the hidden state Hl−1

p−1

from the hidden state Hl−1
p was used as the input of MIM. The new temporal memory

Cl
p−1
′, the spatiotemporal memory Ml−1

p , and the hidden state Hl
p−1 were also used as the

input of MIM. The non-stationary model (MIM-N) generated the differential features Dl
p to

capture the non-stationary variations of the temporal differencing, as shown in Figure 4.
The output Dl

p of the MIM-N model and the outer temporal memory Cl
p−1
′ were taken as

inputs of the stationary model (MIM-S) to capture the approximately stationary variations
in spatiotemporal sequences, as shown in Figure 4.

Dl
p = MIM-N(Hl−1

p , Hl−1
p−1, Nl

p−1), (12)

Tl
p = MIM-S(Dl

p, Cl
p−1
′ ′ , Sl

p−1), (13)

Cl
p
′ = Tl

p + ip � gp (14)

g′′ p = tanh(ω′′ xg ∗ (Hl−1
p − Hl−1

p−1) + ωng ∗ Nl
p−1 + bg), (15)

i′′ p = σ(ωxi ∗ (Hl−1
p − Hl−1

p−1) + ωni ∗ Nl
p−1 + bi) (16)

f ′′ p = σ(ωx f ∗ (Hl−1
p − Hl−1

p−1) + ωn f ∗ Hl
p−1 + b f ) (17)

Nl
p = f ′′ t � Nl−1

p + i′′ p � g′′ p (18)

o′′ p = σ(ωxo ∗ (Hl−1
p − Hl−1

p−1) + ωno ∗ Nl
p + bo) (19)

Dl
p = o′′ pt � tanh(Nl

p) (20)

g′′′ p = tanh(ωxg ∗ Dl−1
p + ωcg ∗ Cl

p−1
′ + bg), (21)

i′′′ p = σ(ωxi ∗ Dl−1
p + ωci ∗ Cl

p−1
′ + bi) (22)

f ′′′ p = σ(ωx f ∗ Dl−1
p + ωn f ∗ Cl

p−1
′ + b f ) (23)

Sl
p = f ′′′ t � Sl

p−1 + i′′′ p � g′′′ p (24)

o′′′ p = σ(ωdo ∗ Dl
p + ωco ∗ Cl

p−1
′ + ωso ∗ Sl

p + bo) (25)

Tl
p = o′′′ pt � tanh(Sl

p) (26)
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Figure 4. Internal structure diagrams of MIM-N and MIM-S. i′′ p g′′ p f ′′ p o′′ p: the input gate, input-
modulation gate, forget gate, and output gate in MIM-N. i′′′ p g′′′ p f ′′′ o′′′ p: the input gate, input-
modulation gate, forget gate, and output gate in MIM-S.
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2.4. Evaluation of the Model Performance

To assess the performance of the prediction model of plant growth and development,
the predicted plant images were evaluated quantitatively by using three metrics, including
mean square error (MSE) [4], peak signal to noise ratio (PSNR) [16], and structural similarity
index measure (SSIM) [17]. MSE calculated by Equation (27) was used to calculate the
average squared difference between the predicted image and the real image. A smaller
MSE value represents a higher similarity. The PSNR was used to evaluate the level of image
noise, as shown in Equation (28). The higher the PSNR value, the better the quality of the
predicted image. The SSIM calculated using Equation (29) was used to assess the similarity
between the predicted image and the ground truth image. A larger SSIM value represents
a higher similarity And SSIM is one where the predicted image is identical to the ground
truth image.

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[
Xk(i, j)− X̂k(i, j)

]
, (27)

PSNR = 10 log10

(
max2

Xk

MSE

)
, (28)

SSIM =

(
2µXk µX̂k

+ c1

)(
2σXkX̂k

+ c2

)
(

µ2
Xk

+ µ2
X̂k

+ c1

)(
σ2

Xk
+ σ2

X̂k
+ c2

) (29)

Moreover, parameters of the predicted and real images were measured and compared
to assess whether the prediction was biologically accurate, such as the leaf number, the
projected area, length of the minimum bounding rectangle, and width of the minimum
bounding rectangle. The projected area was the pixel number of the plant binary images.
The change of projection area could indirectly reflect the growth rate and morphological
change of plants. The size of the minimum bounding rectangle could reflect the height and
morphological compactness of plants.

3. Results and Discussion

The prediction model of plant growth and development was trained on the training
and validation dataset, and its performance was evaluated on the testing dataset. The
proposed prediction model of plant growth and development consisted of one input layer,
three ST-LSTM layers, two MIM layers, one convolutional layer, and one output layer.
Three ST-LSTM layers were stacked and each contained 64 ST-LSTM units. Two MIM
layers were stacked and each contained 64 MIM units. L2-Loss was chosen as the loss
function, and Adam Optimizer with a learning rate of 0.001 was used in the loss function
optimization. The batch size was set to two and the number of iterations was set to
80,000 for every training.

In order to validate the performance of the proposed prediction model, it was com-
pared with the existing models, such as the prediction model based only on ConvLSTM [5]
and the prediction model based only on ST-LSTM [13]. The comparison of evaluation
results between the proposed prediction model and the existing models tested on the given
dataset was conducted.

3.1. Successive-View Wheat Dataset

In the experimental study, the successive images of Fielder were firstly used to verify
the effectiveness of the proposed prediction model. The sliding time window method was
used to construct continuous time-series images as the input sequences of the model. The
set window length slides along the time axis. The test dataset contained three waves of data
(599 successive images at the middle growth stage, 144 successive images at the late growth
stage, and 502 successive images at the mid to late growth stage) selected randomly from
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successive images of plant growth and development. The remaining successive images
were considered for the training and validation dataset.

Five images of future growth and development were predicted at once based on five
input images. The window length was set as 10. The prediction model was trained on the
training and validation dataset and tested on the test dataset. The qualitative comparison
between the predicted images and the real images of future growth and development is
shown in Figure 5a. The average values of MSE, PSNR, and SSIM at each step from t + 1 to
t + 5 are shown in Figure 5b. The corresponding parameters (the leaf number, the projected
area, and the length and width of the minimum bounding rectangle) of the predicted and
real images were measured and compared, as shown in Figure 5c.
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Figure 5. Samples of the results predicted by the proposed prediction model on the successive-view
wheat dataset. (a) Comparison between the predicted images and the real images of future growth
and development. (b) Average evaluation results of MSE, PSNR, and SSIM at each time step from t +
1 to t + 5. (c) Comparison of leaf number, projected area, length of the minimum bounding rectangle,
and width of the minimum bounding rectangle between the predicted and real images.
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The SSIM values surpassed 91% for all time steps. The mean of MSE values was
18.50 and the MSE values were below 30 for all time steps. The mean of PSNR values was
34.45. The smaller the value of MSE, the better the predictive ability of the proposed model.
The results showed a high degree of similarity between the predicted images and the real
images of plant growth and development. The values of PSNR and SSIM typically showed
a gradual decrease trend as time step increased and the values of MSE showed a gradually
increasing trend as time step increased. This may be caused by deviations of the predictions
accumulated over time and the complexity of plant growth and development. Because the
time interval between the two steps was only 30 min, the leaf number, and the length and
width of the minimum bounding rectangle of real images had fewer changes and were
similar to the ones of the predicted images, as shown in Figure 5c. Yet, the rhythmic leaf
movement and the growth of young leaves may change the projected area. There was a
larger discrepancy between the projected area of predicted images and the projected area
of real images. The changing trend of the projected area of predicted images is similar to
that of real images. These results reflected the predictive validity of the proposed model.

The prediction of plant growth and development at different numbers of time steps
and different time intervals between two steps were compared to determine the optimal
number of time steps and optimal time interval between two steps. The spacer input
sequences of the model were acquired from the dataset at the set number of prediction
steps and the time interval between time steps. The prediction results of different numbers
of steps and different time intervals between steps are shown in Figure 6.
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The values of MSE, PSNR, and SSIM at each step between the predicted images with
the real images are shown in Figure 6, where the time interval between two steps was
set as 30 min and the number of prediction steps was set as 3, 5, 8, 10, and 20. When
the number of prediction steps was 20, the values of PSNR, and SSIM at each step were
significantly lower than other results and the values of MSE at each step were significantly
higher than other results. When the number of prediction steps was lower than 10, the
values of MSE at each step (from t + 1 to t + 5) increased as the number of prediction steps
increased (Figure 6c), and the values of PSNR and SSIM at each step (from t + 1 to t + 5)
were increased as the number of prediction steps increased (Figure 6a,b). The standard
deviations of MSE and PSNR values at each step were both less than two. The standard
deviation of SSIM values at each step was smaller than 0.01. These results illustrate that
the number of prediction steps had a comparatively small effect on the performance of the
proposed prediction model until it was greater than 10.

Next, the performances of the proposed prediction model tested on different time
intervals were evaluated to explore the effect of the time interval between two steps on
the proposed prediction model. The average values of MSE, PSNR, and SSIM at each step
from t + 1 to t + 5 are shown in Figure 7, where the time interval between two steps was
set as 30 min, 1 h, 2 h, 6 h, and 12 h. The values of MSE at each step (from t + 1 to t + 5)
were increased as the time interval between the two steps increased (Figure 7c), and the
values of PSNR and SSIM at each step (from t + 1 to t + 5) were increased as the number of
prediction steps increased (Figure 7a,b). However, when the time interval between the two
steps was set as 2 h, the values of MSE at each step were significantly increased. When the
time interval between the two steps was set as 6 h, the values of MSE at each step obtained
were close to those obtained by setting the time intervals as 12 h. When the time interval
between two steps was set as 6 h, the SSIM values surpassed 73% for all time steps and
the SSIM value at the first time step was 79.85%, the mean of PSNR values was 26.68 and
the mean of MSE values was 34.45. These results illustrate that the time interval had an
extremely large effect on the performance of the proposed prediction model. In order to
achieve 85% SSIM between the prediction and real plant images, the time interval needs
to be set to 1 h. Therefore, for a more reliable and longer-term prediction of plant growth
and development, the optimal number of time steps is 10 and the optimal time interval
between two steps is 1 h.

Under the optimal setting, the performance of the proposed prediction model and
the existing models are shown in Figure 8. The mean of PSNR values of the proposed
prediction model was 30.67. The SSIM values of the proposed prediction model surpassed
85% for all time steps, which was higher than the ones of the prediction model based only
on ConvLSTM and the prediction model based only on ST-LSTM. The mean of MSE values
of the proposed prediction model was 46.11 and the MSE values of the proposed prediction
model were below 68 for all time steps. The proposed prediction model was not good
at the MSE. The MSE values of the proposed prediction model at each step (from t + 4
to t + 10) were higher than the ones of the prediction model based only on ConvLSTM
and the prediction model based only on ST-LSTM. As shown in Figure 5c, the projection
area of wheat was as high as 1000 and the projection area was also the pixel number
of the binary images. The relative difference of MSE between the proposed prediction
model and the existing models was less than 30, which was acceptable. The results above
validated the proposed prediction model and showed its robustness as compared with the
existing models.
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3.2. Multi-View Wheat Dataset

In the experimental study, the successive images of four different varieties of wheat
without background were used to further verify the effectiveness of the proposed model in
predicting the growth and development of different varieties and different views. The test
dataset contained 144 sequences (obtained from eight views of 18 plants) selected randomly
from the multi-view wheat dataset. The remaining sequences of successive images were
considered for the training and validation dataset. The prediction model of plant growth
and development was trained on the training and validation dataset. Two images of future
growth and development were predicted at once based on three input images.

The proposed prediction model of growth and development was tested on the test
dataset. The qualitative comparison between the predicted images and the real images of
future growth and development is shown in Figure 9. The average values of MSE, PSNR,
and SSIM at each step from t + 1 to t + 2 were also calculated at different time steps to
evaluate the predicted result of wheat growth and development. The values of SSIM at
t + 1 and t + 2 steps were 81.63% and 80.46%. These results illustrate the validity of the
proposed model again. When the time interval was increased, the predicted plant growth
and development images could still have relatively good structural similarity with the real
images by increasing the amount of training data.
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3.3. Panicoid Phenomap-1 Dataset

The proposed prediction model was also evaluated on the Panicoid Phenomap-1
dataset. Successive images of 39 varieties of panicoid grain crops without background were
used to verify the effectiveness and robustness of the proposed model in predicting growth
and development. The test dataset contained 39 randomly chosen groups containing all
genotypes of panicoid grain crops. The remaining 137 sequences of successive images were
considered for the training and validation dataset. The prediction model was trained on the
training and validation dataset and tested on the test dataset. Five images of future growth
and development were predicted at once based on five input images. The window length
was set as 10. The predicted images and the real images of future growth and development
are shown in Figure 10. The corresponding parameters (leaf number, projected area, length
and width of the minimum bounding rectangle) of the predicted and real images were
measured and compared, as shown in Figure 11. The average values of MSE, PSNR, and
SSIM at each step from t + 1 to t + 5 are also shown in Figure 12.

The predicted results obtained by the proposed model on the Panicoid Phenomap-1
dataset were similar to the results above. The leaf number, projected area, and length
and width of the minimum bounding rectangle of the predicted images were comparable
and showed good agreement with the ones of real images. However, accuracies for late
prediction time steps were lower, especially for the length of the minimum bounding
rectangle. This problem is also reflected in the changing trend of the SSIM, MSE, and
PSNR. When the number of time steps was set as five, the values of PSNR and SSIM
typically decreased and the values of MSE increased with time. This again validated that
the predicted results gradually become worse and may be caused by deviations of the
predictions accumulated over time and the complexity of plant growth and development.

Agronomy 2022, 12, x FOR PEER REVIEW 17 of 22 
 

 

t-4 t-3 t

Input images

Real images of
 future growth and

 development

Predicted images of
 future growth and

 development

t-1t-2

t+1 t+2 t+5t+4t+3

 
Figure 10. Comparison between the predicted images of panicoid grain crops and the real images 
of future growth and development of the experimental results on the Panicoid Phenomap-1 dataset. 

  

  

Le
af

 n
um

be
r

Pr
oj

ec
te

d 
ar

ea
/p

ix
el

W
id

th
 o

f t
he

 m
in

im
um

 b
ou

nd
in

g 
re

ct
an

gl
e/

pi
xe

l

Figure 10. Comparison between the predicted images of panicoid grain crops and the real images of
future growth and development of the experimental results on the Panicoid Phenomap-1 dataset.
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Figure 11. Comparison of leaf number, projected area, and length and width of the minimum
bounding rectangle between the predicted and real images of the experimental results on the Panicoid
Phenomap-1 dataset.

On the other hand, the number of prediction steps was set as 3, 5, 8, 10, and 20. The
average values of MSE, PSNR, and SSIM at each step were also calculated to determine
the optimal number of prediction steps, as shown in Figure 12. The values of MSE at each
step were first decreased and then increased as the number of prediction steps increased
(Figure 12c), and the values of PSNR and SSIM at each step were first increased and
then decreased as the number of prediction steps increased (Figure 12a,b). The standard
deviations of PSNR values at each step were less than two and the standard deviations of
SSIM values at each step were smaller than 0.02. These results again illustrated that the
number of prediction steps had a comparatively small effect on the performance of the
proposed prediction model. However, a larger difference was found regarding the MSE
values at each step obtained by setting different numbers of prediction steps. When the
number of prediction steps was set to eight, the model had the best prediction performance
on the Panicoid Phenomap-1 dataset. The SSIM values surpassed 78% for all time steps.
The mean of MSE values was 77.78 and the MSE values were below 118 for all time steps.
The mean of PSNR values was 29.03. The trend of the predicted results on the Panicoid
Phenomap-1 dataset was different from that of the successive-view wheat dataset. This
may be caused by the increase in the time intervals. The time intervals between two steps
of the successive-view wheat dataset were less than 12 h. The real images of plant growth
and development at the time step t + 1 bore a strong visual resemblance to the real images
at the time step t + 1. However, the time interval of the Panicoid Phenomap-1 dataset
was 24 h. With the number of prediction steps increased, the proposed model can better
model the dynamic of plant growth and development to predict plant future growth and
development. In parallel, deviations of the predictions accumulated over time became
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more conspicuous. Therefore, when the number of prediction steps was set to eight, the
model had the best prediction performance on the Panicoid Phenomap-1 dataset.

Under the optimal setting, the performances of the proposed prediction model and
the existing models are shown in Figure 13. The SSIM and PSNR values of the proposed
model are significantly higher than those of the prediction model based only on ConvLSTM
and the prediction model based only on ST-LSTM. The proposed prediction model was
also not good at the MSE. The results were similar to the results above. The MSE values
of the proposed prediction model at each step were higher than the ones of the prediction
model based only on ConvLSTM and the prediction model based only on ST-LSTM. The
relative difference of MSE between the proposed prediction model and the existing models
was less than 40. These results above again validated the robustness of the proposed
prediction model.
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Figure 13. Comparison of evaluation results (MSE (a), PSNR (b), and SSIM (c)) between the proposed
prediction model and the existing models tested on the Panicoid Phenomap-1 dataset.

Compared with others’ work using GAN models, the proposed model did not per-
form well in terms of the blurriness of the predicted images. Nevertheless, there are two
advantages of this work. The first advantage is that the images of future plant growth
and development predicted by the proposed model have higher structural similarities
with the real images. The proposed model predicted the future images of plant growth
and development by modeling the dynamic behaviors of plant growth and development
using ST-LSTM and MIM modules. The hidden presentations of spatiotemporal station-
arity variations in the time-series images were generated by the ST-LSTM layers. The
MIM exploits the differential signals between adjacent recurrent states to model the non-
stationary and approximately stationary properties in spatiotemporal dynamics with two
cascaded, self-renewed memory models. By stacking multiple MIMs, we could poten-
tially handle higher-order non-stationarity of plant growth and development. The second
advantage is that the effect of the number of time steps and the optimal time interval
between two steps on the prediction performance of the proposed model was analyzed and
the optimal number of time steps and the optimal time interval between two steps were
determined, which will provide a valuable reference for the prediction studies of plant
growth and development.

4. Conclusions

In this work, we proposed a prediction model of plant growth and development to
reliably generate images of future plant growth stages and give a novel dataset of wheat
growth and development. The performance of the prediction model of plant growth and
development was evaluated by calculating SSIM, MSE, and PSNR between the predicted
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and real plant images. The leaf number, projected area, and length and width of the
minimum bounding rectangle of the predicted and real images were also measured and
compared to assess whether the prediction was biologically accurate. Findings reveal a high
degree of consistency and similarity between the predicted and real plant frames. Moreover,
the optimal number of time steps and the optimal time interval between two steps were
determined to provide a valuable reference for the prediction studies of plant growth
and development. The comparison of evaluation results between the proposed prediction
model and the existing models tested on the given dataset was conducted to validate its
robustness. The proposed model also could be retrained and adapted to other domains,
such as the prediction of plant growth and development on the effects of abiotic and
biotic stresses. This work could potentially speed up biologists’, geneticists’, and breeders’
experimental cycles by reducing the time required to grow, image, and measure plants and
further accelerate breeding for addressing the challenge of declining food security.
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