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Abstract: Drought is one of the major environmental stresses that devastatingly impact squash
development, growth, and productivity. Potassium silicate can attenuate the injuries caused by
water stress. Hence, this study was designed to investigate the influence of three concentrations
of potassium silicate; 10, 15, and 20 g/L on squash plants versus untreated control under three
irrigation regimes; 100, 75, and 50% of estimated crop evapotranspiration (ET). The obtained results
indicated that moderate (75% ET) or severe (50% ET) drought stress conditions gradually declined
photosynthetic pigments, relative water content (RWC), mineral content, physiological parameters,
and anatomical characteristics. These deleterious impacts were reflected on all growth and yield
traits, i.e., plant height, fresh and dry weight of root and shoot, and fruit yield. On the other hand,
the antioxidant enzyme activities; superoxide dismutase (SOD), catalase (CAT), and peroxidase
(POX) significantly increased under severe drought stress at 50% ET followed by 75% ET. However,
all evaluated exogenous applications of potassium silicate substantially enhanced photosynthetic
pigments, RWC, N, P, and K content, antioxidant enzyme activities, and anatomical characters
(periderm thickness, cortex thickness, midrib thickness, mesophyll thickness, number of xylem
vessels per main vascular bundle, thickness of vascular bundle, thickness of collenchymatous tissue
and upper epidermis, and thickness of collenchymatous tissue and lower epidermis). These desirable
impacts were reflected in enhancing all growth and yield parameters. Conclusively, this study alludes
that the exogenously applied of potassium silicate, particularly at 20 g/L, can alleviate the deleterious
effects of drought stress and enhance the growth and productivity of squash plants, especially
in arid environments.

Keywords: drought stress; photosynthetic pigments; antioxidant enzyme activities; fruit yield

1. Introduction

Squash (Cucurbita pepo L.) is one of the most popular cultivated vegetable crops [1]. The
immature fruits are used as boiled, cooked, or stuffed [2]. It has various health and medic-
inal benefits for humans [3,4]. Its fruits contain considerable amounts of carbohydrates,
proteins, minerals, and vitamins [5,6].
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Global climate change is causing considerable fluctuations in various variables, par-
ticularly temperature and precipitation [7,8]. Such shifts contribute intrinsically to envi-
ronmental stress exposure in plants [9–12]. Drought is one of the major abiotic stresses
and the most considerable factor limiting plant growth and productivity, in particular
in arid environments [13–15]. It destructively influences anatomical, physiological, and
morphological characteristics of arable field crops and subsequently food security [16–19].
The devastating impacts of drought stress on the performance of different field crops have
been broadly investigated [20–24].

There are certain non-essential elements, such as silicon (Si), that improve plant devel-
opment and growth through promoting several desirable physiological processes [25,26].
Furthermore, silicon alleviates destructive impacts of different abiotic stresses, such as nutrient
imbalance, salinity, drought, metal toxicity, chilling, radiation damage, and high tempera-
ture [27,28]. Silicon increases tolerance to drought stress by sustaining plant water balance
and photosynthetic activity [29,30]. The valuable role of Si in promoting the development
and growth of different plant species under drought stress has been detected in previous
studies. In this regard, Moustafa [31] demonstrated that exogenously applied potassium
silicate significantly enhanced growth characters, pigment content, and N, P, and K absorption
in Ceiba speciosa. Likewise, Kaya et al. [32] deduced that the application of Si enhanced relative
water content in maize (Zea mays) under water deficit conditions, indicating retention of
water in cells. Moreover, Kaya et al. [32] disclosed that Si has a vital role in the regulation of
calcium concentration which strengthens plant membrane integrity under different abiotic
stresses. Pei et al. [33] manifested that Si application stimulated antioxidant defense in wheat
(Triticum aestivum) produced under water deficit conditions. Consequently, the antioxidant
defense alleviated oxidative damage induced by the overproduction of reactive oxygen species
(ROS) and maintained physiological processes in stressed plants. Thus, the purpose of this
study was to explore the effect of K-silicate as a foliar spray at different concentrations un-
der different irrigation regimes on physiological parameters, anatomical characteristics, and
growth and yield traits of the squash plant (Cucurbita pepo L.).

2. Materials and Methods
2.1. Experimental Site and Agronomic Practices

A field experiment was performed during the two growing summer seasons of 2019
and 2020 at the Experimental Farm of the Faculty of Agriculture, Suez Canal University,
Ismailia, Egypt (30◦35′45′′ N, 32◦16′18′′ E). The soil of the experimental site was sandy
throughout the profile (92.1% sand, 7.52% silt, and 0.47% clay), the electrical conductivity
and pH were 1.4 dSm−1 and 7.41, respectively. The experimental site is described as
arid with no precipitation occurring during the summer season (Table S1). The applied
experimental design was a split-plot in three replications. The irrigation regimes were
randomized in the main plots and the foliar application of potassium silicate was located
in the subplots. Irrigation scheduling was based on the estimated crop evapotranspiration
(ETc) replacement according to the crop coefficient approach of Allen et al. [34]. ETc
was calculated by multiplying the daily reference evapotranspiration (ETo) by FAO crop
coefficients (Kc) of squash [34]. Daily reference evapotranspiration (ETo) was calculated
from weather data using the FAO-56 standardized Penman–Monteith equation as stated
in [34]. Daily meteorological data, including maximum and minimum temperature, wind
speed, and dew point temperature, were obtained from a weather station located at the
experimental site and were used for calculating ETo. The values of Kc for squash, as
recommended by FAO-56, were adjusted based on actual values of climatic conditions,
including relative humidity and wind speed in the experimental site. Three irrigation
regimes were performed using 100%, 75%, and 50% of ETc. The total amount of the full
irrigation regime (100% ETc) was 2105 and 2195 m3/ha during the first and second growing
seasons, respectively. The amount of full irrigation regime was diminished by 25% for
providing moderate drought stress conditions, which were 1579 and 1646 m3/during first
and second growing seasons, respectively. Besides, the amount of full irrigation regime was
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diminished by 50% for providing severe drought stress conditions, which were 1053 and
1098 m3/ha during the first and second growing seasons, respectively. The drip irrigation
system was applied, and the emitter flow rate was 4 L h−1. The irrigation water amount
was calculated independently for each irrigation regime employing a flow meter. The
irrigation regimes were applied after two weeks from planting to ensure full complete
seedling establishment.

Potassium silicate K2SiO3 42% was purchased from Sigma and was applied in three
concentrations of 10, 15, and 20 g/L. The plants were sprayed three times starting from the
age of twenty days with one-week intervals among sprayings. The experimental subplot
consisted of 5 rides, 5 m in length and 60 cm in width. The squash (Cucurbita pepo L.)
zucchini type cv “Eskandarani” was used for this study. According to the recommended
period of squash growing in the region, planting was performed in mid-May in both years.
Standard agronomic practices, including drip irrigation and control of pests and diseases,
were performed as recommended for cultivating squash in the region. Before sowing,
360 kg super-phosphate (15.5% P2O5) per ha and 240 kg potassium sulfate (48% K2O) were
applied. Additionally, 240 kg ammonium sulfate (20.5% N) was added.

2.2. Physiological Parameters

The contents of photosynthesis pigments Chl a, Chl b, and carotenoids were determined in
the 3rd leaf of squash after 50 days from sowing according to Von Wettstein [35]. Leaf relative
water content (RWC) was estimated as outlined by Schonfeld et al. [36]. Fresh leaf samples
(100 mg) were soaked in 10 mL of distilled water until saturated and left overnight. After
removing water from the leaf surface without pressure, the leaf was dried at 70 ◦C for 72 h and
weighed to obtain a saturated weight. The dry weight was obtained. From these data, RWC was
calculated using the following equation RWC = (Fresh weight − dry weight)/(Turgid weight−
dry weight) × 100.

The terminal buds and the first two young leaves were utilized for determining the
activities of superoxide dismutase (SOD), catalase (CAT) peroxidase (POX), and polyphenol
oxidase (PPO) enzymes. Two grams of the plant material were homogenized with 10 mL of
phosphate buffer pH 6.8 (0.1 M) and centrifuged at 2 ◦C for 20 min at 20,000 rpm. The clear
supernatant (containing the enzymes) was taken as the enzyme source [37]. Superoxide
dismutase (SOD) activity was determined following Marklund and Marklund [38] and
Kong et al. [39]. The solution (10 ml) consisted of 3.6 ml of distilled water, 0.1 mL of
the enzyme, 5.5 ml of 50 mM phosphate buffer (PH 7.8), and 0.8 mL of 3 mM pyrogallol
(dissolved in 10 mM HCl). The rate of pyrogallol reduction was measured at 325 nm with
UV-spectrophotometer. One unit of enzyme activity was defined as the amount of the
enzyme that resulted in 50% inhibition of the auto-oxidation rate of pyrogallol at 25 ◦C.
Catalase (CAT) activity was determined according to Chen et al. [40] and Kong et al. [39].
CAT activity was determined by measuring the rate change of H2O2 absorbance in 60 s
with a UV-spectrophotometer at 250 nm. The blank sample was made by using buffer
instead of enzyme extract. One unit of enzyme activity was defined as the amount of the
enzyme that reduced 50% of the H2O2 in 60 s at 25 ◦C. Peroxidase (POD) activities was
assessed according to Bergmeyer and Bernt [41]. The enzyme was assayed using guaiacol
as the substrate. The reaction mixture consisted of 3 mL of phosphate buffer (0.1 M, pH 7.0),
30 mL of H2O2 (20 mM), 50 mL of enzyme extract, and 50 mL of guaiacol (20 mM). The
reaction mixture was incubated in a cuvette for 10 min at room temperature. The optical
density was measured at 436 nm and the enzyme activity was expressed as the number
of absorbance units g−1 fresh weight of leaves. Polyphenoloxidase (PPO) (s) activity was
determined according to Kar and Mishra [42] and Fick and Qualset [43]. PPO activity was
assessed by using 125 µmol of phosphate buffer (pH 6.8), 100 µmol pyrogallols, and 2 mL
of enzyme extract. After the incubation period of 5 min at 25 ◦C, the reaction was stopped
by adding 1 mL 5% H2SO4. The blank sample was made by utilizing very well-boiled
enzyme extract, and the developed color was read at 430 nm.
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After 50 days of sowing, leaves and roots of squash plants were collected and dried
at 70 ◦C for 24 h. Analyses of nitrogen, phosphorus, and potassium were performed by
grinding the dried plantlets followed by digestion with H2SO4 as described by Piper [44].
The nitrogen, phosphorus, and potassium contents were then measured by using an Atomic
Absorption flame photometric (3300) according to Wild et al. [45].

For nitrogen, digested samples were diluted, neutralized with sodium hydroxide,
and analyzed with an ammonia electrode. Ammonia concentration was estimated from
a standard curve prepared from serially diluted standards of a 1000 mg/L ammonium
chloride stock solution [46]. Phosphorus was determined according to Jackson [47].

2.3. Anatomical Characters

Certain characteristics of transverse sections of the third visible leaf from the plant
apex were determined, such as the thickness of mesophyll, thickness of midrib, thickness
of vascular bundle, thickness of collenchaymatous tissue and upper epidermis, thickness
of collenchymatous tissue and lower epidermis, and the average number of xylem vessels
per vascular bundle. Fixation of leaf sample in 70% formalin acetic acid (F.A.A.) solution,
dehydration and clearing with ethyl-alcohol and xylene, infiltration and embedding in pure
paraffine wax (M.P. 56 to 58 ◦C) were performed. Utilizing a rotary microtome, sections of
the leaf (15µ) were stained with safranin and light green. The sections were investigated
microscopically using the image processing program Image. The anatomical assessment
was performed employing a Leica light Research Microscope model PN: DM 500/13613210
supplied with a digital camera [48].

2.4. Growth Traits

At 50 days after sowing, ten plants were randomly selected to measure root length (cm),
fresh and dry weights of shoot and root per plant (g), plant height (cm), number of leaves
per plant, and fruit weight per plant (g).

2.5. Statistical Analysis

The R statistical software (version 4.1.2) was employed to analyze the obtained data.
A combined analysis of variance was performed for the split-plot design with irrigation
regime, potassium silicate application, and their interaction. Combined analysis of variance
was performed to explore the differences among studied factors across the two growing
seasons using the Shapiro–Wilk test and Bartlett’s test for the normality distribution of the
residuals and homogeneity of variances, respectively. The combined analysis indicated
homogenous variances across the two growing seasons for different parametric measure-
ments, and therefore, the data of the two growing seasons were combined. The differences
among studied factors and their interaction were separated by the Tukey HSD test at
0.05 significance level.

3. Results and Discussion
3.1. Physiological Parameters
3.1.1. Relative Water Content and Photosynthetic Pigments

Relative water content (RWC) was determined to provide an indication of the plant water
status affected by the studied factors. The results in Figure 1 exhibited significant differences
among the evaluated irrigation regimes and potassium silicate treatments. RWC was reduced
by increasing drought levels under moderate (75% ET) by 25.50% and severe (50% ET) drought
by 31.54% compared to well-watered (100% ET) conditions. Otherwise, potassium silicate
exogenous application enhanced RWC under moderate and severe drought stress conditions.
The highest enhancement was assigned for the application of 20 g/L, which improved RWC
by 50.0% under moderate drought and 38.1% under severe drought conditions compared
to untreated control. The results of Gong et al. [26] and Kaya et al. [32] coincide with the
obtained findings of this study, displaying that the exogenously applied potassium silicate
enhanced RWC, indicating retention of water in cells that stimulated RWC under drought stress.
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Squash plants exposed to moderate (75% ET) or severe (50% ET) drought stress displayed a
substantial decline in the content of chlorophyll a by 2.6 and 4.5%, chlorophyll b by 2.1 and
4.1%, and carotenoids by 14.1 and 26.6%, compared well-watered conditions, in the same order
(Figure 1). However, increasing levels of potassium silicate enhanced photosynthetic pigments
under the two drought regimes compared with untreated control (control). The application
of 20 g/L exhibited the highest improvement of chlorophyll a under moderate drought and
severe drought by 5.8 and 4.9% compared with untreated control. Likewise, it enhanced
chlorophyll b by 9.8 and 10.9% compared to untreated control under moderate and severe
drought, respectively. Moreover, it boosted carotenoids by 54.5 and 28.6% compared to untreated
control under moderate and severe drought, respectively. In this context, Rizwan et al. [30]
disclosed that Si has a decisive role in mitigating drought stress through different mechanisms,
such as enhancing phytohormone synthesis, uptake of mineral nutrients, osmotic adjustment,
regulation of compatible solutes, modification of gas exchange attributes, and reduction in
oxidative stress. Furthermore, Rubinowska et al. [49] and Shen et al. [50] manifested that Si is
a beneficial element for various metabolic processes, as it suppresses chlorophyll degradation
or enhances photosynthetic apparatus by promoting chlorophyll contents and water balance.
Similarly, Pandey and Yadav [51] pointed out that spraying silicon increased chlorophyll content,
water status, dry matter accumulation, dry matter production rate, and biological yield.
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Figure 1. Impact of potassium silicate at different concentrations on RWC%, carotenoids, and
chlorophyll content (a, b) of squash plants under different irrigation regimes. The bars on the columns
represent SE and different letters are significantly different by Tukey HSD test at 0.05 significance level.

3.1.2. Antioxidant Enzyme Activities

Incremental changes in water stress levels from moderate (75% ET) to severe (50% ET) con-
siderably enhanced the activity of peroxidase (POD), superoxidase dismutase (SOD), polyphenol
oxidase (PPO), and catalase (CAT). Moderate drought substantially elevated POD, SOD, PPO,
and CAT by 32.4, 14.1, 51.2, and 78.7% compared to well-watered conditions. While severe
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drought increased POD, SOD, PPO, and CAT by 83.8, 60.0, 66.5, and 98.1%. Moreover, increasing
the levels of potassium silicate from 10 to 20 g/L exhibited a significant increment of POD, PPO,
SOD, and CAT (Table 1). The application of 20 g/L considerably stimulated POD, SOD, PPO,
and CAT under moderate drought by 70.6, 70.5, 82.5, and 71.94% compared with untreated
control, respectively. Likewise, under severe drought, it boosted POD, SOD, PPO, and CAT
by 68.5, 88.7, 77.9, and 41.7% compared with untreated control, respectively. Various previ-
ous reports elucidated that the antioxidant defense system ameliorated drought tolerance by
boosting the antioxidant enzyme activities [52]. In this context, Desoky et al. [53] demonstrated
that the exogenously applied silicon promoted the activities of SOD, POD, and CAT under
water scarcity conditions compared to untreated control. Furthermore, Ma [27] proved that
silicon attenuated POD response, retained SOD adaptation, and elevated CAT activity under
drought stress. Moreover, the enhancement of drought tolerance by silicon application is related
to stimulating the antioxidant defense system. Accordingly, mitigating the oxidative damage
induced by overproduction of ROS and maintaining various physiological processes under
drought stress [25,54,55].

3.1.3. Mineral Content

Strengthening the drought level from moderate (75% ET) to severe (50% ET) displayed a
substantial reduction in N%, P%, and K% of the shoot and root systems (Table 2). Moderate
drought significantly declined N%, P%, and K% of the shoot by 12.6, 25.5, and 5.5% and of the
root system by 18.7, 17.1, and 11.0%, compared to well-watered conditions, respectively. Severe
drought notably reduced N%, P%, and K% of the shoot by 30.7, 50.9, and 23.6% and of the root
system by 30.0, 19.5, and 19.5% compared to well-watered conditions, respectively. However,
increasing potassium the silicate level from 10 to 20 g/L exhibited significant enhancement in
the N, P, and K contents in plant root and shoot. The application of 20 g/L remarkably enhanced
N, P, and K contents of the shoot by 32.5, 60.6, and 39.2% under moderate drought and by
25.8, 23.7, and 22.4% under severe drought compared to untreated control in the same order.
Similarly, it boosted N, P, and K contents of the root under moderate drought by 30.3, 17.1, and
20.0%, and severe drought by 42.9, 26.5, and 14.5% compared to untreated control in the same
order. In this context, Liang [56] elucidated that Si maintains the optimum supply of essential
nutrients, which could be resulted by changing the soil pH. Moreover, Eneji et al. [57] indicated
that silicon boosted the uptake of major essential elements in numerous types of grass that were
evaluated under drought conditions. Besides, Yunus and Zari [58] elucidated that Si application
caused a significant increase in K+, Ca2+, and Mg2+ contents in tomato leaves.

3.2. Anatomical Characters

The moderate drought significantly decreased thickness of periderm, cortex thickness,
midrib and mesophyll, vascular bundle of leaves (µ), collenchymatous tissue upper vascular
bundle, and collenchymatous tissue lower vascular bundle thickness (µ), and number of
xylem vessels per main vascular bundle of leaves by 25.9, 18.6, 11.5, 7.0, 21.7, 12.7, 24.4, and
22.8% compared to well-watered conditions (Table 3 and Figure 2). Moreover, severe drought
significantly reduced the aforementioned parameters in the same order by 38.9, 45.3, 25.2,
15.8, 23.8, 22.5, 37.6, and 38.6% compared to well-watered conditions. However, potassium
silicate in different levels (10 to 15 or 20 g/L) enhanced all studied anatomical measurements
under moderate and severe drought compared to untreated control. In particular, the high
level at 20 g/L considerably enhanced the thickness of periderm, cortex, midrib, mesophyll,
vascular bundle, collenchymatous tissue upper and lower vascular bundle, and number of
xylem vessels per main vascular bundle by 24.6, 37.0, 30.4, 41.1, 61.8, 41.7, 28.8, and 25.0%
compared to untreated control. Similarly, it promoted the aforementioned parameters in the
same order by 86.4, 39.2, 53.7, 49.0, 55.2, 88.9, 20.9, and 12.5% compared to untreated control.
In this context, Shanan and El Sadek [59] manifested that the measurements of leaf thickness,
upper epidermis thickness (µ), lower epidermis thickness (µ), and mesophyll thickness (µ)
recorded remarkable reductions under drought stress. However, silicon application enhanced
all these anatomical characteristics.
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Table 1. Influence of potassium silicate on the activity of peroxidase (POD), superoxidase dismutase (SOD), polyphenol oxidase (PPO), and catalase (CAT) of squash
plants under different irrigation regimes.

Treatment 100% ET 75% ET 50% ET Mean 100% ET 75% ET 50% ET Mean

Peroxidase ug/g (F.W) Superoxide Dismutase ug/g (F.W)

Control 0.086 ± 0.006 f 0.102 ± 0.01 e 0.149 ± 0.008 cd 0.112 ± 0.015 C 0.109 ± 0.009 f 0.163 ± 0.01 e 0.213 ± 0.008 de 0.162 ± 0.018 D

10 g/L 0.104 ± 0.01 e 0.133 ± 0.009 de 0.164 ± 0.01 c 0.134 ± 0.012 B 0.167 ± 0.02 e 0.168 ± 0.02 e 0.239 ± 0.01 cd 0.191 ± 0.012 C

15 g/L 0.105 ± 0.007 e 0.146 ± 0.006 cd 0.207 ± 0.005 b 0.153 ± 0.017 B 0.201 ± 0.01 de 0.234 ± 0.009 cd 0.331 ± 0.07 b 0.255 ± 0.014 B

20 g/L 0.126 ± 0.004 de 0.174 ± 0.01 c 0.251 ± 0.004 a 0.184 ± 0.015 A 0.262 ± 0.07 c 0.278 ± 0.02 c 0.402 ± 0.06 a 0.314 ± 0.016 A

Mean 0.105 ± 0.012 B 0.139 ± 0.015 B 0.193 ± 0.012 A 0.185 ± 0.018 C 0.211 ± 0.015 B 0.296 ± 0.02 A

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season(S) 1 0.168 0.317

I × T 6 <0.001 <0.001
I × S 2 0.976 0.998
T × S 3 0.988 0.996

I × T × S 6 0.869 0.837
Polyphenol oxidase ug/g (F.W) Catalase ug/g (F.W)

Control 0.136 ± 0.019 f 0.730 ± 0.028 e 0.871 ± 0.031 d 0.579 ± 0.04 C 0.065 ± 0.012 f 0.417 ± 0.017 d 0.521 ± 0.024 c 0.334 ± 0.025 D

10 g/L 0.878 ± 0.025 d 1.27 ± 0.026 b 1.09 ± 0.029 c 1.079 ± 0.08 B 0.348 ± 0.009 e 0.510 ± 0.021 c 0.621 ± 0.017 b 0.493 ± 0.028
15 g/L 0.902 ± 0.024 d 1.29 ± 0.022 b 1.51 ± 0.036 a 1.234 ± 0.04 A 0.418 ± 0.015 d 0.606 ± 0.02 b 0.616 ± 0.022 b 0.547 ± 0.022 B

20 g/L 1.100 ± 0.026 c 1.28 ± 0.027 b 1.550 ± 0.031 a 1.310 ± 0.03 A 0.430 ± 0.020 d 0.717 ± 0.006 a 0.738 ± 0.009 a 0.628 ± 0.021 A

Mean 0.754 ± 0.05C 1.14 ± 0.06 B 1.255 ± 0.05 A 0.315 ± 0.023 B 0.563 ± 0.026 A 0.624 ± 0.015 A

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season (S) 1 0.342 0.045

I × T 6 <0.001 <0.001
I × S 2 0.337 0.370
T × S 3 0.366 0.691

I × T × S 6 0.730 0.856
1 Different uppercase letters indicate significant difference among the main effect of irrigation regimes or potassium silicate concentrations at 0.05 significance level, while lowercase
letter implies significant difference among their interaction.
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Table 2. Influence of potassium silicate at different concentrations on N%, P%, and K% of squash shoot and root under different irrigation regimes.

Treatment 100% ET 75% ET 50% ET Mean 100% ET 75% ET 50% ET Mean

N % Shoot P% Shoot
Control 3.61 ± 0.22 cd 3.26 ± 0.22 e 2.49 ± 0.20 g 3.120 ± 0.41 D 0.045 ± 0.003 c 0.033 ± 0.008 e 0.038 ± 0.004 d 0.039 ± 0.012 C

10 g/L 3.72 ± 0.18 c 3.50 ± 0.20 d 2.87 ± 0.21 f 3.363 ± 0.30 C 0.043 ± 0.004 c 0.036 ± 0.005 de 0.029 ± 0.008 f 0.036 ± 0.013 D

15 g/L 4.12 ± 0.20 b 3.60 ± 0.23 cd 2.80 ± 0.19 f 3.507 ± 0.32 B 0.055 ± 0.006 b 0.043 ± 0.004 c 0.024 ± 0.007 g 0.041 ± 0.011 B

20 g/L 5.10 ± 0.21 a 4.10 ± 0.25 b 3.30 ± 0.23 e 4.167 ± 0.35 A 0.075 ± 0.008 a 0.053 ± 0.007 b 0.029 ± 0.005 f 0.052 ± 0.009 A

Mean 4.14 ± 0.34 A 3.62 ± 0.38 B 2.87 ± 0.31 C 0.055 ± 0.004 A 0.041 ± 0.007 B 0.027 ± 0.009 C

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season (S) 1 0.072 0.183

I × T 6 <0.001 <0.001
I × S 2 0.915 0.538
T × S 3 0.636 0.994

I × T × S 6 0.570 0.952
K% shoot N % root

Control 0.86 ± 0.11 d 0.79 ± 0.22 e 0.76 ± 0.22 ef 0.810 ± 0.21 C 1.88 ± 0.24 f 1.65 ± 0.22 h 1.35 ± 0.21 j 1.63 ± 0.33 D

10 g/L 0.96 ± 0.21 c 0.93 ± 0.23 cd 0.72 ± 0.20 f 0.870 ± 0.21 B 1.93 ± 0.23 d 1.73 ± 0.19 g 1.50 ± 0.25 i 1.72 ± 0.34 C

15 g/L 1.29 ± 0.20 a 1.10 ± 0.25 b 0.93 ± 0.23 cd 1.107 ± 0.25 A 2.83 ± 0.21 a 1.94 ± 0.26 e 1.64 ± 0.24 h 2.14 ± 0.35 B

20 g/L 1.29 ± 0.23 a 1.10 ± 0.28 b 0.93 ± 0.24 cd 1.107 ± 0.26 A 2.54 ± 0.22 b 2.15 ± 0.22 c 1.93 ± 0.23 e 2.21 ± 0.32 A

Mean 1.10 ± 0.29 A 1.04 ± 0.32 B 0.84 ± 0.28 C 2.30 ± 0.29 A 1.87 ± 0.31 B 1.61 ± 0.35 C

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season (S) 1 0.771 0.061

I × T 6 <0.001 <0.001
I × S 2 0.825 0.952
T × S 3 0.886 0.406

I × T × S 6 0.706 0.058

P % root K% root
Control 0.035 ± 0.008 d 0.035 ± 0.003 d 0.032 ± 0.003 e 0.034 ± 0.005 C 0.75 ± 0.22 e 0.65 ± 0.21 g 0.62 ± 0.22 h 0.67 ± 0.41 D

10 g/L 0.054 ± 0.004 b 0.026 ± 0.001 f 0.013 ± 0.005 h 0.031 ± 0.007 D 0.79 ± 0.23 c 0.76 ± 0.23 de 0.62 ± 0.20 h 0.72 ± 0.42 C

15 g/L 0.053 ± 0.003 b 0.031 ± 0.005 e 0.022 ± 0.002 g 0.035 ± 0.008 B 0.84 ± 0.21 b 0.74 ± 0.25 e 0.67 ± 0.19 g 0.75 ± 0.38 B

20 g/L 0.024 ± 0.007 fg 0.041 ± 0.004 c 0.065 ± 0.001 a 0.043 ± 0.006 A 0.90 ± 0.24 a 0.78 ± 0.23 cd 0.71 ± 0.24 f 0.80 ± 0.35 A

Mean 0.041 ± 0.008 A 0.034 ± 0.01 B 0.033 ± 0.007 C 0.82 ± 0.29 A 0.73 ± 0.32 B 0.66 ± 0.35 C

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season (S) 1 0.059 0.679

I × T 6 <0.001 <0.001
I × S 2 0.046 0.402
T × S 3 0.052 0.267

I × T × S 6 0.093 0.608

1 Different uppercase letters indicate significant difference among the main effect of irrigation regimes or potassium silicate concentrations at 0.05 significance level, while lowercase
letter implies significant difference among their interaction.
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Table 3. Influence of potassium silicate at different concentrations on anatomical characters of squash plants under different irrigation regimes.

Treatment 100% ET 75% ET 50% ET Mean 100% ET 75% ET 50% ET Mean

Thickness of Periderm (µ) Thickness of Cortex (µ)

Control 102 ± 2.11 b 69.0 ± 3.04 f 44.0 ± 3.21 g 71.7 ± 4.21 D 202 ± 3.23 d 162 ± 4.30 e 102 ± 3.71 h 155.3 ± 5.72 D

10 g/L 103 ± 3.93 b 83.0 ± 1.96 d 69.0 ± 2.62 f 85.0 ± 3.42 B 203 ± 5.29 d 162 ± 4.92 e 117 ± 3.89 g 160.0 ± 4.21 C

15 g/L 102 ± 2.61 b 82.0 ± 3.31 d 72.0 ± 2.78 e 85.3 ± 3.91 B 252 ± 4.64 b 202 ± 5.78 d 142 ± 4.53 f 198.7 ± 6.18 B

20 g/L 126 ± 2.81 a 86.0 ± 2.61 c 82.0 ± 3.69 d 98.0 ± 3.89 A 262 ± 6.17 a 222 ± 5.89 c 142 ± 4.67 f 208.7 ± 5.33 A

Mean 108.0 ± 4.23 A 80.0 ± 4.57 B 66.08 ± 4.75 C 229.8 ± 7.23 A 187.0 ± 6.23 B 125.8 ± 6.23 C

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
I × T 6 <0.001 <0.001

Thickness of midrib (µ) Thickness of mesophyll (µ)
Control 542 ± 4.20 j 572 ± 5.61 h 402 ± 4.32 l 557.0 ± 6.70 D 123 ± 2.13 ef 112 ± 2.20 g 102 ± 2.29 h 112.3 ± 4.21 D

10 g/L 702 ± 3.18 d 591 ± 4.23 g 412 ± 3.98 k 568.3 ± 4.12 C 123 ± 2.16 ef 122 ± 1.90 f 102 ± 2.30 h 115.7 ± 3.20 C

15 g/L 767 ± 4.69 b 609 ± 5.37 f 566 ± 5.13 I 647.0 ± 6.56 B 136 ± 3.15 d 125 ± 2.16 e 112 ± 3.17 g 124.3 ± 3.16 B

20 g/L 833 ± 5.18 a 746 ± 4.08 c 618 ± 3.37 e 732.0 ± 5.92 A 174 ± 2.98 a 158 ± 3.11 b 152 ± 2.41 c 161.3 ± 3.81 A

Mean 711 ± 7.86 A 629.5 ± 6.40 B 532.0 ± 5.82 C 139.0 ± 4.35 A 129.3 ± 3.38 B 117.0 ± 3.65 C

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
I × T 6 <0.001 <0.001

Thickness of vascular bundle (µ) No. of xylem vessel/main
Control 202 ± 1.16 g 152 ± 1.18 j 134 ± 1.41 k 162.7 ± 2.31 D 23.0 ± 1.72 de 20.0 ± 1.23 f 16.0 ± 0.56 g 19.7 ± 2.78 D

10 g/L 223 ± 2.62 d 167 ± 1.52 i 166 ± 1.50 i 185.3 ± 2.55 C 27.0 ± 1.63 c 23.0 ± 1.48 de 18.0 ± 0.89 fg 22.7 ± 2.25 C

15 g/L 252 ± 1.17 b 218 ± 1.13 e 191 ± 1.67 h 220.3 ± 2.01 B 29.0 ± 1.08 b 22.0 ± 1.69 e 18.0 ± 1.01 fg 23.0 ± 1.68 B

20 g/L 282 ± 1.98 a 246 ± 1.19 c 208 ± 1.29 f 245.0 ± 2.09 A 35.0 ± 1.16 a 25.0 ± 1.56 d 18.0 ± 1.03 fg 26.0 ± 2.34 A

Mean 240 ± 3.56 A 188 ± 2.19 B 183 ± 2.25 C 28.5 ± 2.40 A 22.0 ± 1.89 B 17.5 ± 2.95 C

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
I × T 6 <0.001 <0.001

Thickness of collenchymatous tissue and upper epidermis (µ) Thickness of collenchymatous tissue and lower epidermis (µ)
Control 92.0 ± 0.72 d 72.0 ± 0.78 f 54.0 ± 0.66 g 72.7 ± 1.71 D 64.0 ± 0.62 b 52.0 ± 0.65 g 43.0 ± 0.78 h 53.0 ± 1.71 B

10 g/L 92.0 ± 0.59 d 83.0 ± 0.89 e 71.0 ± 0.75 f 82.0 ± 1.16 C 72.0 ± 0.68 e 58.0 ± 0.53 f 45.0 ± 0.73 g 58.3 ± 1.54 B

15 g/L 100 ± 0.65 b 81.0 ± 0.89 e 73.0 ± 0.79 f 84.7 ± 1.28 B 78.0 ± 0.51 c 54.0 ± 0.48 g 51.0 ± 0.66 g 61.0 ± 1.17 B

20 g/L 103 ± 0.69 a 102 ± 0.75 c 102 ± 0.89 c 102.3 ± 2.06 A 92.0 ± 0.73 a 67.0 ± 0.76 d 52.0 ± 0.70 h 70.3 ± 1.43 A

Mean 96.8 ± 1.72 A 84.5 ± 1.82 B 75.0 ± 1.78 C 76.5 ± 1.72 A 57.8 ± 1.56 C 47.8 ± 1.74 B

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
I × T 6 <0.001 <0.001

1 Different uppercase letters indicate significant difference among the main effect of irrigation regimes or potassium silicate concentrations at 0.05 significance level, while lowercase
letter implies significant difference among their interaction.
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Figure 2. Cross-sections of squash leaves under potassium silicate concentrations and irrigation regimes.
(A: Midrib thickness (µ), B: Mesophyll thickness (µ), C: Vascular bundle thickness (µ), and D: Thickness of
collenchymatous tissue and epidermis (µ). Bar= 100µ).

3.3. Growth Parameters

Moderate (75% ET) and severe (50% ET) drought stress significantly declined all growth
and yield traits, i.e., plant height, fresh and dry weight of root and shoot, number of leaves per
plant, and fruit yield (Table 4). Moderate drought significantly declined plant height, fresh and
dry weight of shoot, number of leaves per plant, and fruit yield by 17.6, 14.9, 1.6, 2.9, and 20.4%,
compared to well-watered conditions, respectively. Similarly, severe drought considerably
diminished plant height, number of leaves per plant, and fruit yield by 32.5, 22.6, 4.1, 11.8, and
31.0% compared to well-watered conditions, respectively. Otherwise, increasing potassium
silicate level from 10 g/L to 15 g/L or 20 g/L considerably boosted all growth and yield traits
compared with untreated control (Table 4). The growth and yield traits of the plants treated with
20 g/L potassium silicate under moderate or severe drought stress surpassed the treated plants
with 15 or 10 g/L. The application of 20 g/L potassium silicate reinforced plant height, number
of leaves per plant, and fruit yield by 61.6, 70.5, 9.6, 46.2, and 49.0% compared to untreated
plants. Likewise, under severe drought, it enhanced plant height, number of leaves per plant,
and fruit yield by 76.0, 88.3, 9.0, 50.0, and 83.9% compared to untreated plants. Previous
researchers documented the benefits of foliar-applied Si under drought stress. In this context,
Gong et al. [26] disclosed a considerable enhancement in plant growth of treated wheat by Si
under well-watered and drought stress conditions. Likewise, Crusciol et al. [60] proved that
exogenously sprayed Si boosted potato production, due to enhancement of the accumulation of
total sugars and proline under drought stress conditions.
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Table 4. Influence of potassium silicate on plant height, number of leaves per plant, fresh and dry weights of shoot/plant of squash plants under different irrigation
regimes.

Treatment 100% ET 75% ET 50% ET Mean 100% ET 75% ET 50% ET Mean

Root Length (cm) Root Fresh Weight per Plant (g)

Control 22.0 ± 1.12 d 23.0 ± 1.65 d 25.0 ± 2.20 cd 23.3 ± 2.66 D 3.0 ± 0.89 c 6.0 ± 0.88 b 3.0 ± 0.66 c 4.0 ± 1.21 B

10 g/L 21.0 ± 1.18 d 26.0 ± 1.35 cd 34.0 ± 1.54 bc 27.0 ± 2.36 C 6.0 ± 0.78 b 5.0 ± 0.79 bc 6.0 ± 0.73 b 5.7 ± 1.37 A

15 g/L 33.0 ± 1.52 bc 35.0 ± 1.26 b 30.0 ± 1.60 b–d 32.7 ± 1.96 B 6.0 ± 0.65 b 7.0 ± 1.01 ab 8.0 ± 0.82 ab 7.0 ± 1.18 A

20 g/L 30.1 ± 1.36 b–d 30.0 ± 1.87 b–d 49.0 ± 1.97 a 36.3 ± 2.73 A 6.0 ± 0.77 b 7.0 ± 0.42 ab 9.0 ± 0.74 a 7.3 ± 1.64 A

Mean 26.5 ± 2.45 C 28.5 ± 2.53 B 34.5 ± 2.83 A 5.3 ± 1.27 b 6.3 ± 1.08 ab 6.5 ± 1.64 a

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season (S) 1 0.381 0.831

I × T 6 <0.001 <0.001
I × S 2 0.047 0.049
T × S 3 0.036 0.394

I × T × S 6 0.052 0.106

Root dry weight per plant (g) Plant height (cm)
Control 1.3 ± 0.21 b 1.7 ± 0.16 b 1.3 ± 0.12 b 1.4 ± 0.26 B 45.0 ± 2.26 bc 32.0 ± 2.18 de 25.0 ± 2.74 e 34.0 ± 3.72 C

10 g/L 1.3 ± 0.18 b 2.0 ± 0.19 a 2.3 ± 0.15 ab 2.3 ± 0.22 A 53.0 ± 2.58 ab 40.0 ± 3.29 cd 34.0 ± 2.19 cd 42.3 ± 3.69 B

15 g/L 2.0 ± 0.12 ab 2.0 ± 0.22 ab 3.0 ± 0.26 ab 2.3 ± 25 A 56.0 ± 3.18 a 52.0 ± 3.15 ab 42.0 ± 2.64 b–d 50.0 ± 3.99 A

20 g/L 2.0 ± 0.14 ab 3.3 ± 0.31 a 3.0 ± 0.23 ab 2.3 ± 0.23 A 59.0 ± 3.20 a 51.7 ± 3.27 ab 44.0 ± 3.18 bc 51.6 ± 3.22 A

Mean 1.7.0 ± 0.29 B 2.3 ± 0.35 A 2.4 ± 0.29 A 53.3 ± 4.30 A 43.9 ± 4.97 B 36.0 ± 4.69 C

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season (S) 1 0.278 0.402

I × T 6 <0.001 <0.001
I × S 2 0.481 0.529
T × S 3 0.308 0.039

I × T × S 6 0.093 0.063
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Table 4. Cont.

Treatment 100% ET 75% ET 50% ET Mean 100% ET 75% ET 50% ET Mean

Shoot fresh weight per plant (g) Shoot dry weight per plant (g)
Control 392 ± 3.28 j 356 ± 6.18 k 315 ± 6.72 l 354.3 ± 5.39 D 116 ± 1.23 e 114 ± 1.62 f 111 ± 1.97 g 113.7 ± 1.61 C

10 g/L 556 ± 4.90 f 491 ± 5.27 h 432 ± 5.19 i 493.0 ± 5.12 C 122 ± 1.61 c 119 ± 2.18 d 116 ± 1.76 e 119.0 ± 1.85 B

15 g/L 666 ± 5.16 b 575 ± 5.96 e 505 ± 5.32 g 582.0 ± 5.48 B 128 ± 1.23 a 125 ± 1.78 b 120 ± 1.41 cd 124.3 ± 1.47 A

20 g/L 771 ± 5.28 a 607 ± 7.26 c 593 ± 6.48 d 657.0 ± 6.27 A 125 ± 1.45 b 125 ± 2.67 b 121 ± 1.84 cd 123.7 ± 1.99 A

Mean 596.3 ± 4.66 A 507.3 ± 6.17 B 461.3 ± 5.74 C 122.8 ± 1.38 A 120.8 ± 2.06 B 117 ± 1.75 C

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season (S) 1 0.228 0.295

I × T 6 <0.001 <0.001
I × S 2 0.048 0.027
T × S 3 0.442 0.867

I × T × S 6 0.029 0.037

Number of leaves per plant Fruit weight per plant (g)
Control 15.0 ± 0.73 bc 13.0 ± 0.77 c 12.0 ± 0.89 c 13.3 ± 1.80 C 865 ± 3.21 f 633 ± 2.17 j 502 ± 2.78 l 666.7 ± 3.72 D

10 g/L 17.0 ± 0.67 b 14.0 ± 0.64 bc 13.0 ± 0.75 c 14.7 ± 1.69 B 954 ± 2.18 c 797 ± 2.23 h 625 ± 2.73 k 792.0 ± 3.68 C

15 g/L 17.0 ± 1.01 b 20.0 ± 0.23 a 17.0 ± 0.67 b 18.7 ± 1.62 A 1124 ± 2.13 a 824 ± 2.19 g 724 ± 2.31 i 890.7 ± 3.39 B

20 g/L 19.0 ± 0.93 b 19.0 ± 0.78 b 18.0 ± 0.93 b 18.7 ± 1.44 A 1074 ± 3.14 b 943 ± 3.14 d 923 ± 2.56 e 980.0 ± 3.63 A

Mean 17.0 ± 1.54 A 16.5 ± 1.21 A 15.0 ± 1.61 B 1004 ± 3.79 A 799.3 ± 3.43 B 693.5 ± 3.60 B

ANOVA df p-value
Irrigation (I) 2 <0.001 <0.001

Treatment (T) 3 <0.001 <0.001
Season (S) 1 0.153 0.052

I × T 6 <0.001 <0.001
I × S 2 0.084 0.264
T × S 3 0.047 0.296

I × T × S 6 0.059 0.439
1 Different uppercase letters indicate significant difference among the main effect of irrigation regimes or potassium silicate concentrations at 0.05 significance level, while lowercase
letter implies significant difference among their interaction.
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4. Conclusions

Exposing squash plants to moderate (75% ET) or severe (50% ET) drought stress
gradually decreased all evaluated physiological parameters, anatomical characteristics, and
growth traits compared with well-watered (100% ET) conditions. However, exogenously
sprayed potassium silicate mitigated the devastating impacts on all evaluated traits. In
particular, the application at 20 g/L was highly effective in enhancing all physiological
parameters, anatomical characteristics, and growth traits under moderate and severe
drought conditions. Conclusively, the exogenous foliar application of potassium silicate at
20 g/L could be more effective in promoting drought tolerance, which can be employed in
reducing the losses caused by drought stress in squash growing regions.
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