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Abstract: To improve and enrich the wheat growth information, visible and thermal infrared (TIR)
remote sensing images were simultaneously acquired by an unmanned aerial vehicle (UAV). A
novel algorithm was proposed for fusing the visible and TIR images combing the intensity hue
saturation (IHS) transform and regional variance matching (RVM). After registering the two images,
IHS transform was first conducted to derive the Intensities of two images. Wavelet transform
was then applied to the Intensities for obtaining the coefficients of low- and high-frequency sub-
bands. The fusion rules of the fused image were developed based on regional correlation of wavelet
decomposition coefficients. More specifically, the coefficients of low-frequency sub-bands were
calculated by averaging the coefficients of two images. Regional variance was used to generate the
coefficients of high-frequency sub-bands using the weighted template of a 3 × 3 pixel window. The
inverse wavelet transform was used to create the new Intensity for the fused image using the low-
and high-frequency coefficients. Finally, the inverse IHS transform consisting of the new Intensity,
the Hue of visible image, and the Saturation of TIR image was adopted to change the IHS space to
red–green–blue (RGB) color space. The fusion effects were validated by the visible and TIR images of
winter wheat at the jointing stage and the middle and late grain-filling stage. Meanwhile, IHS and RV
were also comparatively evaluated for validating our proposed method. The proposed algorithm can
fully consider the correlation of wavelet coefficients in local regions. It overcomes the shortcomings
(e.g., block phenomenon, color distortion) of traditional image fusion methods to obtain smooth,
detailed and high-resolution images.

Keywords: remote sensing image fusion; intensity hue saturation (IHS) transform; regional variance;
unmanned aerial vehicle (UAV); wavelet transform

1. Introduction

The development of imaging sensor technology has greatly facilitated the imple-
mentation of object detection, object recognition, feature extraction, image classification,
etc. [1–4]. Various images are generally produced to adapt to particular applications by the
corresponding sensors. Nevertheless, a complete representation of an application scene
cannot be produced via a single sensor, due to the constraint of used electromagnetic
spectrum. For example, a high definition (HD) digital photograph can provide successive
color contrast and detailed texture characteristics for visual perception. It cannot be used to
distinguish and identify a target when having the same color and spatial characteristics as
its background [5]. Conversely, the thermal infrared (TIR) image can identify the target by
comparing the temperature responses with the background. A single composite image can
be generated through image fusion that combines information from two or more images
of a scene [6,7]. The resulting image can have the best features of each of its components,
better than any individual image without significantly reducing the amount of relevant
information.
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The rapid development of operational Earth observation satellites has provided us
the availability of multi-resolution images with various tempo-spatial features. A satellite-
based sensor is usually assigned to different portions of the electromagnetic spectrum. The
capability of identifying more fine and potential features of targets is greatly reduced from
the single sensor data alone. Conversely, fused images may provide increased interpretation
capabilities by combining eminent features from different types of sensors [8]. Over the
past decades, various fusion methods have been proposed to adapt to specific application
requirements concerning multi-source and multi-scale remote sensing (RS) images.

As a branch of image fusion, a great deal of attention has been paid to RS image
fusion [9,10]. The principal component analysis (PCA), intensity hue saturation (IHS)
transform, Brovey transform (BT), arithmetic combinations and wavelet base fusion are
the most commonly used fusion methods in the RS community [11,12]. In addition to
exploring the mechanism of image fusion, some methods are proposed to focus specif-
ically on particular applications. For example, optical and radar RS data were fused to
map and monitor land cover by jointly utilizing their respective spectral and structural
information [13]. Landslide inventories were investigated by the synergistic use of medium
resolution, multitemporal Satellite pour l’Observation de la Terre (SPOT) XS, and fine
resolution IKONOS images [14]. Hyperspectral and light detection and ranging (LIDAR)
data were jointly adopted for the classification of complex forest areas [15]. To summarize,
we can conclude that three types of fusion approaches including pansharpening [16–18],
optical and radar data fusion [19,20] and hyperspectral and radar data fusion [21,22] were
primarily proposed in previous studies.

In comparison with the airborne and spaceborne remotely sensed imagery, the emer-
gence of unmanned aerial vehicles (UAVs) has greatly improved the convenience and
availability for acquiring various types of RS images. A UAV can simultaneously col-
lect multi-source images of the same scene at a time by mounting multiple sensors [23].
Corresponding fusion algorithms are well-suited to be tested and validated compared
to satellite remotely sensed imagery. In general, visible RGB (red-green-blue bands) and
near-infrared (NIR) imagery have been most commonly acquired to evaluate the targets
from an octocopter or a fixed-wing UAV platform [24]. For example, multiple cameras
including multispectral, RGB and NIR bands were used to develop an automatic OBIA
(object-based-image-analysis) procedure for early monitoring of a grass weed [25]. In
addition, hyperspectral [26] and thermal sensors [27] have been also boarded along with
the above sensors. For example, a novel miniaturized hyperspectral frame imaging sensor
(500–900 nm) was used to identify mature Norway spruce (Picea abies [L.] Karst.) trees
suffering from infestation [28]. We can find that spectral, spatial, color and polariza-
tion information are the highly-available fusion features in most of the previous studies.
Conversely, as an important feature parameter, temperature is extremely useful and effec-
tive in the early detection or diagnosis of temperature-related plant stresses [29,30]. It is
rarely merged in target recognition and detection. Consequently, fusion methods concern-
ing thermal information are highly needed to be proposed to adapt to the miniaturized
UAV platforms.

A visible image can provide more spatial details for visual perception, while a TIR
image can provide the specific temperature responses particular to a target, even when it has
similar color and spatial details to those of its background. It is of great importance to merge
them for forming a highly informative image in precision crop management. Commonly
used fusion methods are based on regional features, so the block phenomenon and color
distortion are generally introduced. A novel fusion method was proposed by combining
IHS transform and wavelet transform. The UAV-based HD digital photographs and TIR
images of wheat at two growth stages were used to validate the method. The highlights
for this study can be summarized into four aspects: (1) When obtaining the intensity
components of visible and TIR images by the IHS transform, the wavelet transform (WT)
was then used to decompose the original input into high-frequency (HF) and low-frequency
(LF) coefficients. (2) The regional energy-based weight selection rule was introduced
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to determine the LF coefficients. (3) The correlation between the central pixel and its
surrounding pixels was adopted to obtain the HF coefficients. (4) The inverse WT was
adopted to obtain and new intensity component and the IHS inverse transform was used
to fuse the new intensity, hue of visible image and saturation component of TIR image to
form a new image.

2. Materials and Methods
2.1. Acquisition of Experimental Data

The visible and TIR RS images were collected at the Branch of National Wheat Im-
provement Center, Yangzhou, Jiangsu, China. The study area has a leading research and
development platform for wheat molecular breeding. It can provide us good experimen-
tal sites for collecting high-quality UAV images of wheat at different growth stages. A
miniaturized eight-rotor electricity-driven UAV was selected to simultaneously deploy the
HD DSC-QX100 digital camera (Sony, Tokyo, Japan, 5472 × 3648 pixels) and the optris
PI thermal imaging camera (Optris GmbH, Berlin, Germany) with a resolution of 0.05 K
(Figure 1). The UAV can have a load of about 6 kg with the endurance time of 20 min and a
flight altitude of 50 m.
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Figure 1. The UAV platform for simultaneously mounting the HD digital and TIR cameras.

The UAV images and ground-truth data were simultaneously obtained during the
jointing stage (Stage I) in March 2016, and the middle and late grain-filling stage (Stage II)
in May 2016. The UAV was deployed from 10 a.m. to 2 p.m. when the weather was clear.
In addition, to validate the temperature data acquired by the UAV, the OptriS PI imaging
system was used to measure the background information such as the reflectance of the sky,
the black and white calibration cloths, a cement floor, water bodies and wheat canopies.
The self-developed image data processing software AgriHawk (Beijing Research Center
for Information Technology in Agriculture, Beijing, China) UAV was used to produce the
high-resolution digital orthophotos.

2.2. Indicators for Describing Remotely Sensed Images

A RS image can be produced by various sensors boarded on different types of plat-
forms. To evaluate the imaging quality, some regular indicators are usually used, including
regional median (Med), energy (E), mean (Mea) and variance (G(p)) [31]. For an image, the
four indicators at the coordinate (n, m) are calculated as follows:

Med(n, m)= Median[(n + n∗, m + m∗)] (1)

E = ∑
n∗∈J,m∗∈K

[G(n + n∗, m + m∗)]2 (2)
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where J and K represent the area covered by a moving window (e.g., 3 × 3, 5 × 5, 7 × 7.),
and the values of n* and m* are located within the range of J and K.

Mea(n, m) = E(n, m)/N (3)

where N is the total pixels in the specified window.
G(p) is defined as the weighted variance of the wavelet coefficients in the region Q

centered on point p(m, n). Suppose that C(A) is the wavelet coefficient matrix of a RS image
A. C(A, p) is the wavelet coefficient of point p for A, and the G(A, p) can be calculated
as follows:

G(A, p) = ∑
p⊂Q

w(p)|C(A, p)− u(A, p)|2 (4)

where u(A, p) is the average of the coefficients in the region Q and w(p) is the weight.
In our study, the weighted sum of the Gaussian functions of rows and columns of the

coefficient matrix was used as the weighted coefficient. Obviously, the closer away from
point p, w is larger; otherwise, it is smaller.

w(p) =
1
2

{
exp

[
− (m− p1)2

2σ2

]
+ exp

[
− (n− p2)2

2σ2

]}
(5)

where (p1, p2) are the coordinates of the point p in the region Q and σ is the variance of p.

2.3. Regional Variance Matching (RVM)

RVM is one of the moving window-based fusion strategies that can effectively reduce
the preprocessing requirements of fused images [32,33]. Firstly, the edge information of
source images needs to be extracted for establishing the appropriate fusion strategy. Using
the regional variance based on wavelet transform, a RS image is decomposed to obtain
LF and HF sub-images. Then, the HF image is divided into a series of small regions, and
the variance matching degree (VMD) of each small region is calculated by a pixel-based
moving window. The VMD is a measure of regional contrast for an image. It can better
characterize the detailed information of remote sensing images. It requires the selection
of a window size, and the 3 × 3 window has the best performance and was adopted in
this study.

To measure the regional variance matching degree (RVMD) of coefficient matrix at the
point p between two RS images A and B, the matching matrix MA,B(p) is defined as follows:

MA,B(p) =

2× ∑
p⊂Q

w(p)|C(A, p)− u(A, p)||C(B, p)− u(B, p)|

G(A, p) + G(B, p)
(6)

MA,B(p) ranges from 0 to 1. When the wavelet coefficients of A and B at point p are
closer, the value of MA,B(p) approaches to 1.

2.4. Wavelet Transform and IHS Transform

WT can be used to divide an image into LF contour images and HF detail images [34,35].
It has some obvious advantages such as zooming property, information maintenance and
various wavelet bases. In general, for remote sensing image fusion, the WT is carried out in
the high-resolution image to acquire corresponding LF and HF images. The LF components
were then substituted by those which are derived from the low-resolution image. After
the transformed coefficients in approximation and detail images (sub-band images) are
processed by fusion operators, the inverse WT is adopted to produce the fused image.

IHS transform is used to obtain the intensity (I), hue (H) and saturation (S) compo-
nents of an image. It offers the advantage that the separate channels outline certain color
properties of original image [36]. Traditional methods are used to perform the fusion based
on regional features, but they make the fused images prone to block phenomenon [37,38].
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As a contrast, IHS-like image fusion methods can solve this problem well, but they are
prone to color distortion. There are generally four steps to perform the IHS fusion between
a RGB image and a panchromatic (PAN) image: (1) Transform the RGB channels to three
components of I, H and S. (2) Match the histogram of PAN image with the I component.
(3) Replace the I component with the stretched PAN image. (4) Apply the IHS inverse
transform to obtain the RGB channels for generating a fused image.

2.5. Our Proposed Method
2.5.1. The General Workflow

To overcome the deficiencies of traditional IHS and IHS-like fusion techniques, we
propose an integral fusion method (hereafter referred to as IHS-RVM) concerning the visible
and TIR images. The specific steps are shown as follows (Figure 2):

(a) After registering both the visible and TIR images, they are respectively transformed
from RGB space to IHS space.

(b) The I components of the visible and TIR images are decomposed into four layers:
wavelet, base, selects and sym4.

(c) The average values of LF components of the two sets of wavelet coefficients for the I
components are calculated.

(d) The regional variance of HF coefficients of the visible and TIR images are calculated.
(e) The fusion rules are constructed based on the regional variance to perform the inverse

WT and obtain the new I component.
(f) The IHS inverse transform is used to fuse the visible and TIR images through the new

I component, H component of visible image and S component of TIR image.
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Figure 2. The general workflow of the proposed method to fuse the visible and TIR images. IHS is
the intensity hue saturation; WT is the wavelet transform; and H, S, I refer to the hue, saturation,
intensity, respectively.

2.5.2. Determination of Fusion Rules for LF and HF Sub-Bands

After applying the WT to the I components of both the images, respectively, the
coefficients of LF and HF sub-bands are chosen according to the fusion rules of RVMD.

(1) Fusion Rule for LF Sub-band

The LF sub-bands of remote sensing images mainly represent the contours. It focuses
on the main energy and reflect the approximate and average characteristics. The weighted
average is generally applied to low frequency sub-bands for image fusion. Considering
the current applications of RS technology in precision agriculture, various heterogeneous
objects (e.g., crop, soil, shadow) exist in the landscape, which increases the difficulties to
extract objectives [39]. When the vegetation coverage is low, such as at the jointing stage,
the amount of information of vegetation in the RS image is small. Therefore, it is necessary
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to enhance the contour of the whole image to highlight the characteristics of target crops.
Three steps are required to obtain the coefficients of LF sub-bands: (i) Select the coefficients
of source image A (IA); (ii) select the coefficients of source image B (IB), and (iii) calculate
the average values of A and B. In our study, the I component (IF) of the fused image was
derived from the weighted average of the I components and IA and IB [40].

IF = (IA + IB)/2 (7)

(2) Fusion Rule for HF Sub-band

Regional features of a RS image mainly include the gradient, regional energy, regional
variance, etc. [41]. In our study, the fusion rule of the I component for HF sub-band of
was proposed based on the RVMD. The RVMD gives full consideration to the regional
characteristics of RS images, i.e., the correlation between pixels and the neighborhood pixel.
It can overcome the irrationality and one-sidedness of the fusion rule based on a single
pixel, reflecting the regional characteristics of RS images. The region generally selects an
odd number of windows, such as 3 × 3, 5 × 5, 7 × 7. The value of 3 × 3 was selected here
for the weighted template P. The new I component was obtained using the RVMD with
the threshold value of 0.5 [42]. The weighted template P was used to move up, down, left
and right to calculate the RVMD in the corresponding regional window. The RS images are
fused using the following fusion rules.

P =

1 1 1
1 1 1
1 1 1

 (8)

G(A, p) = ∑
p⊂Q

w(p)|C(A, p)− u(A, p)|2 (9)

where G(A, p) and u(A, p)is respectively the regional variance significance of the coefficient
and the coefficient mean at the center p within the region Q in the wavelet coefficient matrix
G(A) of visible image A, and C(A, p) is the coefficient value at the coordinate (m, n) in the
wavelet coefficient matrix. Similarly, G(B, p) of the TIR image can be also calculated.

w(p) =
1
2

{
exp

[
− (m− p1)2

2σ2

]
+ exp

[
− (n− p2)2

2σ2

]}
(10)

where w(p) is the mean of weighted variance, (p1, p2) are the coordinates of point p within
the region Q, and the value of σ is 1.0 here.

MA,B(p) =

2 ∑
p⊂Q

w(p)|C(A, p)− u(A, p)||C(B, p)− u(B, p)|

G(A, p) + G(B, p)
(11)

where MA,B(p) is the RVMD of HF wavelet coefficients for the I components of visible and
TIR images using the template P.

2.6. Indicators to Evaluate the Fusion Effect
2.6.1. Visual Interpretation

Visual observation is usually used to visually validate and evaluate the fusion methods,
which is derived directly from the human naked eyes due to its simple and intuitive
characteristics [43–45]. The fusion effect can be quickly assessed by visual observation.
The differences about texture, brightness and sharpness in the fused image can be used to
assess spectral distortion, edge matching, spatial resolution, color difference, consistency
of texture, etc. For example, visual observation can be used to determine whether the
registration of fused images is accurate. It can figure out whether the texture and color
information are consistent or not, and the overall color is consistent with the natural color or
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not through the fused image. This method will also give us the information on the overall
brightness, contrast and sharpness of the fused image. Since human vision is not sensitive
enough to the minor changes to spectral and spatial details, the visual quality strongly
depends on the observers. Such a method, however, is incapable in some quantitative
applications. It is highly necessary to combine the visual assessment with quantitative
evaluation criteria.

2.6.2. Quantitative Indicators

(1) Entropy

Entropy (E) proposed by Shannon in 1948 is a significant factor to measure the in-
formation richness for an image [46]. It has been widely used in the evaluation of image
quality [47]. It indicates that how much information is contained in the image. For an
image, it can be considered that the grey value of each pixel is independent of each other.
The amount of information will be changed before and after fusion, and the E can be used
to evaluate the changes in the fusion process. The definition and formation of E for a certain
image can be expressed as follows:

E = −∑L−1
i=0 pi log2 pi (12)

where i is all the possible samples in the probability space, L is the maximum pixel value
and pi is the probability of i within the range of [0, L−1].

(2) Standard deviation

In comparison with the mean, the standard deviation (SD) reflects the discrete degree
of the grey levels for an image. In addition, it can be also used to evaluate the image-
contrast size [48]. A larger SD represents more dispersed distribution of grey levels and
higher contrast. The formula is:

SD =

√
∑M

i=1 ∑N
j=1
(
Z
(
xi, yj

)
− z
)2

M× N
(13)

where M and N are the numbers of row and column, respectively, of image Z, and Z(xi, yj)
is the grey value of the pixel at the position (xi, yj).

(3) Average gradient

Average gradient (G) can sensitively reflect the ability of the image to discriminate
different objects [49]. It can also reflect the minor differences for the contrast and texture
features. The larger the value, the greater the number of image levels and the clearer the
image. Its formula is as follows:

G =
1

(M− 1)(N − 1)∑
M−1
i=1 ∑N−1

j=1

√√√√√((
∂z(xi ,yj)

∂xi

))2
+

((
∂z(xi ,yj)

∂yi

))2

2
(14)

where (xi, yi) are the coordinates of the pixel i, M × N refers to the size of an image, and
∂z(xi ,yj)

∂xi
and

∂z(xi ,yj)
∂yi

respectively show the horizontal and vertical gradient.

(4) Correlation coefficient

Correlation coefficient (r) can reflect the correlation degree between pre- and post-
fused images [50]. By comparing the value changes, we can see the change degree of
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spectral and spatial information. The larger the correlation coefficient, the smaller the
change degree. It is defined as follows:

r =
∑
M

∑
N

(
AMN − A

)2(BMN − B
)2

√(
∑
M

∑
N

(
AMN − A

)2
)(

∑
M

∑
N

(
BMN − B

)2
) (15)

where M × N refers to the size of original image AMN and fused image BMN, A denotes the
mean of AMN and B is the mean of BMN.

(5) Deviation index

Deviation index (Dindex) is used to compare the deviation degree between the fused
image and the original image [51]. It is defined as:

Dindex =
1

M× N

M

∑
x=1

N

∑
y=1

| f (x, y)− r(x, y)|
f (x, y)

(16)

where f (x, y) and r(x, y) is respectively the grey value of original image and fused image of
the pixel at (x, y), and M × N refers to the size of original and fused image.

3. Results and Discussion
3.1. Visual Assessment

The fused images of two growth stages were respectively obtained using our proposed
method, the IHS transform and regional variance (Figure 3 for Stage I and Figure 4 for
Stage II). In comparison with original visible and TIR images, it can be observed that the
fused images showed better visual performance than original single image. In comparison
with original visible image (Figures 3a and 4a), the color contrast and texture difference had
been greatly enhanced (Figures 3c–e and 4c–e). It seemed that the three-dimensional sense
had been also improved. More fine differences could be easily found in the fused image,
such as the regions highlighted in red and blue ovals (Figures 3c and 4c). When comparing
the three fused images of two growth stages, it can be found that the images derived from
our proposed method show best visual performance. The abnormal phenomena in wheat
fields can be easily found.

Visual interpretation is an indispensable procedure to perform image classification [52,53].
It is highly necessary to improve the image quality for accurately selecting enough regions
of interest (ROIs) in traditional supervised classification methods and labeled samples in
the deep learning era. When an image has a high enough resolution and satisfying visual
effect, the ROIs can be easily and directly identified from the image. Nevertheless, it is
generally insufficient and difficult to collect an image with good visual performance from a
single sensor. Image fusion technology has provided us with an increasingly efficient and
accurate visual understanding of a target image [54].

3.2. Quantitative Comparison

It is inevitable that some uncertainties can be produced by human perception in visual
interpretation, due to apparently distinct expert knowledge and personal understating
for different image interpreters [55]. The visual qualitative description can even lead to
a wrong conclusion. It is highly necessary to assess the fusion effect using quantitative
evaluation factors. A total of five indicators were used to compare the differences in our
study (Table 1). It can be found that the indicators of fused images using the three fusion
algorithms have been greatly improved compared to the original images.

In comparison with the regional variance and IHS transform, our proposed method
has the best performance. For Stage I, the entropy increased by 0.77% and 1.03% for visible
and TIR images, the average gradient increased by 6.3% and 10.38%, and SD increased by
4.36% and 119.17%. Similarly, the three indicators increased by 0.13% and 0.68%, 8.86%
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and 9.41%, and −0.61% and 293.77%, respectively. In addition, the correlation coefficients
were largest and the Dindex values were smallest between the fused and original images,
indicating that the details of original images were preserved to the greatest extent.

It is obvious that the fused image derived from the IHS-RVM method is superior to
traditional regional variance and IHS transform. The fused images have more entropy,
standard deviation and average gradient. The most important point is that the original
information of visible and TIR images is as well maintained as possible. When identifying
the stress characteristics of wheat growth, the fused images can provide interpretation
capabilities than original visible or TIR images [56].
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Table 1. Comparison of quantitative indicators between pre- and post-fusion images at two growth
stages.

Image E SD G r Dindex (%)

Stage I: Jointing stage

Figure 3a 7.74 60.14 9.64 - -
Figure 3b 7.76 57.92 4.59 - -
Figure 3c 7.82 63.93 10.06 0.926 23.7
Figure 3d 7.54 58.08 9.32 0.867 42.9
Figure 3e 7.77 57.92 9.34 0.878 55.6

Stage II: Middle and late grain-filling stage

Figure 4a 7.85 61.31 11.45 - -
Figure 4b 7.73 61.00 2.89 - -
Figure 4c 7.86 66.74 11.38 0.921 25.9
Figure 4d 7.67 61.01 10.73 0.872 44.8
Figure 4e 7.67 51.51 10.93 0.897 55.3

The bold font shows the largest or smallest value for the growth stage.

3.3. Comaprison of Other Fusion Methods with Ours

To achieve more informative and comprehensive images, image fusion combines
multiple images of the same scene derived from more than two different sensors at same or
different imaging times [57,58]. Different image fusion methods have been developed to
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assess fused images, including PCA, IHS, Brovey fusion, contourlet transform, WT, median
filtering algorithm, principal component transform, etc. Those fusion algorithms have their
own advantages and disadvantages.

For example, WT can effectively separate the low- and high-frequency characteristics
from an image, where low-frequency components reflect visual information and high-
frequency components provide image details. It can retain high-frequency characteristics
to result in high quality fusion. Nevertheless, it is difficult to select appropriate fusion
rules, and poor selection can cause losses of image details and specific information [59].
IHS-based fusion methods are relatively simple and can improve the spatial resolution of
the image. The fused image has both high spatial resolution and saturation. In addition,
spectral features are preserved to a large extent. However, they can only fuse three bands
of a spectral image with a panchromatic image. When there are more than three bands,
they need to be carried out separately, and multiple bands are recombined by the inverse
IHS transform. In addition, when large differences exist between the I component and
panchromatic image, the fused image will be seriously distorted. Fusion algorithms
based on regional features consider the correlations between pixels in the same region to
determine pixel coefficients [60]. The regional features based fusion algorithms takes the
correlation of pixels in the same region into account. They consider all the neighboring
pixels of the fusion pixel and then decide the fusion pixel coefficient. It is obvious that the
calculation efficiency will be affected and the block phenomenon may be caused.

To address the above-mentioned issues, combining the outstanding advantages of
IHS and regional features, a novel image fusion method was proposed based on the IHS
transform and regional variance matching. The UAV image is first transformed from RGB
space to IHS space, and the WT of the I components of visible and TIR images are calculated.
The wavelet coefficients are selected based on the regional variance correlation. The fusion
rules are respectively used by considering the LF and HF sub-bands.

4. Conclusions

The growth information for what is highly significant to facilitate the management
of farm practices. UAV has played a very important role in the high-throughput data
collection of multiple parameters for precision agriculture. More integral information
should be collected and fused to reflect the crop growth and planting environment, due to
complex background influence. The application of image fusion is increasing, but the fusion
algorithms are becoming increasingly complex. Easily-used and lightweight algorithms
are required in agricultural scene. The image fusion method was proposed based on
IHS space and regional variance in this study. The produced fused images have more
entropy, standard deviation and average gradient compared with regional variance and
IHS transform. The edges of the fused images are clearer due to the enhanced color contrast.
In the future works, more types of UAV images can be used and fused to improve the
separability and sensitivities to crops, such as LiDAR, multi- and hyper-spectral sensors.
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