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Abstract: Accurate and consistent information on the area and production of field crops is vital for
national and state planning and ensuring food security in India. Satellite-based remote sensing offers
a suitable and cost-effective technique for regional- and national-scale crop monitoring. The use of
remote sensing data for crop yield estimation has been demonstrated using a semi-physical approach
with reasonable success. Assimilating remote sensing data with the DSSAT model and spectral
indices-based regression analysis are promising methods for spatially estimating rice crop yields.
Rice area and yield in the Cauvery delta zone of Tamil Nadu, India was estimated during samba
(August–January) season in the years 2020–2021 using Sentinel 1A Synthetic Aperture Radar satellite
data with three different spatial yield estimation methods, namely a spectral indices-based regression
analysis, semi-physical approach, and integrating remote products with DSSAT crop growth model.
A rice area map was generated for the study area using a rule-based classifier approach utilizing
parameterization with a classification accuracy of 94.5% and a kappa score of 0.89. The total classified
rice area in Cauvery Delta Region was 379,767 ha, and the Start of Season (SoS) maps for samba
season revealed that the major planting period for rice was between 22 September and 9 November in
2020. The study also aimed to identify promising spatial yield estimation techniques for optimal rice
yield prediction over large areas. Regression models resulted in rice yields of 3234 to 3905 kg ha−1

with a mean of 3654 kg ha−1. The net primary product was computed using the periodical PAR,
fAPAR, Wstress, Tstress, and maximum radiation use efficiency in a semi-physical approach. The
resultant rice yields ranged between 2652 and 3438 kg ha−1 with the mean of 3076 kg ha−1. During
the integration of remote sensing products with crop growth models, LAI values were extracted from
dB images and utilized to simulate rice yields in the range of 3684 to 4012 kg ha−1 with the mean
of 3855 kg ha−1. When compared to the semi-physical approach, both integrating remote sensing
products with the DSSAT crop growth model and spectral indices-based regression analysis had R2

greater than 0.80, NRMSE of less than 10%, and agreement of more than 90%, indicating that these
two approaches could be used for spatial rice yield estimation.

Keywords: synthetic aperture radar; remote sensing; crop growth model; spectral indices; semi-
physical approach; fAPAR; rice yield

1. Introduction

Rice is an important component of global food production as it is consumed on a rou-
tine basis by hundreds of millions of people worldwide. Predicting food grain yields earlier
can help farmers and policymakers plan accordingly. Accurate statistical data on rice yield
production availability assists planners in making tactical decisions and regulating import
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and export activities. However, the traditional crop area and yield estimation approach,
which requires a huge labour force, is time-consuming, inaccurate, and practically impossi-
ble to apply on a broad scale. Therefore, the agricultural policy programme now relies on
timely information-collecting via field and aerial surveys. Although operational systems
produce reliable data, they have several intrinsic flaws, such as difficulty in comparing
statistics and authenticating information acquired by numerous agencies. Remote sens-
ing technology has provided a solid platform for agricultural crop inventories, mapping,
monitoring, crop resource management, and crop biomass estimation. The recent launch
of advanced remote sensing satellites helps us to estimate accurate crop area and yield
precisely using the fine spatial and temporal resolution of data.

Furthermore, improved spatial, spectral, and temporal resolution help us to discrimi-
nate crops easily [1]. The availability of these high-resolution satellite sensors, software with
automated processing chains, and enhanced agricultural yield models enable the provision
of reliable information on crop area, crop conditions, and yields. Time series satellite data
improves crop classification accuracy with repetitive coverage over the cropped area [2].
SAR sensors respond very well to crop canopy structural differences. In addition, they are
sensitive to several crop biophysical parameters, namely LAI, biomass, and canopy height,
resulting in precise identification of crop types [3].

Numerous factors like soil parameters, weather, crop genetic characteristics, and
management approaches determine crop growth and production. Crop health and yield
are tracked using satellite-based vegetation indices. Vegetation indices like Normalized
Difference Vegetation Index (NDVI), Land Surface Water Index (LSWI), and Leaf Area
Index (LAI) are the best indicators for the amount of biomass in the crop canopy. NDVI and
EVI time series data of MODIS, field data, and crop calendar information were utilized to
estimate rice crop yield in Thailand. The highest correlation was reported between MODIS
EVI and rice yield in point level yield analysis [4]. Chandra Paul et al. [5] estimated rice yield
using LSWI and other vegetation indices based on a regression model. Vegetation indices
were calculated from LANDSAT satellite imageries during different phenological stages
of rice. He et al. [6] evaluated the relationship of rice LAI at different phenological stages
with backscattering coefficients of SAR data. The accuracy of LAI retrieval using the water
cloud model indicated that vegetation coverage had a better relationship with LAI [7]. LAI,
fAPAR, and NPP are remote sensing products related to the metabolism of the biosphere.
Dwivedi et al. [8] developed a semi-physical method to predict rice yield using remote
sensing and physiological concepts. The Monteith model was used to calculate Net Primary
Product, actual NPP, radiation use efficiency and harvest index to predict Kharif rice yield.
Crop simulation models predict crop yield as a function of soil, climate, genetic coefficients,
and crop management [9]. Crop simulation models have been developed using a set of
mathematical equations that integrate data from agrometeorology, soil, crop physiology,
and management to predict growth, development, and crop yield. Crop growth models
successfully simulate the potential crop growth and crop characteristics and may provide
real-time vegetation cover status [10]. The DSSAT model for crop simulation is a powerful
tool to promote the production of the sustainable agriculture industry. Guo et al. [11]
estimated the rice yield gaps in China using the CERES-Rice model. Remote sensing
products used with the DSSAT CERES-Rice model can simulate rice yields based on soil,
weather, crop cultivars, and cultivation practices. Under Indian weather conditions, crop
growth simulation and linear regression models have repeatedly done well in projecting
rice yields accurately [9]. Satellite-based inputs into the crop simulation model simplify
the process, time, and labour required for regional-level data collection. The remote
sensing images could be used for aggregation of results of crop growth models to regional
scales. The remote sensing product and crop model can be integrated with three ways:
driving method, initialization parameter method, and assimilation method. Several studies
proved that satellite-derived products have been utilized in crop acreage and spatial
crop yield estimation. Son et al. [12] integrated remotely sensed data into a DSSAT crop
simulation model for rice yield estimation using Taiwan’s Particle Swarm Optimization
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(PSO) algorithm. RMSE observed between estimated yield and actual yield was 11.7%.
Setiyono et al. [13] used multi-temporal X-band and C-band SAR imagery, automated
image processing, rule-based classification, and field observation to identify rice in multiple
locations across Tropical Asia. They incorporated this information and basic crop input files
into the ORYZA Crop Growth Simulation model to generate high-resolution yield maps.
The cultivated rice area maps had a classification accuracy greater than 85% and yield
estimates within 81 to 93% agreement against district-level reported yields. Sentinel 1A,
Sentinel 2, and LANDSAT 8 were the satellite data used for area and yield estimation. Rice
area and LAI were estimated from MAPscape-RICE software, and rice yield was calculated
from the ORYZA crop growth model [14].

There is an urgent need to identify the optimum spatial-yield-estimating algorithm for
properly predicting rice yields in near real-time. Therefore, this study was conducted to
compare the spatial rice yield estimation methods, namely spectral indices-based regression
analysis, semi-physical approach, and integrating remote sensing products with the DSSAT
crop growth model in the Cauvery delta region of Tamil Nadu, India.

2. Methodology

The research study was carried out in the Thanjavur, Thiruvarur, Nagapattinam, and
Mayiladuthurai districts of the Cauvery Delta Region during the samba (August–January)
season 2020–2021 (Figure 1). Rice is the main crop in this region, and it is cultivated in all
three growing seasons. Therefore, 21 different field locations were chosen across the study
region to monitor rice growth during the cropping season. In this paper, three spatial yield
estimation techniques, namely spectral indices-based regression analysis, semi-physical
approach, and integration of synthetic-aperture radar (SAR) based remote sensing products
with crop growth model were employed to predict rice yield and their accuracy over the
actual yield.
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Figure 1. Study area in Cauvery Delta Region of Tamil Nadu. Figure 1. Study area in Cauvery Delta Region of Tamil Nadu.

2.1. Rice Area Estimation

Detecting lowland rice in tropical and subtropical regions and tracking growth has
been made effective through Synthetic Aperture Radar (SAR) imagery, especially where
cloud cover restricts the use of optical imagery. Parameterized classification with multi-
temporal features derived from regularly acquired, C-band, VV, and VH polarized Sentinel-
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1A SAR imagery was used for mapping rice area. The multi-temporal SAR data was
converted into terrain-geocoded σ◦ values using a fully automated processing chain in
MAPscape-Rice software developed by Holecz et al. [15] (Figure 2).
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Figure 2. Sequence of stages of Sentinel 1A satellite data processing for rice area estimation.

The process included strip mosaicking, co-registration, time-series speckle filtering,
terrain geocoding, radiometric calibration, and normalization. Further Anisotropic Non-
Linear Diffusion (ANLD) filtering was done to smoothen homogeneous targets while
enhancing the difference between neighbouring areas. Multi-Temporal Features, namely
max, min, mean, max date, min date, and span ratio were extracted from VV and VH
polarizations to classify rice pixels. Rice detection was based on analyzing temporal
signatures from SAR backscatter concerning crop stages.

2.2. Spectral Indices Based Regression Analysis

Sentinel 2 satellite datasets were acquired across the Cauvery Delta region during the
crop growing season. Optical data for the research region was accessible in four tiles, and
mosaicking makes handling datasets easier. The mosaicking of these tiles was carried out
in ArcGIS software. Sentinel 2 data was used to estimate NDVI for the peak vegetative
period of rice during the growing season. LSWI was calculated using high-resolution
optical satellite data for rice’s peak vegetative season. LAI values at the early stage of
leaf expansion were extracted from Sentinel 1A SAR backscatter using a modified version
of the water cloud vegetation model established by Yang et al. [16], based on empirical
assumptions of plant height and moisture dynamics.

A regression-based yield model was acquired using linear regression between vege-
tative indices and rice productivity, given in the equation below. Vegetation indices and
real-time yield data are computed in different rice growth stages, namely tillering, booting,
and maturity (Figure 2).

Y = β0 + β1X1 + β2X2 + β3X3. . . + βnXn

where Y = Yield; X1 = LAI; X2 = NDVI; X3 = LSWI; β = Constant.

2.3. Semi-Physical Approach Based Yield Estimation

In this method, multi-temporal datasets from Sentinel 1A, INSAT 3D, MODIS, and
the maximum and minimum temperatures collected from NASA POWER were used for
analysis. ArcGIS 10.6 software (ESRI, Hyderabad, India) was used to process, analyze, and
integrate geographical and non-spatial data. INSAT 3D imager insolation data products
with a spatial resolution of 1 km were obtained daily from the MOSDAC data source for the
growing season (August 2020–February 2021). Photosynthetically Active Radiation (PAR)
accounted for half of the total insolation. In the case of the fraction of Photosynthetically
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Active Radiation (fAPAR), MODIS surface reflectance (MOD09A1) and fAPAR product
(MOD15A2H) 8-day composites were available at 500 m spatial resolution (https://lpdaac.
usgs.gov (accessed on 3 December 2020)).

For the computation of water stress, LSWI was used [17] and calculated using the formula.

W stress =
1 − LSWI
1 + LSWI max

where Wstress = Water stress; LSWI max = maximum Land Surface Water Index.
Likewise, Temperature stress was calculated using the following equation [18].

Tstress =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)−
(
T − Topt

)2

where Tmin = minimum temperature for photosynthesis (◦C); Tmax = maximum temperature
for photosynthesis (◦C); Topt = optimal temperature for photosynthesis (◦C); T = the daily
mean temperature (◦C).

Net Primary Product (NPP) for the period of sowing to harvest date has been computed
at an interval of 8 days with a spatial resolution of 500 m using the periodical PAR, fAPAR,
Wstress, Tstress, and maximum radiation use efficiency.

NPP (g m−2day−1) = PAR ∗ fAPAR ∗ RUE ∗ W stress ∗ T stress

where PAR = Photosynthetically Active Radiation; fAPAR = Fraction of Absorbed Photo-
synthetically Active Radiation; RUE = Radiation Use Efficiency.

Total NPP was computed for the whole growing season of the rice from 8-day com-
posite datasets. Rice yield was calculated from the product total NPP and harvest index of
the rice. The overall methodology of the semi-physical approach is presented in Figure 3.
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2.4. Integration of SAR Based Remote Sensing Products and Crop Growth Model

The CERES-Rice model available in DSSAT v 4.7.5 (DSSAT Foundation, Inc., Gainesville,
FL, USA) simulates crop growth and development on a daily basis. All input data like
weather, soil, cultivar/genotypes, and crop management files for the DSSAT crop sim-
ulation model were created through extraction from different sources. The model was
calibrated in DSSAT using data collected during the 2020 rice crop growing season to

https://lpdaac.usgs.gov
https://lpdaac.usgs.gov
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determine the genetic coefficient for CR 1009, BPT 5204, and ADT (R) 45 utilizing spatial
analysis mode. The crop growth model was validated by comparing the simulated yield
to the observed yield. LAI values extracted from SAR data dB images were utilized to
integrate the DSSAT simulated yield with remote sensing data (Figure 4).
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Statistical evaluation and validation of products were done as an analysis of the degree
of coincidence between estimated and observed values using R2, Root Mean Square Error
(RMSE), Normalized Root Mean Square Error (NRMSE), and agreement%.

3. Results and Discussion

Spatial rice yields of the Thanjavur, Thiruvarur, Nagapattinam, and Mayiladuthurai
districts of Cauvery Delta Region of Tamil Nadu were estimated using regression analysis
of spectral indices, semi-physical approach, and integration of remote sensing products
with DSSAT crop growth model.

3.1. Rice Area Estimation

Sentinel 1A SAR satellite datasets were acquired at 12-day intervals with 20 m spatial
resolution during the crop growing season for the study area. The backscattering coefficient
and multi-temporal features were extracted and used to map the rice area.

The backscatter signature of rice showed a minimum dB value at agronomic flooding
and a peak at the maximum tillering to the flowering stage, and a decline after that
(Figure 5). At flooding, dB values ranging from −21.44 and −19.82 were recorded with a
mean of −20.60. The mean maximum value at the peak flowering stage was −14.50 with a
range of −15.99 to −13.28 in VH polarization. The increase in dB corresponding to crop
growth from seedling to flowering stage ranged from 4.36 to 7.70 dB with a mean value of
6.10 dB during 2020.

The rice area map for the study area was derived from multi-temporal imagery of
Sentinel 1A (Figure 6). Using the shapefiles of administrative boundaries, rice area maps
and statistics were extracted for the districts of Thanjavur, Thiruvarur, Nagapattinam, and
Mayiladuthurai. In the study area, a total of 379,767 ha of rice area were delineated during
samba season 2020 from the multi-temporal Sentinel 1A SAR data using a parameterized
classification integrating multi-temporal features. Among the districts, Thanjavur recorded
the highest area of about 141,077 ha, followed by Thiruvarur, Mayiladuthurai, and Nagap-
attinam with 127,752 ha, 60,441 ha and 50,497 ha, respectively. District related samba rice
area is given in Table 1.
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Figure 6. Rice area map of Cauvery Delta Region during 2020.

In total, 200 ground truth points were collected randomly during the crop growing
season in the study area for validation processes. The accuracy of the rice area map was
assessed through the confusion matrix using the ground truth points to classify rice and
non-rice pixels. Rice points were classified with an accuracy of 95.3%, while non-rice points
were classified with an accuracy of 92.0%. Considering the efficiency of the methodology of
mapping rice area with SAR data, the overall accuracy of the rice area map was 94.5%, with
an average reliability of 92.0%. The Kappa Coefficient was 0.89, indicating good accuracy
levels of the products.



Agronomy 2022, 12, 2008 8 of 21

Table 1. District-wise samba rice area (ha) estimated using SAR data.

S. No. Block Area (in ha)

1 Thanjavur 141,077

2 Thiruvarur 127,752

3 Nagapattinam 50,497

4 Mayiladuthurai 60,441

Cauvery Delta Region 379,767

3.2. Start of the Season

Start of the season (SoS) maps and statistics were generated for the rice area using
the threshold of minimum dB in the backscattering for each pixel from the Sentinel 1A
SAR data and depicted in Figure 7. In the study area, the Cauvery Delta Region, with a
total rice area of 379,767 ha, had the largest area of 96,935 ha at the SoS on 16 October 2020,
followed by 4 October 2020 with an area of 67,353 ha. Planting had taken place in an area of
62,454 ha during SoS of 28 October 2020 and 56,831 ha during 22 September 2020, followed
by 48,201 ha during SoS on 9 November 2020. An area of 3.31 lakh ha had the SoS between
22 September 2020 and 9 November 2020, indicating the major planting period for samba
season. The early sown area accounted for 34,666 ha from 5 August 2020 to 10 September
2020. The late sown area accounted for 13,326 ha with SoS on 21 November, 3 December to
15 December 2020.
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3.3. Estimated Yield by Using Regression Analysis of Spectral Indices

Crop health and productivity were measured indirectly using spectral vegetation
indices. According to Groten [19], regressions based on averaged maximum values yielded
better results than regressions based on NDVI integration throughout growth stages. The
Thanjavur, Thiruvarur, and Mayiladuthurai districts mean NDVI values varied between
0.34 and 0.38, with a mean of 0.36. With a mean of 0.68, the maximum NDVI value was
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between 0.67 and 0.70 (Figure 8). LSWI is a useful tool for assessing early-season drought
and a reliable predictor of vegetation dynamics and crop yield. The mean LSWI for the
studied area is 0.27 to 0.31, with the mean LSWI ranging from 0.27 to 0.31. Rice has a
maximum LSWI value of 0.36 to 0.41 and a lowest LSWI value of 0.12 to 0.19 (Figure 9).
According to Prasetyo et al. [20], a yield model based on NDVI and LSWI proved reliable
in estimating rice production. Siyal et al. [21] utilized peak vegetative rice growth period
NDVI values and found strong correlations between peak NDVI and actual rice yield. Satir
and Berberoglu [22] reported that NDVI positively correlated with crop yield.

Leaf Area Index maps and statistics were obtained using Sentinel 1A SAR data and
the model proposed by Setiyono et al. [23]. The mean LAI observed for the research region
ranged from 4.00 to 5.99, with a mean value of 5.40. Thiruvarur had the highest mean value
of 5.74, while Nagapattinam had the lowest LAI score of 5.10 (Figure 10). Zhou et al. [24]
estimated rice grain yield based on the LAI value and concluded that LAI was a reliable
indicator for estimating yield. Setiyono et al. [25] used LAI obtained from SAR data to
simulate rice yield from the ORYZA crop model.

According to Maloom et al. [26], regression analysis is a valuable tool for developing
yield prediction models. Spectral indices based on regression analysis resulted in a mean
rice yield of 3654 kg ha−1 in the study area. The highest rice yield of 3905 kg ha−1

was registered in the Thanjavur district, followed by Mayiladuthurai, Thiruvarur, and
Nagapattinam districts with the values of 3826, 3652, and 3234 kg ha−1, respectively
(Figure 11) (Table 2). The mean agreement between estimated and observed yield at the
district level was found between 87.64 to 92.40, with a mean of 90.52. The mean R2, RMSE,
and NRMSE were 0.81, 340.24 kg ha−1, and 9.48%, respectively.
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Table 2. District wise rice yield of Cauvery delta region using different spatial yield estimation
approaches.

S. No. Districts Observed
Yield (kg/ha)

I
Spectral

Indices-Based
Yield (kg/ha)

II
Semi-Physical

Approach-Based
Yield (kg/ha)

III
Integration of

RSandDSSAT Based
Yield (kg/ha)

Method Having Best
Agreement with
Observed Yield

1. Thanjavur 3792 3905 3438 4012 Spectral indices

2. Thiruvarur 3650 3652 3216 3781 Spectral indices

3. Nagapattinam 3317 3234 2652 3684 Spectral indices

4. Mayiladuthurai 3611 3826 3000 3944 Spectral indices

Cauvery Delta Region 3592 3654 3076 3855 Spectral indices

3.4. Estimated Yield by Using a Semi-Physical Approach

NPP was the product of PAR, fAPAR, radiation use efficiency, water stress, and
temperature stress. Photosynthetically Active Radiation was observed by plants which
help to assess the crop growing conditions at any crop growth stage. The PAR value ranges
from 150 to 350 MJ m−2. Maximum PAR was observed in August 2020, ranging from 278
to 334 MJ m−2, while minimum PAR was recorded in November 2020, ranging from 153 to
177 MJ m−2 (Figure 12). The incoming solar radiation was relatively low in November and
December. The fraction of Absorbed Photosynthetically Active Radiation gives real-time
information on crop growth conditions during crop growing seasons; fAPAR varies with
ecosystem and time. The fAPAR value ranged between 0 and 1 (Figure 13). Water stress
and temperature stress affect crop growth and productivity if they persist for a long time.
Water and temperature were optimum for rice growth throughout the crop growing season
(Figure 14). Radiation Use Efficiency was the capacity of the plant to convert radiation into
dry matter; it varies with cultivars and growth stages. RUE value for rice was found to be
2.9 g MJ−1. Peng et al. [27] adopted a RUE value of 2.9 g MJ−1 at all stages of rice to predict
rice yield.

The rice grain yield was calculated from the total NPP and harvest index product,
which was found to be 0.4. This approach resulted in a mean rice yield of 3076 kg ha−1.
Thanjavur recorded the highest mean rice yield of 3438 kg ha−1, followed by Thiruvarur,
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Mayiladuthurai, and Nagapattinam districts with the value of 3216, 3000 and 2652 kg ha−1,
respectively (Figure 15) (Table 2). The agreement between estimated and observed mean
yields at the district level ranged from 80.46 to 89.49%, with a mean of 85.47. Mean R2,
RMSE and NRMSE were 0.78, 532.74 kg ha−1 and 14.52%.
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3.5. Estimated Yield by Using Integrating Remote Sensing Products with Crop Growth Model

The crop simulation model is a simple representation of a crop in relation to growth
as influenced by different factors: variety, soil, weather, management, etc. In the present
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study, the CERES-Rice model was calibrated, tested, and validated to simulate rice yields
as spatially influenced by these input factors.

3.5.1. Generation of Input Files for DSSAT
Weather File

The weather input files were generated for four districts in the study area using weath-
ermen in DSSAT covering the Thanjavur, Thiruvarur, Nagapattinam, and Mayiladuthurai
districts. The generated input files showed a range of mean maximum temperature from
29.14 to 30.22 ◦C, mean minimum temperature from 23.74 to 25.93 ◦C and mean solar
radiation from 16.70 to 17.14 MJ m−2 day−1 (Figure 16). During the cropping period,
rainfall of 1142 to 1297 mm was recorded in the study area.

Soil File

The input files for soil were generated with the parameters derived from soil analysis
(Table 3). A total of 12 soil series were found in the study area. The input files generated
using ‘S’ build showed that the sand content ranged from 21.40 to 85.90%, the silt content
ranged from 1.00 to 29.60%, clay content ranged from 8.40 to 54.10%, bulk density ranged
from 1.28 to 1.65 g cm−3, and the soil organic carbon content ranged from 0.04 to 1.43%.

Calibration and Derivation of Genetic Coefficient

The genetic coefficients were estimated by incorporating varietal characters of crop
cultivars in the model. An inbuilt program called GENCALC in DSSAT calculated ge-
netic coefficients. The genetic coefficients derived for CR 1009, BPT 5204, and ADT (R)
45 varieties of rice in the model using identical management and other conditions are given
in Table 4.

One solution for expanding point-based simulations to a large area is integrating
remote sensing data and crop simulation models by using remotely sensed products as a
proxy for crop variables. In this study, remotely sensed LAI values were spatially assimi-
lated with DSSAT model inputs as a driving variable. Rice crop growth and development
parameters were simulated in DSSAT using the CERES-Rice model. The growth simulation
model simulated parameters were days to emergence, days to anthesis, days to physio-
logical maturity, yield at harvest, leaf area index, harvest index, and biomass. Suitable
regression models were used to generate LAI from dB images of Sentinel 1A SAR, with
simulated LAI from DSSAT models at the spatial level derived from various monitoring
fields across the study area as an explanatory variable for spatial yield estimation. By
integrating remotely sensed data with the DSSAT CERES-Rice model-simulated data, a rice
yield map was generated for the study area, resulting in a mean rice yield of 3855 kg ha−1.
Thanjavur recorded the highest mean yield of 4012 kg ha−1, and Nagapattinam recorded
the lowest yield of 3684 kg ha−1. Mayiladuthurai and Thiruvarur recorded the mean yield
of 3944 and 3781 kg ha−1, respectively (Figure 17) (Table 2). Deka et al. [28] reported that
the CERES-Rice model is capable of estimating growth stages and rice yield accurately.

Satellite-derived yields compared to observed yields had agreeable results. The agree-
ment at the district level was found to range from 88.97 to 93.12%. Mean R2, RMSE,
and NRMSE were 0.86, 331.97 kg ha−1 and 9.43%, respectively. Similarly, Guo et al. [11]
estimated the rice yield for early and late mature rice with NRMSE of 11.38% and 15.27% in-
dicated good model performance. Rugira et al. [29] simulated maize yield as 7692 kg ha−1,
8642 kg ha−1, and 9506 kg ha−1 with NRMSE of 9.06, 5.8, and 4.1% for 2017, 2018, and 2019,
respectively. Pazhanivelan et al. [30] utilized SAR derived LAI to spatially estimate rice
yield by integrating with the ORYZA crop growth model. It was shown that the combina-
tion of satellite-derived LAI and simulated growth parameters of rice could improve the
micro-level yield predictions. Variability in weather, soil, and rainfall contributed to rice
LAI variability at field level and explained the yield variability.
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Table 3. Soil file generated and used in DSSAT Crop Simulation Model.

Soil Series SLB SLLL SDUL SSAT SRGF SSKS SBDM SLOC SLCL SLSI SLCF SLHW SCEC

Chennapatti

10 0.122 0.167 0.204 1.000 0.12 1.56 0.20 40.20 12.30 47.50 5.60 18.00

31 0.163 0.229 0.274 0.664 0.06 1.47 0.10 44.60 20.20 35.20 6.50 22.00

52 0.171 0.240 0.285 0.436 0.06 1.46 0.05 45.70 21.30 33.10 6.20 25.80

82 0.195 0.275 0.320 0.262 0.06 1.42 0.04 48.30 24.30 27.40 6.00 26.70

Kalattur

20 0.038 0.072 0.147 1.000 2.59 1.52 0.31 13.70 22.80 63.50 5.30 10.00

71 0.193 0.264 0.293 0.403 0.06 1.39 0.63 50.20 15.50 34.40 8.30 30.80

104 0.189 0.256 0.288 0.174 0.06 1.43 0.30 50.40 15.80 33.80 8.30 27.90

Kivalur

15 0.218 0.317 0.357 1.000 0.06 1.34 0.51 49.00 27.50 23.40 7.60 25.60

55 0.206 0.295 0.342 0.497 0.06 1.39 0.10 48.50 27.40 24.10 8.00 32.30

100 0.229 0.324 0.362 0.212 0.06 1.36 0.19 52.10 26.50 21.40 8.10 34.00

145 0.225 0.306 0.334 0.086 0.06 1.39 0.22 54.10 20.20 25.70 8.20 34.80

Marungulam

12 0.114 0.158 0.199 1.000 0.12 1.54 0.36 38.20 12.10 49.60 5.20 8.00

33 0.127 0.179 0.217 0.638 0.12 1.48 0.72 39.10 13.40 47.50 5.70 6.90

50 0.145 0.202 0.237 0.436 0.06 1.48 0.54 42.80 14.30 42.90 5.00 7.40

90 0.168 0.233 0.265 0.247 0.06 1.43 0.63 46.10 15.30 38.60 5.20 7.90

Mudukulathur

13 0.021 0.035 0.081 1.000 2.59 1.61 0.24 12.60 9.30 78.10 6.60 11.60

40 0.034 0.048 0.087 0.589 0.43 1.65 0.22 21.50 2.50 75.50 6.70 14.00

68 0.051 0.069 0.110 0.340 0.43 1.61 0.32 27.20 2.60 70.20 6.80 19.40

Nagapattinam
34 0.075 0.104 0.146 1.000 0.43 1.53 0.68 32.00 4.80 63.20 7.00 12.60

46 0.176 0.235 0.259 0.449 0.06 1.44 0.60 50.00 10.30 39.70 7.40 13.20

102 0.177 0.252 0.297 0.228 0.06 1.42 0.30 45.30 22.50 32.20 7.40 17.90

Nannilam

34 0.075 0.104 0.146 1.000 0.43 1.53 0.68 32.00 4.80 63.20 7.00 12.60

46 0.176 0.235 0.259 0.449 0.06 1.44 0.60 50.00 10.30 39.70 7.40 13.20

102 0.177 0.252 0.297 0.228 0.06 1.42 0.30 45.30 22.50 32.20 7.40 17.90

Niravi

16 0.142 0.196 0.233 1.000 0.06 1.51 0.31 42.60 14.80 42.60 6.20 14.60

36 0.137 0.181 0.207 0.595 0.12 1.54 0.36 45.20 7.30 47.50 7.20 14.20

59 0.130 0.171 0.200 0.387 0.12 1.55 0.33 44.00 7.10 48.90 7.40 19.00

80 0.127 0.169 0.200 0.249 0.12 1.56 0.24 43.00 8.50 48.50 7.60 22.00

102 0.133 0.187 0.231 0.162 0.06 1.53 0.15 40.20 17.40 42.40 8.20 25.20

166 0.146 0.199 0.236 0.069 0.06 1.53 0.12 43.60 15.30 41.10 8.20 28.60

Pattukottai

8 0.013 0.023 0.058 1.000 6.11 1.48 0.90 8.40 5.70 85.90 6.60 14.70

26 0.053 0.072 0.112 1.000 0.43 1.57 0.54 28.20 1.20 70.60 5.10 16.20

56 0.066 0.092 0.137 0.440 0.43 1.55 0.57 29.40 5.80 64.90 6.60 17.40

140 0.065 0.091 0.136 0.141 0.43 1.56 0.48 29.40 5.80 64.90 6.20 18.00

Punniyavayal

10 0.085 0.120 0.167 1.000 0.43 1.55 0.40 32.30 10.40 57.20 6.90 38.00

50 0.113 0.160 0.202 0.549 0.12 1.52 0.51 37.10 13.20 49.70 7.20 39.20

72 0.122 0.173 0.214 0.295 0.12 1.50 0.57 38.10 14.40 47.50 8.60 36.80

110 0.147 0.207 0.244 0.162 0.06 1.47 0.54 42.10 16.20 41.60 8.90 42.00
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Table 3. Cont.

Soil Series SLB SLLL SDUL SSAT SRGF SSKS SBDM SLOC SLCL SLSI SLCF SLHW SCEC

Vedaranyam

15 0.116 0.164 0.200 1.000 0.12 1.40 1.42 37.90 7.80 54.30 6.20 19.00

29 0.182 0.267 0.301 0.644 0.06 1.31 1.43 43.80 20.20 36.00 6.30 27.80

54 0.226 0.313 0.337 0.436 0.06 1.32 0.89 53.00 18.60 28.40 6.20 32.00

87 0.240 0.345 0.373 0.244 0.06 1.28 1.00 51.60 24.80 23.00 6.60 33.60

128 0.214 0.322 0.366 0.116 0.06 1.28 1.00 46.00 29.60 24.40 6.50 34.00

SLB—Depth until base of layer (cm); SLLL—Lower limit of plant extractable soil water; SDUL—Drained upper
limit; SSAT—Saturated upper limit; SRGF—Root growth factor (0–1 scale); SSKS—Saturated hydraulic conductivity
(cm h−1); SBDM—Bulk density (moist) (g cm−3); SLOC—Soil organic carbon concentration (%); SLCL—Clay (%);
SLSI—Silt (%); SLCF—Coarsefraction(%); SCEC—Cationic exchange capacity (cmol kg−1); SLHW—pH in water.

Table 4. Genetic coefficient (GC) of rice varieties generated and used in DSSAT CERES-Rice model.

Coefficient
Code

Description
Genetic Coefficient

CR 1009 BPT 5204 ADT(R) 45

P1

Time period (expressed as growing degree days [GDD] in ◦C above a
base temperature of 9 ◦C from seedling emergence during which the
rice plant is not responsive to changes in photoperiod. This period is

also referred to as the basic vegetative phase of the plant.

850 783 365

P2O

Critical photoperiod or the longest day length (in hours) at which the
development occurs at a maximum rate. At values higher than P2O
developmental rate is slowed, hence there is delay due to longer day

lengths.

11.4 11.4 11.4

P2R
Extent to which phasic development leading to panicle initiation is

delayed (expressed as GDD in ◦C) for each hour increase in
photoperiod above P2O.

130 164 200

P5 Timeperiod in GDD ◦C) from beginning of grain filling (3 to 4 days after
flowering) to physiological maturity with a base temperature of 9 ◦C. 540 556 480

G1
Potential spikelet number coefficient as estimated from the number of
spikelets per g of main culm dry weight (less lead blades and sheaths

plus spikes) at anthesis.
55 46 36

G2 Single grain weight (g) under ideal growing conditions, i.e., nonlimiting
light, water, nutrients, and absence of pests and diseases. 0.200 0.180 0.280

G3 Tillering coefficient (scaler value) relative to IR64 cultivar under ideal
conditions. 1.00 1.00 1.00

G4 Temperature tolerance coefficient. 1.00 1.00 1.00
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3.6. Comparison of Different Spatial Yield Estimation Techniques

Among the different yield estimation methods, the remote sensing products with
crop growth model recorded the highest mean R2 value of 0.86, followed by the spectral
indices-based regression analysis with 0.81 (Figures 18 and 19). Similarly, remote sensing
with crop modelling registered the highest agreement % of 90.57, followed closely by
spectral indices-based regression analysis with the agreement of 90.52%. The semi-physical
approach resulted in an R2 value of 0.78, RMSE of 532.74, and NRMSE of 14.52 with 85.47%
agreement. The result indicated that both rice yield estimation techniques of integrating
remote sensing products with the DSSAT crop growth model and spectral indices-based
regression analysis could be utilized precisely for spatial yield estimation of rice.

Agronomy 2022, 12, x FOR PEER REVIEW 19 of 21 
 

 

 

Figure 18. Validation of district-wise mean rice yield in different Cauvery delta districts from spec-

tral indices-based regression analysis. 

 

Figure 19. Validation of district-wise mean rice yield in different Cauvery delta districts from inte-

gration of RS and DSSAT. 

4. Conclusions 

The multidate Sentinel 1A SAR data can be recommended for estimating rice area, 

Start of Season and days of agronomic flooding at regional scale. Rice area maps and sta-

tistics of Cauvery delta districts of Tamil Nadu were generated with an accuracy of 94.5% 

within an area of 379,767 ha. A Start of Season (SoS) map was derived from satellite data 

showing rice emergence dates in the Cauvery delta region. In the study area, 12 SoS dates 

were generated and the major planting season was found to be between 22 September and 

9 November during samba 2020. District-wise mean rice yields for spectral indices-based 

Figure 18. Cont.



Agronomy 2022, 12, 2008 19 of 21

Agronomy 2022, 12, x FOR PEER REVIEW 19 of 21 
 

 

 

Figure 18. Validation of district-wise mean rice yield in different Cauvery delta districts from spec-

tral indices-based regression analysis. 

 

Figure 19. Validation of district-wise mean rice yield in different Cauvery delta districts from inte-

gration of RS and DSSAT. 

4. Conclusions 

The multidate Sentinel 1A SAR data can be recommended for estimating rice area, 

Start of Season and days of agronomic flooding at regional scale. Rice area maps and sta-

tistics of Cauvery delta districts of Tamil Nadu were generated with an accuracy of 94.5% 

within an area of 379,767 ha. A Start of Season (SoS) map was derived from satellite data 

showing rice emergence dates in the Cauvery delta region. In the study area, 12 SoS dates 

were generated and the major planting season was found to be between 22 September and 

9 November during samba 2020. District-wise mean rice yields for spectral indices-based 

Figure 18. Validation of district-wise mean rice yield in different Cauvery delta districts from spectral
indices-based regression analysis.

Agronomy 2022, 12, x FOR PEER REVIEW 19 of 21 
 

 

 

Figure 18. Validation of district-wise mean rice yield in different Cauvery delta districts from spec-

tral indices-based regression analysis. 

 

Figure 19. Validation of district-wise mean rice yield in different Cauvery delta districts from inte-

gration of RS and DSSAT. 

4. Conclusions 

The multidate Sentinel 1A SAR data can be recommended for estimating rice area, 

Start of Season and days of agronomic flooding at regional scale. Rice area maps and sta-

tistics of Cauvery delta districts of Tamil Nadu were generated with an accuracy of 94.5% 

within an area of 379,767 ha. A Start of Season (SoS) map was derived from satellite data 

showing rice emergence dates in the Cauvery delta region. In the study area, 12 SoS dates 

were generated and the major planting season was found to be between 22 September and 

9 November during samba 2020. District-wise mean rice yields for spectral indices-based 

Figure 19. Validation of district-wise mean rice yield in different Cauvery delta districts from
integration of RS and DSSAT.

4. Conclusions

The multidate Sentinel 1A SAR data can be recommended for estimating rice area,
Start of Season and days of agronomic flooding at regional scale. Rice area maps and
statistics of Cauvery delta districts of Tamil Nadu were generated with an accuracy of 94.5%
within an area of 379,767 ha. A Start of Season (SoS) map was derived from satellite data
showing rice emergence dates in the Cauvery delta region. In the study area, 12 SoS dates
were generated and the major planting season was found to be between 22 September and
9 November during samba 2020. District-wise mean rice yields for spectral indices-based
regression analysis, semi-physical approach, and integrating remote sensing products with
the DSSAT model were estimated to be 3654, 3076, and 3855 kg ha−1, respectively. Among
the three spatial yield estimation techniques, both integrating remote sensing products
with DSSAT crop growth model and spectral indices-based regression analysis had R2

more than 0.80, NRMSE of less than 10.00%, and agreement of more than 90% compared
to the semi-physical approach, indicating that these two approaches could be utilized
for spatial rice yield estimation. Therefore, we conclude that spatial rice yield estimation
techniques, namely integrating remote sensing products with DSSAT model and spectral
indices-based regression analysis, can be recommended to estimate rice yield spatially.
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The resultant spatial rice yields have the potential to be utilized in import/export policy
decisions, production forecasting and quicker payouts of crop insurances.
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