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Abstract

:

Among the solutions to climate change’s harmful effects, AS (Adaptation Strategies) are more feasible. In this study, four AS, Changing Cultivation Dates (CCD), Deficit Irrigation (DI), Improving Irrigation Performance (IIP), and Optimizing the Crop Pattern (OCP), were investigated. The results showed that the WUE (Water Use Efficiency) was declined when the cultivation date was changed for all crops in the baseline and increased after the cultivation date was brought forward to 7, 14, 14, 28, 28 days for tomato, wheat, corn, barley and cucumber, respectively, in the future period. Deficit irrigation of 30% increased the WUE in all crops. A 48% increase in irrigation performance reduced demand by 10%. Following the OCP and diminishing the cultivation area by 30% increased farmers’ total profit and reduced the water consumption volume by 9% and 11%, respectively, in the baseline and future periods. To study the effect of these AS on crop yield and allocated volume, a combination of crop model programming and the MOEPO (Multi-Objective Emperor Penguin Optimizer) was employed to minimize Vulnerability and maximize Reliability Indexes (Performance Indexes). In the supply section, three scenarios were examined. The results showed that DI, IIP, CCD and OCP were classified from the most to the least option based on improving the Performance Indexes.
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1. Introduction


Global warming and climate change are important topics that have been studied by researchers around the world in recent decades [1]. In the Karaj (Iran) basin, various studies on climate change have shown that the average annual temperature and precipitation will have significant upward and downward trends, respectively [2,3]. Comprehensive research on water consumption has shown that a balance between resources and consumption can only be achieved if the performance of the agricultural sector increases [4,5,6]. As a result, it is necessary to simultaneously identify the effects of climate change on the irrigation system at the basin level in both the consumption and resource sections. To increase the resilience of water projects, Adaptive Strategies (AS) are proposed, which have not been given enough attention so far.



This study aimed to increase the resilience of the Karaj Dam reservoir in supplying water demand to agricultural sections against the effects of climate change. Operational policies that increase reliability and reduce the vulnerability of the water resources system can help to increase its resilience [7]. In this regard, this study tried to provide a comprehensive hybrid model of decision support, a model that can estimate the effects of climate change, temperature, precipitation, available water and demands of the basin with reasonable certainty and manage water supply and demands to increase the WUE, reduce consumed water, and minimize reservoir deficits.



The complexity of the relationship, similar to this study’s issues, the time constraints, and the spread of technology, has led scientific studies to be directed to methods that, while increasing speed and using minimal facilities and information, can reliably estimate the required parameters. The use of modern metaheuristic algorithms to solve these multi-objective problems is one of these solutions. So far, multi-objective algorithms have been employed in solving problems such as Water Resources Allocation [8,9,10,11], Water Treatment Operations [12,13,14,15], Groundwater Management [16,17,18,19], Irrigation Purposes [20,21,22,23], Water Distribution Systems [24,25,26,27], Energy-Water Nexus [28,29,30,31], and Reservoir Operations [32,33,34,35].



Previous research has shown that the MOEPO algorithm has not been used in any of the studies related to water resources and agricultural optimization. In addition, none of the studies provided a comprehensive model as a proposed model for the multi-objective optimization of supply and demand in the agricultural section. Therefore, in this study, both supply and demand optimization were performed for the first time using MOEPO and crop model programming for the first time.




2. Materials and Methods


2.1. Study Area


In this study, Karaj Dam was considered a source of water supply, and the irrigation network covered agricultural lands as water consumers. Figure 1 shows the location of the study area and the farming lands. Among the 30,000 hectares covered by this network, only 23,000 hectares can be irrigated. Most crops, such as wheat, barley, fodder corn, alfalfa, tomato and cucumber, have been cultivated in this plain. The irrigation season typically begins in the first decade of March and continues through the end of the first decade of December. Table 1 summarizes the crop patterns and cultivated areas. In addition, information about the cultivation date of each crop based on field studies is presented in Table 2.



To provide adaptation strategies and increase regional resilience, the first step is to identify and evaluate the effects of climate change on the basin and determine the input parameters. Data for temperature, precipitation and runoff were obtained from recent research [36]. The Penman–Monteith formula was used to calculate the ET0 (Reference Evapotranspiration). Four strategies were considered in managing agricultural water consumption (Changing Cultivation Dates (CCD), Deficit Irrigation (DI), Improving Irrigation Performance (IIP), and Optimizing the Crop Pattern (OCP)). To study the effect of these strategies on water consumption and crop yield in the baseline and future periods (under the influence of climate change), a combination of crop model programming and a multi-objective optimization algorithm (MOEPO) was employed.



Finally, to manage the optimal supply of water from the dam reservoir, minimize the Vulnerability, and maximize the Reliability Indexes, the MOEPO optimization algorithm was used, and the optimal allocation rules were obtained. Below are a few brief descriptions of the formulas and methods used in this study.




2.2. Models


The model related to the four AS was prepared as a single-objective non-linear program to maximize WUE (Equation (1)).


   W 1  = Max  (    WUE  i   )  =  Y a  /   IR   i , j    



(1)




where Ya is crop yield in kilograms,     IR   i , j     indicates irrigation water allocated to crop in cubic meters.



The OCP optimization model was defined as a dual-objective model based on optimal allocation between different plants and crop profit maximization. The period of the balance equations was considered fixed for the whole model and was equal to the irrigation cycle of the region (10 days). The objective functions were maximizing the total gross income and minimizing the volume of water released from the dam reservoir (Equations (2) and (3)).


   Z 1  = Max   ∑   i = 1  n  [  P i     (   Y C   )   i  −  C i  ]  A i   



(2)






   Z 2  =  Min     (    IR   i , j    )   



(3)




where




	
n: Number of crops,



	
i: Crop index,



	
Z1: Total farmers’ income (Rial),



	
P: Crop production price (Rial/Kg),



	
C: Crop production cost (Rial/ha),



	
A: Under cultivation area (ha),



	
YC: Relative yield (dimensionless), which was calculated using seasonal production.








The optimization of this part was done using the MOEPO algorithm. The amount of evapotranspiration was calculated by employing the methods provided in Appendix C. Utilizing the plant coefficient and related correction methods (provided in FAO 56 and 24), the ET0 was calculated for each product. Model performance is adapted to actual conditions by determining the constraints of each objective function. The constraints used in this study included water moisture in the soil, plant water requirement, irrigation water allocated to the plant, water allocation to the plant, actual evaporation and transpiration, water balance and the limitation of the cultivated area. For more information about this section, refer to Appendix A.




2.3. Supply Section


This study investigated increasing reservoir operation resilience by minimizing the Vulnerability (Equation (4)) and maximizing the Reliability Indexes (Equation (5)).


   Minimize   F   (   u 1   )  =     ∑   t = 1  T   (     D t  −   Re  t   |    Re  t  <  D t   )     [       N    t = 1  t  (   Re  t  <  D t  )  ]   D  max       ∀ t = 1 , 2 , … , T  



(4)






   Maximize   F   (   u 2   )  =    N  t = 1  T   (     D t  −   Re  t   |    Re  t  >  D t   )   T    ∀ t = 1 , 2 , … ,  T     



(5)




In the above equations:




	
F(u1): Objective function related to the Vulnerability Index,



	
F(u2): Objective function related to the Reliability Index,



	
Dt: Demand volume in the t period,



	
Dmax: Maximum demand in the t period,



	
    Re  t   : Released volume from the reservoir in the t period,








For more information on calculating the parameters and constraints intended for the objective functions, refer to Appendix B.



As defined in Equation (6), three operation rules (scenarios) were determined.


  R  e  i t   =  g  i t    (   Q  i t   ,  S  i t   ,  D  i t    )    i = 1 , 2 , 3   a n d   t = 1 , 2 , … , T  



(6)




where    g 1   (   Q  1 t   ,  S  1 t   ,  D  1 t    )    was the first operation rule calculated for the baseline conditions (first scenario),    g 2   (   Q  2 t   ,  S  2 t   ,  D  2 t    )    was applying the baseline rules to calculate water allocation for the future period, and    g 3   (   Q  3 t   ,  S  3 t   ,  D  3 t    )    was the third calculated rule, in which reservoir operation rules were calculated for the future period (2020–2040) based on future supply and demands (using future data).




2.4. MOEPO Algorithm


The MOEPO (Multi-Objective Emperor Penguin Optimizer) extends the capabilities of the existing Emperor Penguin Optimizer (EPO) to solve multi-objective problems. The algorithm introduces the concept of the dynamic archive, which has the property of caching non-dominated Pareto optimal solutions. More information about this algorithm and its application can be found in [37]’s research.





3. Results


The average water requirement for crops and agricultural demand will increase by 17% to 24% and 27%, respectively, in the future. Meanwhile, the total annual average water in the reservoir will decrease by 35% (see Appendix C for more information). These results indicate that if the area under cultivation remains constant or if the current cultivation and irrigation methods are continued in the future, the Karaj dam reservoir will not be able to supply the demands; therefore, in this study, supply and demand management strategies were employed. The results of these approaches are mentioned.



3.1. Demand Management


Since the irrigation period in this area is seven days, the intervals of CCD were considered 7, 14, 21 and 28 days. Based on Table 2, CCD in the baseline reduced WUE. Setting the cultivation date 7, 14, 14, 28, 28 days earlier led to an increase in WUE for tomato, wheat, corn, barley and cucumber, respectively, in the future period.



According to the Ministry of Agriculture-Jahad announcement, the average performance of Iran’s irrigation network is about 30%, while the performance of Karaj’s irrigation network is about 38%. The results related to the performance change illustrate that, based on the existing capital constraints and management policies, IIP, to about 48%, will reduce the water demand in study periods by almost more than 10%.



In this study, DI was considered uniform throughout the plant growth period. DI of 15% and 30% were considered to investigate the effect on WUE. According to Table 3, a DI of 15% improves WUE in wheat, barley, cucumber and alfalfa. However, the WUEs of corn and tomato have improved by applying 30%.



According to Table 4, in the future period, all crops yield will be reduced. In contrast, irrigation water demands for these crops will increase by about 220 to 580 MCM per hectare. Therefore, following the current cultivation pattern is not only economically affordable but also puts intense pressure on the region’s water resources. In this regard, to improve the region’s resilience to climate change, the optimized crop pattern model results were used. Based on this model, following the new optimal cultivation pattern and reducing the area under cultivation by 30% in the basic and future periods will increase the total profit of the farmers by 24% and 5%, respectively, and the volume of consumed water will reduce by 9% and 11%, respectively.



The amount of water demand was calculated based on the selected CCD, DI, IIP and OCP in the long-term baseline and future series and entered into the MOEPO as an independent variable along with other independent variables; the optimal operation rules of the reservoir were extracted. The results of this section are presented as follows.




3.2. Demand Management


A multi-objective water allocation model was employed to manage the supply from the reservoir by applying four AS to minimize the Vulnerability and maximize the Reliability Indexes. Figure 2 illustrates the results of the Pareto curves for future and baseline periods, considering the application and non-application of AS in the agricultural section.



Consideration of AS decreased the Vulnerability Index and increased the Reliability Index, as shown in Figure 2. In the next step, the optimal rules for the baseline and future conditions for water demand were evaluated. A comparison was made in this section between the optimal rules obtained from the baseline conditions (scenario 1), applying optimal baseline rules for the climate change conditions (scenario 2), and applying optimal rules for the climate change conditions (scenario 3). In Figure 3, the first and third scenarios’ results of 45% vulnerability, considering or without considering four AS, are provided, respectively.



As shown in Figure 3a, in 171 months of the baseline period, reservoir storage in the non-AS state ranged from 28 to 112 MCM. In contrast, using AS, the storage volume reservoir ranged between 116 and 205 (max reservoir capacity) MCM in 188 months (on average). As a result, about 80% less water was released from the reservoir than if AS was not used. This indicated the reservoir’s ability in the baseline period (1985–2005) to meet the demands and showed the superiority of the multi-objective optimization solution over the current management solution in allocating water from the dam reservoir.



As shown in Figure 3b,c, without AS for 161 months, reservoir storage was between 16 (dead volume) and 30 MCM. Under the second scenario, in 200 months, the storage volume in all four AS was between 20 and 80 MCM, and under the third scenario, in 230 months, it was between 20 and 100 MCM. The storage volume reached more than 200 MCM in just six months for both scenarios. The maximum released volumes for the OCP were 204 and 206 million cubic meters, respectively, for the second and third scenarios. Based on the figures, it can be stated that the total average released volume in scenario three was reduced by 14, 15, 11 and 13%, respectively, compared to scenario two, corresponding to CCP, IIP, DI and CCD. Accordingly, the allocation rules derived from the third scenario were superior to those of the second scenario. In addition, employing AS reduced the released volume and increased reservoir capacity in all scenarios.



Table 5 compares the results of the Pareto point corresponding Vulnerability Index of 45% in the three scenarios with/without four adaptation solutions. Comparing the objective functions in the first and second scenarios shows that the rules derived from the baseline are not appropriate for future conditions. In comparing the second and third scenarios, it was found that the first and second objective functions would be improved if future rules (dam operation in climate change periods) were applied in the third scenario.



According to Table 5, the DI is the most appropriate among all AS. In baseline conditions, considering the Vulnerability Index of 45%, the Reliability Index of DI, IIP, CCD and OCP increased by about 54, 44, 48 and 17%, respectively, compared to without AS.





4. Discussion


Climate change in this study area reduced crop yield and increased the consumed water volume. These results are consistent with [38,39,40]’s studies.



Using AS (optimize the cultivation pattern, change the cultivation date and reduce irrigation) helps to reduce the amount of water consumed and increase WUE in the agricultural section. These results are consistent with those of [39,41]’s studies.



Using a management strategy in the supply section (multi-objective optimization of dam reservoir operation) improves two Indexes of Vulnerability and Reliability in the baseline and future. These results were confirmed in [42,43]’s studies.




5. Conclusions


Investigation of crops’ water demand and supply indicated that in the period (2020–2040), all crops would face an increase in water demand, and the system will likely face stress in meeting the needs. In this regard, a series of demand and allocation management strategies were applied, and the results showed the following:




	
During the baseline period, the WUE declined when the cultivation date was changed for all crops. However, it increased after the cultivation date was brought forward to 7, 14, 14, 28, 28 days for tomato, wheat, corn, barley and cucumber, respectively, in the future period.



	
The DI application showed that wheat, barley, cucumber and alfalfa have a more pleasing WUE of a 15% DI, while corn and tomatoes have a higher WUE of a 30%.



	
IIP to about 48% also reduced water demand by 10% in both study periods.



	
The results related to crop pattern optimization and area under cultivation also showed that following the new optimal cultivation pattern and reducing the under-cultivation area by 30% in the base and future periods increased the total profits of farmers by 24 and 5 percent. Additionally, this optimized state reduced the volume of water consumption by 9 and 11 percent, respectively.



	
Optimizing dam allocation showed that DI, IIP, CCD and OCP improved the Vulnerability and Reliability Indexes.



	
The results of the scenario comparison indicated that the third scenario performed better than the first one. In addition, the objective function values in the first and second scenarios suggested that the baseline rules were not suitable for use in the future.



	
Out of the four AS, the DI was the most appropriate.








As a continuation of this research, the combined effect of AS can be examined on the water consumption efficiency index. Other factors, such as changes in fertilizer consumption amount and type, can also be investigated as influencing product performance. To make this study more practical, farmers’ levels of readiness and interest in implementing and applying each of these strategies can be evaluated with a questionnaire as part of a statistical study.
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Appendix A


Appendix A.1. Crop Model


The sensitivity and evapotranspiration coefficients were taken into account in the calculation of the crop irrigation function based on seasonal production. The relationship between YC (relative yield) and relative evapotranspiration is presented in Equation (A1) [44].


     Y C  =    Y a     Y p    =   ∏   i = 1  n     (    E  T a    E  T  m a x      )    λ i    



(A1)




In the above equation, parameters are defined as below:




	
Ya: Actual yield (kg/ha),



	
Yp: Maximum yield under management conditions that can be received with unlimited water supply potential (kg/ha),



	
ETa: Actual evapotranspiration (mm),



	
ETmax: Maximum evapotranspiration (mm),



	
   λ i   : Sensitivity index to water stress (Equation (A2)).








The problem with such models is the existence of sensitivity coefficients at different stages of growth. To resolve this problem, Ky coefficients for different stages of growth of many plants are reported in the 33rd Journal of Food and Agriculture Organization (FAO).


  λ = 0.2418  K 3  − 0.1768  K 2  + 0.9464 K − 0.0177  



(A2)




where K is yield reaction coefficient to water stress in different growth stages and is presented in the FAO-56 magazine.




Appendix A.2. Constraints


The following constraints were used in the crop model:




	
Soil moisture: At the beginning of the irrigation season, it was assumed to be at the field capacity for all soils and crops. The soil water balance equation was employed to calculate soil moisture at other time intervals.



	
Water requirement: Maximum water requirement of the crop was calculated based on the soil moisture depletion factor (which can be extracted from FAO 24), effective rainfall, maximum evapotranspiration, soil moisture and amount of total available soil water accessible to the plant.



	
Reservoir release: Releasing water from the reservoir to meet irrigation requirements should always be less than the maximum release from the reservoir.



	
Reservoir storage: The amount of water stored in a reservoir should be between the maximum and minimum storage volumes (dead volume), which is determined by the continuity of the storage volume.



	
Actual evapotranspiration: Actual evapotranspiration is always less than or equal to maximum evapotranspiration. In this study, the maximum evapotranspiration was determined based on [45]’s method.



	
Cultivated area: Each crop should have a specific range of cultivated areas (must remain within a certain limit).








For more information about the model and constraints, please refer to [41].





Appendix B


Appendix B.1. Simulation and Optimization of Dam Operation


To simulate the behavior of the dam reservoir, the continuity equation (Equation (A3)) was used. In this equation, the time steps were considered monthly.


   S  t + 1   =  S t  +  Q t  −   LE  t  −   SP  t  −  R  et    



(A3)




where St+1 and St are reservoir storage volumes at the beginning and end of t and t + 1 periods, respectively, Qt is amount of inflow volume to reservoir during the t period, Ret is the volume of release from the reservoir during the t period, SPt is the amount of overflow volume from the reservoir at the beginning of the t period (Equation (A4)) and LEt is the volume of losses due to evaporation from reservoir surface during the t period.


    SP  t  =  {      S  t + 1   −  S  max      S  t + 1   ≥  S  max       0    S  t + 1   <  S  max         



(A4)




where Smax is the maximum volume of reservoir capacity and St+1 is reservoir storage volume at the beginning and end of the t + 1 period.



To achieve this maximum resilience, two objective functions were introduced in Equations (4) and (5).




Appendix B.2. Constraints


The constraints applied to reservoir operation are presented in Equations (A5) and (A6).


   S t  ≥  S  min     ∀ t = 1 , 2 , … , T  



(A5)






    Re    t      ≥ 0   ∀ t = 1 , 2 , … , T  



(A6)




where Smin is the minimum volume or dead volume of the reservoir.



In this study, penalty values were added to the objective functions if the constraints are violated, as shown in Equations (A7) and (A8).


  Penalty 1 =     A ′    {     (     S  min   −  S t     S  max   −  S  min      )   2  +     B ′    }    ∀ t = 1 , 2 , … ,  T     



(A7)






  Penalty 2 =  C ′  ·  (      Re  t     D  max      )  +     D ′     ∀ t = 1 , 2 , … ,  T     



(A8)




where Penalty1 is the penalty function due to the violation of the constraint of Equation (A5) and Penalty2 is the penalty function is the specialized problem due to the violation of the constraint of the Equation (A6) and the coefficients      A ′    to      D ′    are the positive constants of the penalty function. In these cases, the penalty functions were added to the objective functions as follows (Equations (A9) and (A10)).


  F (  u 1  ) = F (  u 1  ) + Penalty 1  (   and   Penalty  2  )    ∀ t = 1 , 2 , … ,  T     



(A9)






  F (  u 2  ) = F (  u 2  ) + Penalty 1  (   and   Penalty  2  )    ∀ t = 1 , 2 , … ,  T     



(A10)









Appendix C


Estimation of Irrigation Demand in the Future Period


To calculate   E  T  0 t    , it is impossible to have access to all of the necessary data, such as relative humidity and wind speed, in the future. For destemming   E  T  0 t    , FAO Penman-Monteith method was employed. This was done by selecting the relationship between temperature and relative humidity for the baseline period. The highest correlation between the temperature and the ET0 was obtained using the quadratic polynomial function relation (Figure A1).
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Figure A1. Relationship between mean, minimum and maximum temperature and ET0 estimated by the FAO Penman−Monteith method. 






Figure A1. Relationship between mean, minimum and maximum temperature and ET0 estimated by the FAO Penman−Monteith method.
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To obtain the amount of relative humidity in the future period, an exponential regression relationship was followed (Figure A2). It was assumed that the wind speed would remain similar to its baseline value in the future.
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Figure A2. Correlation of   E  T  0 t     and   R  H t    in the baseline period. 






Figure A2. Correlation of   E  T  0 t     and   R  H t    in the baseline period.
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The amount of future ET0 was calculated using these assumptions, and the crops’ evapotranspiration (ETc) was obtained by multiplying the crop coefficient with the estimated values. Table A1 shows the ETc for past and future periods.
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Table A1. Crops’ annual ETc from 1985 to 2005 and 2020 to 2040.






Table A1. Crops’ annual ETc from 1985 to 2005 and 2020 to 2040.





	Crop
	ETc

Baseline Period (mm)
	ETc

Future Period (mm)
	Future to Past Ratio
	Percentage Change (%)





	Wheat
	504.85
	594.36
	1.18
	17.73



	Corn
	634.32
	796.97
	1.26
	25.64



	Barley
	440.12
	517.55
	1.18
	17.59



	Alfalfa
	990.83
	1193.44
	1.20
	20.45



	Cucumber
	916.86
	1104.97
	1.21
	20.52



	Tomato
	551.35
	664.04
	1.20
	20.44








The Effective precipitation (Peff) was calculated by the SCS method, and finally, the annual irrigation demands were obtained (Table A2 and Table A3).
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Table A2. Average net annual irrigation demands from 1985 to 2005 and 2020 to 2040.






Table A2. Average net annual irrigation demands from 1985 to 2005 and 2020 to 2040.





	Crop
	Baseline Demand (mm)
	Future Demand (mm)
	Future to Past Ratio
	Percentage Change (%)





	Wheat
	380.97
	477.94
	1.25
	25.45



	Corn
	530.29
	674.14
	1.27
	27.13



	Barley
	315.82
	400.57
	1.27
	26.83



	Alfalfa
	732.08
	952.84
	1.30
	30.16



	Cucumber
	783.16
	1006.47
	1.29
	28.51



	Tomato
	513.01
	640.45
	1.25
	24.84
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Table A3. Average total volume of irrigation demands from 1985 to 2005 and 2020 to 2040.






Table A3. Average total volume of irrigation demands from 1985 to 2005 and 2020 to 2040.





	Crop
	Future Volume (MCM)
	Baseline Volume (MCM)
	Future to Past Ratio
	Percentage Change (%)





	Wheat
	78.11
	62.26
	1.25
	25.46



	Corn
	122.41
	96.29
	1.27
	27.13



	Barley
	35.64
	28.10
	1.27
	26.83



	Alfalfa
	16.15
	12.41
	1.30
	30.14



	Cucumber
	8.53
	6.64
	1.28
	28.46



	Tomato
	5.43
	4.35
	1.25
	24.83








As shown in the above table, the volume of water demand will for the future period for all crops. The demand for some crops, such as alfalfa and cucumber, will increase by 30.14 and 28.46 percent, respectively, compared to the baseline period. For further investigation, the results of comparing the long-term average monthly demand volume in the baseline and the future with the inflow into the reservoir are presented in Figure A3. In comparison to the baseline period, the amount of water released from the reservoir to meet demands will increase in the future. Thus, the total average annual volume of released water to meet agricultural demands (entire crops and fruit crops) in the baseline and future is 234.82 and 297.55 million cubic meters, respectively. This indicates that the released volume to meet the demands will increase by about 27%.
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Figure A3. Comparison of water demand volume in the baseline and future intervals with inflow to the reservoir. 






Figure A3. Comparison of water demand volume in the baseline and future intervals with inflow to the reservoir.
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Figure 1. Karaj dam as a source of water supply and agricultural lands as water consumers. 
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Figure 2. Comparison of Pareto curves in the baseline and future periods. 
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Figure 3. Investigation of released and storage volume: (a) first scenario; (b) second scenario; (c) second scenario. 
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Table 1. Under cultivation area of each crop in the Karaj plain irrigation network.
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	Crop/Fruit Crop
	Wheat
	Barley
	Corn
	Alfalfa
	Cherry
	Apple
	Tomato
	Cucumber





	Under Cultivation Area (%)
	27
	14.7
	30
	2.8
	10
	12.7
	1.4
	1.4



	Under Cultivation Area (ha)
	6210
	3381
	6900
	644
	2300
	2921
	322
	322
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Table 2. Cultivation date of each crop.
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Alfalfa

	
Summer

Cucumber

	
Spring

Cucumber

	
Tomato

	
Corn

	
Barley

	
Wheat




	
Cultivation Date

	
13th

	
13th

	
1st

	
7th

	
15th

	
21st

	
12th




	
Month

	
Growth Period






	
October

	
Init *

	
Init-Dev **

	

	

	

	

	




	
November

	
Dev

	
Dev

	

	

	

	

	




	
December

	
Dev

	
Dev

	

	

	

	

	




	
January

	
Dev

	
Dev

	

	

	

	

	




	
February

	
Dev

	
Dev

	

	

	

	

	




	
March

	
Dev-Mid ***

	
Mid

	

	

	

	

	




	
April

	
Mid

	
Late ****

	

	
Init

	
Init-Dev

	

	
Init-Dev




	
May

	
Late

	
Harvest

	
Init-Dev

	
Dev

	
Dev

	

	
Dev-Mid




	
June

	
Harvest

	

	
Dev-Mid

	
Dev-Mid

	
Dev-Mid

	
Init-Dev

	
Mid




	
July

	

	

	
Mid

	
Mid

	
Late

	
Dev

	
Late Season




	
August

	

	

	
Late

	
Late

	

	
Dev-Mid

	
Harvest




	
September

	

	

	
Harvest

	

	

	
Harvest

	








* Initial; ** Crop Development; *** Mid-Season; **** Late Season.
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Table 3. WUE comparison for two strategies: CCD and DI in the baseline and future.
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Crop

	
Time Step (Days)

	
WUE Ratio in the New Cultivation Date to the Primary Date

	
WUE Ratio in the DI to Full Irrigation




	
Bring Forward

	
Postpone




	
Baseline

	
Future

	
Baseline

	
Future

	
Percentage of DI

	
Baseline

	
Future






	
Wheat

	
7

	
0.87

	
1.14

	
0.72

	
1.08

	
0.15

	
1.2

	
1.4




	
14

	
0.85

	
1.37

	
0.68

	
1.04




	
21

	
0.91

	
1.12

	
0.66

	
1.01

	
0.3

	
1.14

	
1.26




	
28

	
0.83

	
1.26

	
0.58

	
0.78




	
Barley

	
7

	
0.91

	
1.03

	
0.9

	
0.85

	
0.15

	
1.23

	
1.4




	
14

	
0.84

	
1.15

	
0.82

	
0.66




	
21

	
0.82

	
1.12

	
0.91

	
1.03

	
0.3

	
1.16

	
1.28




	
28

	
0.73

	
1.18

	
0.89

	
0.72




	
Corn

	
7

	
0.85

	
1.12

	
0.72

	
1.05

	
0.15

	
1.17

	
1.35




	
14

	
0.92

	
1.16

	
0.59

	
1.03




	
21

	
0.76

	
1.09

	
0.44

	
0.9

	
0.3

	
1.25

	
1.43




	
28

	
0.68

	
1.14

	
0.43

	
0.85




	
Tomato

	
7

	
0.85

	
1.23

	
0.73

	
0.86

	
0.15

	
1.19

	
1.27




	
14

	
0.81

	
1.11

	
0.72

	
0.77




	
21

	
0.71

	
1.13

	
0.74

	
0.98

	
0.3

	
1.2

	
1.32




	
28

	
0.56

	
1.14

	
0.61

	
0.78




	
Cucumber

	
7

	
0.73

	
1.1

	
0.74

	
0.86

	
0.15

	
1.22

	
1.38




	
14

	
0.63

	
1.14

	
0.73

	
0.77




	
21

	
0.43

	
1.13

	
0.72

	
0.98

	
0.3

	
1.15

	
1.36




	
28

	
0.41

	
1.23

	
0.61

	
0.78




	
Alfalfa

	
Alfalfa is a perennial herbaceous crop, so CCD is not considered for this crop.

	
0.15

	
1.11

	
1.18




	
0.3

	
1.09

	
1.11
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Table 4. Comparison of profit and released water for current and optimized crop patterns in the baseline and future period.
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Baseline

	
Current Situation

	
Crop

	
Wheat

	
Barley

	
Corn

	
Alfalfa

	
Tomato

	
Cucumber

	
Sum




	
Crop Production cost

	
(Rial)

	
30,214.3

	
14,384.6

	
18,233

	
17,562

	
15,560.8

	
20,509.7

	
116,464




	
Sales Price

	
(Rial)

	
75,000

	
34,000

	
35,250

	
58,000

	
36,780

	
39,652

	
278,682




	
Average Annual Crop Yield

	
(Kg/ha)

	
3737.8

	
3689

	
35,065

	
10,099

	
34,042.4

	
45,071.6

	
131,484




	
Irrigation Water Per Hectare

	
(MCM)

	
995.8

	
825.3

	
1354.7

	
1885.1

	
1336.1

	
2066.7

	
8463.7




	
Cultivated Land

	
(ha)

	
6210

	
3381

	
6900

	
644

	
322

	
322

	
17,779




	
Initial profit

	
(Rial)

	
1.74 × 1012

	
4.24 × 1011

	
9 × 1012

	
4 × 1011

	
4 × 1011

	
5.7 × 1011

	
1.2 × 1013




	
Total Released Water

	
(MCM)

	
6,183,838

	
2,790,188

	
9 × 106

	
1 × 106

	
430,215

	
665,486

	
2.1 × 107




	
Optimized Pattern

	
Cultivated land

	
(ha)

	
14.9

	
4.1

	
924.7

	
1918.6

	
7625.4

	
1791.3

	
12,279




	
Initial profit

	
(Rial)

	
4.18 × 109

	
5.17 × 108

	
1 × 1012

	
1 × 1012

	
9.5 × 1012

	
3.2 × 1012

	
1.5 × 1013




	
Total Water released

	
(MCM)

	
14,832

	
3401.4

	
1 × 106

	
4 × 106

	
1 × 107

	
3,702,191

	
1.9 × 107




	
Future

	
Current Situation

	
Crop Production cost

	
(Rial)

	
30,214.3

	
14,384.6

	
18,233

	
17,562

	
15,560.8

	
20,509.7

	
116,464




	
Sales Price

	
(Rial)

	
75,000

	
34,000

	
352,50

	
58,000

	
36,780

	
39,652

	
278,682




	
Average Annual Crop Yield

	
(Kg/ha)

	
3678.3

	
3676.3

	
34,624

	
9997.3

	
33,923.5

	
44,968.9

	
131,090




	
Irrigation Water Per Hectare

	
(MCM)

	
1257.7

	
1054.1

	
1774.1

	
2507.5

	
1685.4

	
2648.6

	
10,927.4




	
Cultivated Land

	
(ha)

	
6210

	
3381

	
322

	
644

	
322

	
6900

	
17,779




	
Initial profit

	
(Rial)

	
1.71 × 1012

	
4.23 × 1011

	
4 × 1011

	
4 × 1011

	
4 × 1011

	
1.1 × 1013

	
1.4 × 1013




	
Total Released Water

	
(MCM)

	
7,810,602

	
3,564,025

	
852,848

	
2 × 106

	
542,701

	
1.2 × 107

	
2.7 × 107




	
Optimized Pattern

	
Cultivated land

	
(ha)

	
51.2

	
41.9

	
942.7

	
1937

	
7661

	
1874

	
12,507.8




	
Initial profit

	
(Rial)

	
1.41 × 1010

	
5.23 × 109

	
1 × 1012

	
1 × 1012

	
9.6 × 1012

	
3 × 1012

	
1.5 × 1013




	
Total Water released

	
(MCM)

	
64,434.8

	
44,145.2

	
2 × 106

	
5 × 106

	
1.3 × 107

	
3,324,551

	
2.4 × 107
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Table 5. Comparison of the three scenarios: Reliability Index corresponding to a Vulnerability Index of 45%.
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Scenario

	
State

	
Reliability Index (%)

	
Changes to No AS State (%)






	
First

	
OCP

	
56

	
16.67




	
IIP

	
69

	
43.75




	
DI

	
74

	
54.16




	
CCD

	
71

	
47.91




	
Without AS

	
48

	
---




	
Second

	
OCP

	
25

	
31.57




	
IIP

	
27

	
42.10




	
DI

	
38

	
100




	
CCD

	
27

	
42.10




	
Without AS

	
19

	
---




	
Third

	
OCP

	
41

	
41.37




	
IIP

	
48

	
65.51




	
DI

	
53

	
82.75




	
CCD

	
45

	
55.17




	
Without AS

	
29

	
---
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