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3 Plant Breeding and Acclimatization Institute—National Research Institute, 60-479 Poznań, Poland
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Abstract: In this study, three fungi species (Botrytis cinerea, Rhizoctonia solani, Sclerotinia sclerotiorum)
were discriminated using hyperspectral and red-green-blue (RGB) data and machine learning meth-
ods. The fungi were incubated at 25 ◦C for 10 days on potato dextrose agar in Petri dishes. The
Hyperspectral data were acquired using an ASD spectroradiometer, which measures reflectance with
3 and 10 nm bandwidths over the range 350–1000 nm and the range 1000–2500 nm, respectively. The
RGB images were collected using a digital Canon 450D camera equipped with the DIGIC 3 processor.
The research showed the possibility of distinguishing the analysed fungi species based on hyper-
spectral curves and RGB images and assessing this differentiation using machine learning statistical
methods (extreme boosting machine with bootstrap simulation). The best results in analysed fungi
discrimination based on hyperspectral data were achieved using the Principal Component Analysis
method, in which the average values of recognition and accuracy for all three species were 0.96 and
0.93, respectively. The wavelengths of the shortwave infrared (SWIR) wavelength region appeared
to be the most effective in distinguishing B. cinerea-R. solani and B. cinerea-S. sclerotiorum, while of
the visible range (VIS) of electromagnetic spectrum in discrimination of R. solani-S. sclerotiorum.
The hyperspectral reflectance data were strongly correlated with the intensity of the pixels in the
visible range (R2 = 0.894–0.984). The RGB images proved to be successfully used primarily for the
identification of R. solani (recognition = 0.90, accuracy = 0.79) and S. sclerotiorum (recognition = 0.84,
accuracy = 0.76). The greatest differences in the intensity of the pixels between B. cinerea and R. solani
as well as R. solani and S. sclerotiorum occurred in the blue band and in distinguishing B. cinerea and
S. sclerotiorum in the red band.

Keywords: machine learning; fungi discrimination; reflectance spectra; RGB image

1. Introduction

Rapid and accurate identification of plant pathogens is essential to adopt the most
appropriate plant protection strategies [1]. Two groups of methods for pathogen identifica-
tion can be distinguished: direct and indirect. The direct group includes polymerase chain
reaction (PCR) [2], real-time PCR [3], loop-mediated isothermal amplification (LAMP) [4],
immunofluorescence (IF) [5], fluorescence in-situ hybridisation (FISH) [6], enzyme-linked
immunosorbent assay (ELISA) [7], flow cytometry (FCM) [8], and gas chromatography-
mass spectrometry (GC-MS) [9]. These methods proved to be highly sensitive and specific
in the detection of numerous plant pathogens. However, they are not suitable for in-field
analysis. In contrast with direct methods, the indirect can fulfil this task. The indirect
methods include thermography and reflectance spectroscopy, among which hyperspectral,
multispectral and RGB images play a significant role [10–12].
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Over the years, the rapid development of new technologies based on hyperspectral
techniques and RGB imaging has encouraged extensive research on pathogen identifica-
tion [13–18]. Hyperspectral techniques provide helpful information about the analysed
object based on a spectrum between 350 and 2500 nm. This method showed high sensi-
tivity to the subtle plant changes caused by diseases, and made it possible to distinguish
different disease types and perform early asymptomatic detection [19]. The RGB image is
represented by three colour component intensities such as red, green, and blue, and uses
8-bit monochrome standard and has 24 bits/pixel where eight bits for each colour (red,
green, and blue) [20]. The utilisation of images to evaluate diseases of plants has been
practised for over three decades [21,22]. Most of the available solutions use RGB imagery to
quantify symptomatic areas in the whole plant or its parts [23–28]. Recently, digital images
providing appropriate colour data for this task have increased dramatically due to the
availability of inexpensive instruments such as digital cameras, phones, or scanners [29].
While reflectance spectroscopy provides a massive amount of data, the next step provides
novel tools to extract knowledge from such data. Machine learning has emerged among
such tools, directing research to a new paradigm of data-driven science [30] and gaining
popularity in various fields of agriculture such as plant breeding [31], in vitro culture [32],
stress phenotyping [33], plant system biology [34], plant identification [35], and pathogen
identification [36].

Numerous plant diseases are caused by Ascomycota, represented among others by
Botrytis cinerea, Rhizoctonia solani and Sclerotinia sclerotiorum. These pathogens are char-
acterised by worldwide distribution and a wide host range. Considerable threat to the
agricultural production caused by B. cinerea, R. solani and S. sclerotiorum and limitation
of the disease identification methods used so far triggered the incorporation of remote
sensing technics into discrimination of these pathogens. The spectral pattern of B. cinerea
was investigated by Aboelghar et al. [37], who tested six spectra zones for distinguishing
the pathogen isolates collected from grape and strawberry and obtained the best results
with the use of the short-wave infrared wavelengths. Aboelghar et al. [38] also showed
the suitability of the Euclidean distance (ED) method for discrimination of that pathogen
isolates. The example illustrating the use of remote sensing for R. solani discrimination
is the study of Reynolds et al. [39], who focused on identifying wideband and narrow-
band vegetation indices optimal for the correlation of Rhizoctonia crown and root rot of
sugarbeet symptoms with visual ratings of the disease. In turn, the survey conducted
by Cao et al. [40] represents the study concentrated on remote sensing for S. sclerotiorum
detection. The authors investigated the potential of infrared thermography to distinguish
the infected and non-infected areas of the attacked oilseed rape leaves by S. sclerotiorum.
They proved the possibility of improving the classification results by image fusion based
on multi-model images.

The capabilities of various remote sensing techniques documented above induce new
research to compare the previously proposed methods and to develop new solutions that
ensure greater efficiency or lower the costs of pathogen identification. The study aimed
to compare the effectiveness of three fungi species (B. cinerea, R. solani, S. sclerotiorum)
discrimination based on hyperspectral measurements and RGB images using machine
learning statistical methods. Additionally, we wanted to determine the most informative
wavelengths and check relations between spectral reflectance data obtained using two
different sensors.

2. Materials and Methods
2.1. Fungal Cultures

The pathogens were isolated from rape plants with symptoms of fungal infection and
deposited in Plant Disease Clinic and Bank of Pathogens, the Department of Institute of
Plant Protection, National Research Institute, Poznań, Poland. The provided pathogens
were maintained at 16 ◦C under mineral oil. The cultures were grown on PDA (Potato
Dextrose Agar, Difco) medium and subcultured twice. Petri dishes were inoculated with
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7-old days fungal colony plugs in the centre. Before spectral measurements, the fungi
cultures were incubated at 25 ◦C for 10 days in the darkness (Figure 1).
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Figure 1. Three species of fungal cultures on Petri dishes.

2.2. Hyperspectral Measurements

The hyperspectral data were acquired using an ASD spectroradiometer (FieldSpec
Analytical Spectral Devices, Inc., Boulder, CO, USA), which measures reflectance with 3 and
10 nm bandwidths over the range 350–1000 nm and the range 1000–2500 nm, respectively.
Reflectance spectra were obtained as the ratio between the spectrum of a calibration panel
(Spectralon: SRT-99100 UV–VIS-NIR Diffuse Reflectance Target, LabSphere Inc. North
Sutton, NH 03260 USA) and that of analysed fungus cultures. All measurements were
performed using a pistol grip with a 10◦ Field of View (FOV) and afore optics lens attached
to the pistol grip at the height of 40 cm above the Petri dish illuminated by a 400 W halogen
lamp positioned 90 cm from the sample at an angle of 45◦ to the zenith. In order to decrease
the reflectance of semitransparent PDA, a black diffusing plate was placed under the Petri
dish holder. Before collecting reflectance data, the spectrophotometer was warmed up for
an hour and the lamp was turned on appropriately earlier so that the temperature was
saturated, and the output light was stable. The reflectance from each fungi culture in a
Petri dish was measured four times at four different dish positions. For each fungal species,
40 measurements were made in total.

2.3. RGB Images

Digital Canon 450D camera equipped with the DIGIC 3 processor was used to collect
the RGB images in JPG (Joint Photographic Experts Group) format. It is a 12.0 megapixels
digital single-lens reflex camera (DSLR) with a maximum resolution of 4272 × 2848. To
calculate mean DN (digital number) values from RGB images of each Petri dish, the MIPS
TNT™ software (Microimages Inc. Lincoln NE, USA) was used. The DN of the pixel
express the intensity of the radiation reflected or emitted from the part of the surface
represented by that pixel in the image. The band maxima for R, G, and B wavelengths for
the Canon EOS 450D were calculated by Cameron and Kumar [41] and were 600, 540 and
450 nm, respectively.

2.4. Data Processing and Models Created

Spectral measurements provided 808 spectral curves. Each curve has 2151 individual
bands, which means 2151 potential predictors. From a data science point of view, the
collected data set is not large, smaller than the number of estimators. Such a situation is
not unusual in natural science projects, where many factors, primarily the possibility of
obtaining a sufficiently large number of unique samples, limits the number of cases. The
entire procedure is outlined in Figure 2 and consists of three stages: (1) preprocessing,
(2) feature selection and (3) learning.
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2.4.1. Preprocessing and Feature Selection

Raw spectra require transformation before further processing. Based on our previous
experiences [42], we selected a Savitzky–Golay (SG) filter [43]. The SG filter uses local
derivatives and therefore is more robust against spectra imperfections than simple methods
such as basement alignment or continuum removal. The SG filter removes unnecessary
effects resulting from the non-ideal sampling process, like noise reduction or baseline shift.
SG filter requires three parameters: differentiation order, polynomial order, and size of
the smoothing window. By experiments, we found that the following values, respectively:
2, 2 and 5 provide locally optimal results. Wavelengths values after SG transformation
became input features for target classifiers. The target classifier is an Extreme gradient
boosting classifier-XGBoost [44]. XGBoost has been designed to process non-linear data
and allows extracting important features from datasets containing noise and redundant
information. Numerous studies [45–47] demonstrate the highest prediction accuracy and
provides remarkable results for spectral analyses in different scientific domains. Using
all predictors, especially with many features, results in a very long training time. For
that reason, in the second step, besides using all 2151 features, we independently applied
two additional feature selection methods due to the significant advantage of quantity in
the number of features over the cases. As the first, we limited the number of features to
the restricted group of most divisive bands, and in the second, we used standard Principal
Component Analysis (PCA). In that way, in the paper, we test three scenarios of feature
selection: (1) all features, (2) most divisive bands, and (3) PCA.

The first scenario does not require any additional steps. In the second scenario, we
selected a group of spectrum bands most important for the distinction of species. As “the
most important”, we define those bands whose distributions overlap to the slightest degree
for the studied populations. We used the value of two-sample Kolmogorov-Smirnov (K-S)
D-statistic as a variable importance index [48]. D-statistics takes values between 0 and
1 where 0 means full overlap and 1 means full separation, which means that the higher the
value, the higher separation. The D-statistic does not require an assumption on the form of
the distributions of compared sets. For each wavelength, D-statistic was calculated using:

D = sup
x
|F(x)− G(x)|

where F(x) and G(x) are two cumulative distribution functions, and supx is the supremum
of those two distributions. This means that the D takes the largest absolute difference
between F(x) and G(x) across all x values.

The D statistic was calculated for all possible combinations of variables, in our case-
three: B cinerea-R. solani, B. cinerea-S. sclerotiorum, R. solani-S. sclerotiorum. We used the
analysis of each pair because the features separating one pair may not be relevant to the
others. By increasing the number of the best predictors for each pair, we have observed that
beyond eight, the accuracy of the model does not increase. Next, we applied a cross product
on all three subsets to eliminate duplicates. Thus, we found a minimal set of 10 variables
that allow us to achieve the highest accuracy of the classifier. The second scenario involves
the standard PCA on the transformed and z-scored data. In a similar way as in the former
scenario, we found that beyond eight principal components, the accuracy of the model
remains constant.
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2.4.2. Learning Process

The typical procedure of training the XGBoost classifier requires dividing the collected
data into three sets [49,50]. Two sets, the training and the testing set, are used during
the training of the model, where the testing set allows us to report how well the model
is performing on the given stage of the training and, in effect, to avoid over-fitting. The
third is the evaluation set, which is used for independent validation of the model accuracy.
With a relatively small number of cases compared to the number of features, the role of
features in the trained model may vary significantly for the various components of the
training, testing, and evaluation sets. The consequence of such a situation is the model’s
potential over-fitting [51]. Machine learning models gain their highest performance when
the distributions of selected features in all subsets are very similar. This is not the case
when the number of cases surpasses the number of features, but when the data set is
relatively small, there is a risk that predictors selected in the training subset will not be
relevant to those left for evaluation. Such a situation results mainly in the high efficiency
of the training set and low efficiency during evaluation. Also, in small data sets, even
a minor number of potentially “bad” cases (for example, corrupted, contaminated or
incorrectly measured) have a substantial impact on the entire classifier and may lead to
wrong conclusions about the entire analytical procedure. In the first step, we set up a
classifier using softmax as a learning task and logloss as an evaluation metric. Other
hyperparameters we tuned individually for each scenario and input data. We applied a
bootstrapping procedure, including 200 iterations, to determine the risk of over-fitting and
identify potentially problematic cases in our data. If an over-fitting risk is high in such a
data set, we expect the testing set’s performance to vary between iterations. If such a risk is
low, each iteration shall return with similar, possibly high performance. Moreover, if there
are strong predictors in the data, the trained model will select them at each iteration, and
each iteration will indicate the same cases each time.

All 808 cases were randomly divided into the training set at each iteration, including
60% of cases, testing sets, including 20% of cases, and the evaluation set with the remaining
20%. This means that we have 200 variant training sets assessed by 200 different testing sets,
and each case had a chance to be included in the testing set 40 times on average. It is a large
enough number to assess the stability of the classification process. At each iteration, we save
the results of the evaluation and finally, each case is described by the number of correct and
incorrect hits. To assess each case individually [52], we propose that each case is determined
in three ways: (1) correctly classified (Good case) if the outcome agrees with the actual in
more than 85% hits; (2) incorrectly classified (Wrong case) if the outcome shows a different
label than the actual, but steady, namely, more than 85% hits for a wrong case; (3) Vague
case if the outcome takes different labels at each iteration—the threshold 85% was selected
arbitrarily. The second indicates that the case is more similar to another species than its
parent in the measured wavelengths. The third situation indicates that the classifier cannot
be trained efficiently for the given case. Bootstrap does not allow traditional performance
measures like sensitivity or specificity. For this reason, to evaluate the performance, we
use the classically defined accuracy (Acc) as the ratio of correctly classified objects to the
total number of classified objects in this class and recognition (Rec), an average percentage
of correct hits for the individual. The two measures are non-standard and apply only to
bootstrapping evaluations; however, Acc has the same meaning as accuracy in multiclass
classification, namely the fraction of correct classification.

ACC = G/(G + V + W)

where: G-number of good; V-number of vague; W-number of wrong

REC = avg (hc/h)

where: hc-correct hits; h-total hits.
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3. Results and Discussion
3.1. Hyperspectral Characteristics of Fungi

Hyperspectral measurements are performed using spectrophotometers that record
the reflected radiation in very many (more than 100) very narrow bands of wavelengths.
The reflectance characteristics of an object over different, contiguous wavelengths are
graphically represented by reflectance curves (spectra).

As shown in Figure 3, the spectra of B. cinerea, R. solani and S. sclerotiorum differed
visibly in the visible range (VIS) of the electromagnetic spectrum. In the whole range, the
spectrum of B. cinerea stood out from the others, and was characterised by the highest
reflectance and the most clearly marked water absorption bands with the maximum at
1450 nm and 1930 nm. The spectral characteristic of B. cinerea is very similar to those pre-
sented in the work of Aboelghar et al. [37], who used spectral measurements to distinguish
isolates of this pathogen. The differences in the course of the spectra were noted only
in the range of about 700 nm. The spectral curve presented by Aboelghar et al. [38] was
characterised by an increase in reflectance in this range; however, this was not observed in
our research.
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The comparison of the spectral characteristics of the three species is presented in
Figure 4. The highest differences in the whole optical range appeared between the spec-
tra of B. cinerea and R. solani. Similar differences were observed between B. cinerea and
S. sclerotiorum spectra, except for the VIS range and the second water absorption band
in SWIR wavelength region. On the other hand, the minor differences were registered
between R. solani and S. sclerotiorum. In this case, the highest differences were observed in
the VIS spectrum. In the visible range, the reflectance of B. cinerea and R. solani showed a
marked increase with increasing wavelength, while the reflectance of S. sclerotiorum was
only recorded in the blue range.

The most valuable wavelengths for discrimination of B. cinerea and R. solani and
B. cinerea and S. sclerotiorum were found in the SWIR range, on the descending portion of
the water absorption bands close to their maxima, which occur in 1450 and 1950 nm. The
usefulness of SWIR in distinguishing fungi grown on fungal culture media was also noted
by Aboelghar et al. [37], who based on the results of research on distinguishing between
B. cinerea, Aspergillus sp., Rhizopus sp., Penicillium italicum, Penicillium digitatum, Fusarium sp.,
Alternaria sp. Rhizoctonia sp. found the 2055–2315 nm wavelength range to be the most
useful. However, in these studies, they did not consider the ranges covering the water
absorption bands because the measurements were made outdoors. The advantages of SWIR
in the study of B. cinerea were also demonstrated by Conrad et al. [53], who, comparing the
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spectral characteristics of inoculated and healthy rice plants in the range of 1898–2551 nm,
found differences in the intensity of reflectance in the range of 1564–1854 nm.
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In studies on remote sensing to distinguish B. cinerea from F. oxysporum, Aboelghar
et al. [38] demonstrated the usefulness of wavelengths in the visible and near-infrared
(VNIR) range (350–1300 nm). In our study, VNIR also proved to be the most useful
for distinguishing R. solani and S. sclerotiorum. The best wavelengths for differentiation
between these two species were mostly in the VIS range (wavelengths 563–593 nm) and
shorter wavelengths in near-infrared (NIR) range (Figure 4 and Table 1). Another example
illustrating the usefulness of spectral measurements in the VNIR range for pathogen
recognition are the studies by Kong et al. [54], who, identifying S. sclerotiorum on rapeseed
stems based on spectral characteristics in the 384–1034 range, included the VIS wavelengths
among the most valuable wavelengths. Including these in our research turned out to
be optimal.
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Table 1. The 10 wavelengths most useful for distinguishing the three fungi species based on the
values D-statistic.

B. cinerea-R. solani B. cinerea-S. sclerotiorum R. solani-S. sclerotiorum

Band D-Statistic Band D-Statistic Band D-Statistic

1904 0.791 1904 0.818 572 0.525
1906 0.789 1376 0.815 575 0.511
1382 0.789 1901 0.800 563 0.496
1899 0.779 1420 0.799 576 0.475
1903 0.776 1899 0.798 564 0.458
1376 0.775 1373 0.798 593 0.437
1861 0.773 1897 0.797 559 0.433
1378 0.772 1868 0.794 1002 0.430
1375 0.770 1903 0.790 592 0.412
1383 0.770 1867 0.788 1141 0.394

The applied classification methods showed very high accuracy, exceeding 85%. The
highest number of correctly classified cases of B. cinerea (163) and S sclerotiorum (269) was
obtained using the PCA method (Table 2). On the other hand, the all-features method
generated the most correctly classified R. solani cases (270). Similar results were obtained
with the use of the Rec and Acc indices. The most significant number of cases of good
diagnosis and the highest mean values of the Rec and Acc indicators for all three species
were obtained due to the application of the PCA method. This method turned out to be the
most accurate in the classification of S. sclerotiorum (95%) and the worst in the classification
of B. cinerea (91%). The accuracy of the Selected Features method did not exceed 90% for
any of the fungi analysed.

Table 2. Reliability of distinguishing three species of fungi on the basis of hyperspectral data.

Methods Classification
Assesment B. cinerea R. solani S. sclerotiorum Mean

All features

Wrong a 9 1 8 6
Vague b 11 13 39 21
Good c 160 270 237 222.333
Rec d 0.915 0.967 0.918 0.933
Acc e 0.889 0.951 0.835 0.891

Selected
fetures

Wrong 8 6 18 10.667
Vague 15 29 36 26.667
Good 157 249 230 212
Rec 0.904 0.922 0.874 0.900
Acc 0.872 0.877 0.810 0.853

PCA

Wrong 6 5 4 5
Vague 11 13 11 11,667
Good 163 266 269 232.667
Rec 0.940 0.962 0.963 0.955
Acc 0.910 0.940 0.950 0.933

a incorrectly classified if the outcome shows a different label than the actual, but steady, namely, more than 85%
hits for a wrong case. b if outcome takes different labels at each iteration. c correctly classified if the outcome
agrees with the actual in more than 85% hits. d the ratio of correctly classified objects to the total number of control
objects in this class. e the ratio of correctly classified objects to the total number of classified objects in this class.

3.2. RGB Characteristics of Fungi

An RGB (truecolor) image consists of individual pixels for which red, green, and blue
components are defined. The light intensity level of each of these three components is
encoded as Digital Number (DN) in the range from 0 to 255. Thus, each pixel colour of an
RGB image is a mixture of light from the three bands, and DN on the red, green, and blue
channels can be extracted from this image.

The D-statistics presented in Figure 5 show that the most remarkable differences in
the mean pixel intensity values from RGB images occurred between B. cinerea and R. solani.
The most significant differences were recorded in the blue band (D = 0.84) and the smallest
in the red band (D = 0.70). The most minor difference in mean pixel intensity values was
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when comparing R. solani and S. sclerotiorum. In this case, the differences were also the
largest in the blue band (D = 0.56) and the smallest in the red band (D = 0.20). On the other
hand, the opposite situation was observed when comparing B. cinerea and S. sclerotiorum.
The D-statistics in the blue, green and red bands were 0.41, 0.48, and 0.60, respectively.
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The helpfulness of digital imaging in the discrimination of disease symptoms is
well documented in many studies [55–59]. The advantages of the blue band in terms
of pathogen identification were presented by Fernández et al. [60], who distinguished
healthy and Podosphaera xanthii (powdery mildew)-infested cucumber leaves with an accu-
racy of 0.89% based on the multispectral RGB (mRGB) image (R = 663–673, G = 550–570,
B = 465–485 nm) and images from the blue channel. Another example illustrating an
application of RGB images in fungi discrimination is delivered by Pozza et al. [61], who
analysed the infestation of common beans seeds by Aspergillus flavus, A. niger, A. ochraceus,
Penicillium sp., Mucor sp, Rhizopus sp, Fusarium sp, Rhizoctonia sp. His study showed that,
among the six algorithms used (random forest (rf), rpart, rpart1SE, rpart2, naive Bayes, and
svmLinear2), the best results were guaranteed by Random Forest ensuring the classification
accuracy of 0.80 Kappa 0.77. In a study performed by Anthony and Wickramarachchi [62],
RGB images were successfully used to differentiate Rice blast (Magnaporthe grisea), Rice
sheath blight (Rhizoctonia solani) and Brown spot (Cochliobolus miyabeanus) on rice leaves.
The discrimination efficiency obtained in these experiments was 70%. Pavicic et al. [63]
used the RGB camera to assess the severity of disease symptoms caused by B. cinerea on
Arabidopsis thaliana leaves over time. The research conducted using pixel classification and
a random forest algorithm allowed the discrimination between three categories of leaf frag-
ments: healthy, chlorotic and necrotic. The advantages of using a single wavelength were
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also confirmed by the research of Sun et al. [64], who developed a method for simulating the
development of the mycelium of B. cinerea, Rhizopus stolonifer, and Colletotrichum acutatum
based on the results of the reflectance of the wavelength of 716 nm.

Besides the original RGB values registered with standard digital CCD cameras, mRGB
images are often successfully used in the studies on pathogen discrimination [65]. For
example, Rego et al. [66] analysed the capabilities of using images captured in 19 (365
to 970 nm) bands with mRGB camera to identify Fusarium pallidoroseum, R. solani and
Aspergillus sp. on bean seeds. The accuracy of discrimination between these pathogens
validated with the model developed in this study was 92–99%. Interesting results obtained
with the use of mRGB camera are also presented by Fahrentrapp et al. [67], who focused
on identifying B. cinerea on tomato leaves before the onset of disease symptoms. That
experiment found an increase in the intensity of the red reflectance between inoculated and
healthy leaves with time. However, the differences did not change over time concerning
blue and green wavelengths. On this basis, the authors of this study found red wavelengths
more helpful in detecting B. cinerea infection on tomato leaves (before the onset of disease
symptoms) than blue and green wavelengths.

The classification accuracy carried out on the data from RGB images turned out to be
lower than that obtained on the data from hyperspectral measurements (Table 3). In this
case, R. solani was classified the most accurately (79%), and the accuracy of S. sclerotiorum
and B. cinerea classification was 76% and 51%, respectively.

Table 3. Reliability in distinguishing three species of fungi based on RGB images.

Classification
Assesment B. cinerea R. solani S. sclerotiorum

Wrong a 6 1 5
Vague b 16 14 12
Good c 23 57 54
Rec d 0.717 0.898 0.835
Acc e 0.511 0.792 0.761

Markings a, b, c, d, e as in the Table 2.

3.3. Relationship between Hyperspectral and RGB Characteristics

There have been many studies on pathogen-fungi identification in the literature; how-
ever, few studies have compared the performance of hyperspectral and RGB characteristics
of fungi. Our study indicated a close relationship between the intensity of pixels in the
visible range and the corresponding values of hyperspectral reflectance factors (Figure 6).
The highest convergence was obtained for R. solani in all three ranges (blue 0.984, green
0.982 and red 0.971) and the smallest for S. sclerotiorum (blue 0.923, green 0.910, red 0.894).
Mutual relations between the values registered with RGB and hyperspectral cameras were
analysed, among others by Du et al. [68], who investigated the colour display of hyperspec-
tral data with a single RGB composite. Similar experiments were performed by Magnusson
et al. [69], who presented a method of transforming the visible spectral bands of hyper-
spectral images to the RGB colour space. On the other hand, there are studies focused on
recovering high-quality hyperspectral images from RGB values [70–73]. The high correla-
tion between the intensity of the pixels in the visible range and the corresponding values
of the hyperspectral reflectance presented in our work is consistent with the results of the
research presented above. We hope that this approach may result in replacing expensive
hyperspectral devices with consumer-grade low-cost RGB cameras. Another opportunity to
increase pathogen identification effectiveness is combining RGB and hyperspectral imaging
with image analysis software [21,74–76].
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The results of the investigation indicate that the proposed method is worth applying
in further studies in fungi identification.

4. Conclusions

The conducted research gave the opportunity to distinguish the analysed fungi not
only based on hyperspectral curves but also with RGB images. The most effective method in
the hyperspectral identification of the fungi analysed turned out to be the PCA method, in
which the average values of Rec and Acc for all three fungi were 0.96 and 0.93, respectively.
The most valuable wavelengths for distinguishing B. cinerea-R. solani and B. cinerea-S.
sclerotiorum were the wavelengths of the SWIR range and for distinguishing Rhizoctonia-
Sclerotinia the wavelengths of the VIS range.

The high correlation in three ranges of the visible spectrum (blue, green and red)
between the hyperspectral and multispectral data indicates the possibility of developing
a simpler method of identifying fungi in Petri dishes. The method based on RGB images
proved to be successful primarily for the identification of R. solani (rec = 0.90, acc = 0.79)
and S. sclerotiorum (rec = 0.84, acc = 0.76). The most significant differences in the intensity
of the pixels between B. cinerea and R. solani and R. solani and S. sclerotiorum occurred in the
blue band and in distinguishing B. cinerea and S. sclerotiorum in the red band.
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The results of research on the use of RGB images to identify fungi bring us closer to the
development of a quick and non-contact method of identifying fungi based on the use of
cheap sensors. The presented results indicate the need to include the analysis of normalized
RGB images in subsequent studies, converted to HSI (hue, saturation, intensity) [55] and
spectral indices [61,77]. Considerable improvement in the access to image data and increase
in computational power implies the opportunity to fast develop new methods based on the
fusion of image acquisition techniques with machine learning. The collection of RGB and
hyperspectral data registered in this study in the current spectral library enables multiple
uses of the stored data in future research.
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