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Abstract: Auxin receptor plays a significant role in the plant auxin signalling pathway in response
to abiotic stress. Recently, we found that transgenic rice overexpressing ABP57 had higher drought
tolerance than the wild-type cultivar, MR219, due to the fact of its enhanced leaf photosynthetic rate
and yields under drought stress. We performed a microarray study on this line to investigate the
underlying mechanisms contributing to the observed phenotype. After microarray data filtering,
3596 genes were subjected to modular gene co-expression network (mGCN) development using
CEMiTool, an R package. We identified highly related genes in 12 modules that could act to specific
responses towards drought or any of the abiotic stress types. Gene set enrichment and overrep-
resentation analyses for modules extracted two highly upregulated modules that are involved in
drought-related biological processes such as transmembrane transport of metal ions and response to
oxidative stress. Finally, 123 hub genes were identified in all modules after integrating co-expression
information with physical interaction data. In addition, the interplay of significant pathways between
the metabolism of chlorophyll and flavonoid and the signalling pathways of MAPK, IAA, and SA
inferred the concurrent involvement of stress tolerance response. Collectively, our findings seek new
future directions for breeding strategies in rice tolerant improvements.

Keywords: transcriptomics; co-expression network; modular analysis; drought stress; hub gene;
Abp57; rice improvement; bioinformatics

1. Introduction

Rice (Oryza sativa L.) is one of the primary staple food sources that contributes to
over 20% of the daily calorie intake of more than 3.5 billion people. Hence, considerable
effort has been made to ensure a sufficient rice yield supply to meet the rising population’s
demand. However, a recent study suggested that rice’s global average yield improvement
is still far behind the required rate to achieve the projected global demands by 2050 [1].
The slower pace of yield improvement is partly due to the diminishing returns to further
intensification of irrigated rice systems [2]. In addition, the growing competition for water
resources from other crops and industrialisation have also limited the expansion of irrigated
rice areas.

In contrast to irrigated rice systems, which have almost achieved the full genetic
potential of the high-yielding rice cultivars, the yield of rainfed rice remains low and
inconsistent. This indicates an enormous upside potential for the yield of rice grown under
a rainfed ecosystem. Numerous studies have pointed out that frequent occurrences of
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drought and the lack of drought-tolerant high-yielding rice cultivars are two of the major
factors contributing to the suboptimal rice production in rainfed ecosystems [3,4]. Therefore,
the development of drought-tolerant high-yielding rice is of paramount importance to
ramping up the production of rainfed rice.

Auxin is a phytohormone that functions as a major coordinator in virtually all of the
biological processes in plant growth and development. These biological processes include
a plant’s tropic response towards gravity and light, organ patterning, cell differentiation,
seed dormancy, and vascular development [5]. Recent mounting evidence shows that auxin
may also play a role in plant response to drought stress. Much of the evidence comes from
the realisation that the gene expression of many auxins-related genes was significantly
altered under drought conditions. In rice, an expression analysis on 31 rice indole-3-acetic
acid (OsIAA) genes showed that more than 15 were upregulated under drought stress [6].
In addition, a genome-level microarray analysis in rice also demonstrated that more than
204 auxin-responsive genes exhibited altered expression under desiccation conditions [7].
Given the response of auxin-related genes towards drought stress, numerous studies
have been conducted to overexpress these genes in various plant species to enhance their
drought tolerance. In potatoes, the overexpression of YUCCA6, a flavin monooxygenase of
tryptophan-dependent auxin biosynthetic pathways, has resulted in elevated endogenous
auxin levels and enhanced drought resistance [8]. In addition, the overexpression of auxin-
related genes, such as OsPIN3t, TLD1/GH3.13, and OsIAA6, have also been found to confer
higher tolerance of rice towards drought conditions [9–11]. Taken together, auxin-related
genes show great potential to be utilised in the attempt to develop rice cultivar with
drought tolerance.

Auxin-binding protein (ABP) is a family of low-abundance proteins that bind re-
versibly to auxin with high specificity and affinity. Owing to their auxin-binding properties,
ABP has long been suggested to function as an auxin receptor, mediating diverse cellular
responses in response to different endogenous auxin levels. ABP57 is a 57 kDa ABP that
was first isolated from the soluble protein fraction of the shoot of rice (Oryza sativa L.)
seedlings by Kim et al. (1998) [12]. An in vitro experiment has proven that ABP57 functions
by activating plasma membrane H+-ATPase through direct interaction in response to the
concentration of auxin [13]. In contrast to the classical ABP1, ABP57 appears insensitive to
naphthaleneacetic acid (NAA) despite having a very high binding affinity with IAA [14].
Numerous overexpression studies have shown that a higher expression level of OsAbp57
can lead to increased seed size, faster seed germination, and seedling growth [15]. Recently,
we found that transgenic rice overexpressing ABP57 had higher drought tolerance than
wild-type cultivar, MR219, due to the fact of an enhanced leaf photosynthetic rate and yields
under drought stress [16]. We performed a microarray study on this line to investigate the
underlying mechanisms contributing to the observed phenotype.

Co-expression is a well-known biological network technique in predicting the gene
function using a myriad of transcriptomics data from RNA sequencing or microarrays
technology by connecting the genes based on their similar expression profiles [17,18].
Through the guilt-by-association principle, genes with similar mRNA expression profiles
across the tissue, treatment, or developmental stage are predicted to share a similar function
and are regulated via similar transcription factors [17,19]. The co-expression relationship
can be represented as a network graph that connects nodes (i.e., co-expressed genes) by
edges, indicating correlation-based evidence between genes. A group of nodes that are
highly interactive with one another is known as a module. Within a module, genes with
high connectivity are defined as hub genes. Modules are usually enriched to discover a
set of co-expressed genes that are overrepresented in a similar biological process (i.e., gene
function such as plant defence or signal transduction), molecular function (i.e., gene activity
such as protein kinase or catalytic activity), and cellular component (i.e., gene location such
as the cell wall or chloroplast). This information would be essential for understanding
the function of a gene and on how genes are produced and operate during response to
drought in rice.
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In the present study, an assessment of the morpho-physiological traits exhibited by
transgenic rice overexpressing OsAbp57 grown under two watering regimes was performed
to identify the possible traits that may contribute to the drought tolerance of transgenic rice.
In addition, a microarray analysis was also conducted to identify differentially expressed
genes in the transgenic plant compared to its parental line, MR219, under normal conditions.
Here, we performed a modular gene co-expression network (mGCN) analysis of this in-
house microarray dataset to examine the co-expressed gene modules, evaluate the module
activity between samples of MR219 and transgenic rice overexpressing OsAbp57 (Abp57-OE),
and enrich a set of co-expressed gene modules to associate them with a particular function,
activity, and cellular location. In this study, we represented the phenotypic class of MR219
and transgenic rice as wild-type (WT) and overexpressing OsAbp57 (Abp57-OE), respectively.
To grasp an understanding of the transcriptional activity of overexpressed OsAbp57 under
drought conditions, we integrated protein–protein interaction (PPI) information into the
constructed modules to identify the most connected genes (i.e., hubs) within the network
that may play a function as a critical regulator in response to drought stress. Finally, we
conducted an expression analysis on a few selected genes to investigate their role in rice
drought tolerance.

2. Materials and Methods
2.1. Sample Preparation and RNA Extraction

The T3 seeds of Abp57-overexpressing rice (OE) were obtained from our previous
Agrobacterium-mediated transformation study [20] and were cultivated on MS media for ten
days along with MR219 (WT) seed as a control. Each WT and Abp57-OE group consisted
of three biological replicates. Total RNA was isolated from seedling tissues of Abp57-OE
and WT using TRIzol reagent (Life Technology, Waltham, MA, USA), followed by DNase
treatment via Ambion TURBOTM to eliminate DNA contamination. The quality of the
extracted RNA was measured using NanoDrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) in which samples with a concentration of 1.8 to 2.1
(A260/A280) were considered. We determined the integrity of the extracted RNA using
a Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). All samples with an RNA
Integrity Number (RIN) of 8.0 to 10.0 were subjected to microarray analysis.

2.2. Gene Expression Profiling, Differentially Expressed Genes (DEGs), and Enrichment Analyses

Gene expression profiling was conducted on the three replicates of seedling tissues of
WT and Abp57-OE using Affymetrix Rice (Chinese Build) Gene 1.0 ST Array that consists of
41,770 transcripts (Affymetrix Inc., Santa Clara, CA, USA). The CEL file was imported into
Affymetrix Expression ConsoleTM Software to check for quality control of raw data and data
normalisation following the manufacturer’s protocol. The robust multiarray analysis (RMA)
method was applied to ensure that the relative log expression signal (RLE) was comparable
between samples. The microarray experiment was then previously deposited into the NCBI
by Tan et al. (2017) [21] and is accessible through the NCBI GEO DataSets (DOI: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99055, accessed on 1 June 2017) [22].

The CHP files resulting from normalisation for DEGs analysis were then imported
into the Transcriptome Analysis Console (TAC) software version 3.1 (Applied Biosystems,
Foster City, CA, USA), following the manufacturer’s specifications. Using TAC, a statistical
method of one-way analysis of variance (ANOVA) was utilised to obtain the DEGs of WT
and Abp57-OE with default parameters: a fold change > |2| and an ANOVA p-value < 0.05.
One-way ANOVA was calculated based on F = Mean sum of square between group
(MSB)/Mean sum of square within group (MSW), where F follows an F distribution with
degrees of freedom between group (df) = K – 1 and within group (DFw) = N – K. K repre-
sents the number of groups, and N is the total number of observations across all groups.

For the MSB formula, MSB = ∑(Xi ∑ Xt)2/K ∑ 1; where Xi is the mean of group
i, and Xt = mean of all observations (all observations from all groups are combined to
form a single group, and the mean is subsequently calculated). For the MSW formula,

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99055
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99055
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SSW = ∑(Xij − Xj)2/N − K; where Xij is an observation within group j, and Xj = mean of
group j. Thus, overall, F = MSW/MSB = (∑(Xi − Xt)2/K − 1)/(∑(Xij − Xj)2/N − K).

For functional annotation of DEGs, we searched against several databases, including
the National Center for Biotechnology Information version 236 (NCBI; https://www.ncbi.
nlm.nih.gov, accessed on 15 March 2020) [23], UniProt version 2020_04 (https://www.
uniprot.org, accessed on 15 March 2020) [24], Rice Genome Annotation Project version
7.0 (RGAP; http://rice.plantbiology.msu.edu/, accessed on 15 March 2020) [25], The Rice
Annotation Project Database version 1.0 (RAP-DB; https://rapdb.dna.affrc.go.jp, accessed
on 15 March 2020) [26], and the Beijing Genomics Institute Rise Information System version
1.0 (BGI-RIS; http://rise.genomics.org.cn/, accessed on 15 March 2020) [27]. The Gene
Ontology (GO) terms were analysed with the Singular Enrichment Analysis (SEA) pro-
gram available on AgriGO version 2.0 (http://bioinfo.cau.edu.cn/agriGO/, accessed on
15 March 2020) [28] with the Affymetrix Genome Array (GPL2025) as background. Genes
with 2-fold expression levels and p-values < 0.05 were used for SEA analysis.

2.3. Expression Analyses of Randomly Selected Expressed Genes by qRT-PCR

Six genes were randomly selected for further investigation to validate the reliability of
the microarray data as follows: ATPF1G (Os07g0513000), OsCAO1 (Os10g0567400), OsEno5
(Os06g0136600), OsCPS4 (Os04g0178300), NAS1 (Os03g0307300), and CHI (Os12g0115700).
Total RNA was extracted from one-week-old seedlings of MR219 using TRIzol reagent (Life
Technology, Waltham, MA, USA) and then subjected to DNase treatment using Ambion
TURBOTM DNase (Thermo Fischer Scientific, Waltham, MA, USA). The total RNA was
reverse-transcribed into first-strand cDNA with a Maxima First Strand cDNA synthesis kit
(Thermo Fisher Scientific, Waltham, MA, USA). An equal amount of cDNA was used as the
template for PCR amplification using SYBR Green Master Mix (Thermo Fisher Scientific,
Waltham, MA, USA). Genes of interest were amplified using the specific primers listed in
Supplementary Materials Table S1. The relative expression level of an individual gene was
determined using the ∆∆ Ct calculation [29]. The housekeeping genes U6 and UBQ5 were
used as an internal control. One-way ANOVA was then performed to assess DEGs with a
p-value < 0.05. The expression level of DEGs was later compared with gene profiling data
to determine the validity of the microarray data.

2.4. Construction of Gene Co-Expression Network Modules

To further support the reliability of our Abp57-OE microarray data in drought, the co-
expression module analysis was carried out using the CEMiTool R package version 1.20 [30].
The published microarray dataset, under the accession number GSE99055, was employed
as a discovery set [21]. In this study, the correlation method of Pearson was selected to
transform the gene expression matrix (m × n) into an adjacency matrix, where m denotes
as genes and n represents the samples. A soft-threshold power (β) selection algorithm was
executed based on a scale-free topology criterion to construct an adjacency matrix, later
associated with the relationship between co-expression modules. The adjacency matrices
were transformed using the best threshold determined based on the “scale-freeness” of the
constructed network generated by the default function of CEMiTool. Unsigned network
analysis was conducted to infer whether modules represented general processes of drought
stress or any stress-related responses in transgenic rice overexpressing OsAbp57. The
dissimilarity threshold of 0.8 was employed as a cut-off for hierarchical clustering by
the agglomerative method, where genes with common expression levels were grouped
into clusters. The following criteria were used to build the network module: coefficient
of determination for linear regression fit, R2 (R2 > 0.8); the number of gene modules
(min_ngen) > 20; threshold similarity of eigengene (diss_thresh > 0.8); the number of
high-connectivity genes in each module, hub genes (n = 5).

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.uniprot.org
https://www.uniprot.org
http://rice.plantbiology.msu.edu/
https://rapdb.dna.affrc.go.jp
http://rise.genomics.org.cn/
http://bioinfo.cau.edu.cn/agriGO/
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2.5. Gene Set Enrichment and Overrepresentation Analysis of Modules

The gene set analysis was performed for each module using the mean rank method
implemented in the Fast Gene Set Enrichment Analysis (FSGEA) R package to identify
modules of interest from constructed gene co-expression network [31]. The activity of the
modules was evaluated by determining which modules were upregulated or downregu-
lated in the samples of the wild-type MR219 and the OsAbp57 overexpressing lines. The size
of the gene set was generated by default in a range between 15 and 1000. To enrich the asso-
ciated function for each module, the hypergeometric distribution test (overrepresentation
analysis) was performed using the clusterProfiler R package [32]. The Gene Ontology (GO)
annotation of gene modules was retrieved and downloaded from Phytozome version 12.0
(https://phytozome.jgi.doe.gov/, accessed on 10 April 2021) [33]. The significance cut-off
of p-value < 0.05 was used to assign overrepresented biological process (BP), molecular
function (MF), and cellular component (CC) of genes within modules.

2.6. Identification and Validation of Hub Genes

The hub genes were determined by identifying genes with higher connectivity within
the modules. The hub genes were ranked based on the top 10 genes within the network
modules. For instance, if the module size was 200, then 20 genes with the largest number
of connectivity could be considered hub genes [34]. Integration between co-expression
information and protein–protein interactions (PPIs) may help discover important hubs in
the module. The rice PPI dataset from the STRING database version 11.5 was retrieved by
the Cytoscape plug-in, StringApp version 1.7.0 [35,36], using the list of gene modules as
search queries with the default confidence cut-off of 0.4 and above. A single protein with
no interaction was discarded, and only interactions with evidence of known interaction
(i.e., curated databases and experimentally determined) were kept for further analysis.
Module graphs for gene-encoded protein networks from the rice PPI dataset on STRING
were constructed by merging PPI information to visualise gene interaction in co-expression
modules and identify potential hubs.

2.7. KEGG Pathway Mapping Analysis

Each module was used to conduct pathway mapping analysis using the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) Mapper tool version 4.3 (https://www.genome.
jp/kegg/mapper.html, accessed on 1 June 2021) [37]. The KEGG Orthology identifier
(KO ID) for genes was retrieved from the Phytozome v12 database using the BioMart
tool [33,38]. All genes in each module were then categorised into the following KEGG
pathways: (i) metabolism, (ii) genetic, (iii) environmental information processing, (iv) cel-
lular processes, and (v) organismal systems. The interactions between hub genes were then
manually connected as red arrows on the pathway maps.

3. Results
3.1. Global Gene Expression Profiling of the Abp57-OE Line

To gain insight into the transcriptional changes triggered by the OsAbp57 overexpres-
sion, a global gene expression analysis on WT and transgenic line (Abp57-OE) grown under
normal conditions was performed through DNA microarrays. The microarray data analysis
revealed that a total of 131 genes (90 upregulated and 41 downregulated) were differentially
expressed (fold change > 2, p-value < 0.05) in transgenic lines as compared to MR219. The
reliability of the microarray data was then assessed by quantitative real-time PCR on six
randomly selected DEGs, and the differences were validated (Figure 1). The expression
level of DEGs was largely consistent with the microarray result, implying that the data
were highly reliable.

https://phytozome.jgi.doe.gov/
https://www.genome.jp/kegg/mapper.html
https://www.genome.jp/kegg/mapper.html
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Figure 1. qPCR validations on six randomly selected DEGs. The bar plot represents the mean ±
standard error for two biological replicates and three technical replicates. The difference in gene
expression between the control (WT) and Abp57-OE was determined by a one-way ANOVA method
with a cut-off p-value < 0.05. The error bars indicate the standard error.

Gene Ontology (GO) enrichment analysis revealed that response to stimulus, home-
ostasis process, transport, oxidation-reduction, lipid metabolic process, and biosynthetic
process were among the significantly altered biological processes in transgenic rice. Mean-
while, for molecular function, DEGs were enriched considerably in metal ion binding, ATP
binding, ion transmembrane transporter activity, antiporter activity, peroxidase activity,
electron carrier activity, and catalytic activity. For cell components, we identified that the
DEGs were significantly regulated in the membrane, chloroplast, and vacuole. The result
of the GO enrichment analysis is summarised in Table 1.

Table 1. Functional classification of the differentially regulated genes (DEGs) in OsAbp57-
overexpressing transgenic rice. GO term enrichment analysis was performed using the AgriGO
analysis tool—Single Enrichment Analysis (http://bioinfo.cau.edu.cn/agriGO/analysis.php, ac-
cessed on 15 March 2020). The GO enrichment of biological process (B), molecular function (F), and
cellular component (C) was generated based on a false discovery rate (FDR) and adjusted p-value
cut-off of 1.0 × 10−5.

GO Term Ontology Description Number of DEGs FDR

GO:0050896 P Response to stimulus 32 2.20 × 10−24

GO:0051234 P Establishment of localisation 30 6.00 × 10−21

GO:0051179 P Localisation 30 6.00 × 10−21

GO:0006810 P Transport 29 4.60 × 10−20

GO:0009987 P Cellular process 51 8.40 × 10−18

GO:0009607 P Response to biotic stimulus 14 8.50 × 10−18

GO:0006811 P Ion transport 17 3.20 × 10−16

GO:0008152 P Metabolic process 47 1.70 × 10−15

GO:0006950 P Response to stress 17 5.80 × 10−12

GO:0042592 P Homeostatic process 10 1.00 × 10−11

GO:0051704 P Multi-organism process 10 2.30 × 10−10

GO:0003824 F Catalytic activity 50 6.30 × 10−14

GO:0022857 F Transmembrane transporter activity 17 7.60 × 10−14

GO:0005488 F Binding 48 2.60 × 10−12

GO:0015075 F Ion transmembrane transporter
activity 13 2.60 × 10−12

GO:0005215 F Transporter activity 17 5.00 × 10−11

GO:0022891 F Substrate-specific transmembrane
transporter activity 13 5.00 × 10−11

GO:0046872 F Metal ion binding 25 6.60 × 10−11

GO:0043167 F Ion binding 25 1.20 × 10−10

GO:0043169 F Cation binding 25 1.20 × 10−10

GO:0022892 F Substrate-specific transporter activity 13 2.80 × 10−10

http://bioinfo.cau.edu.cn/agriGO/analysis.php
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3.2. Modular Gene Co-Expression Analyses of the OsAbp57-OE Line

To further support the reliability of our Abp57-OE microarray data in drought stress,
we performed the mGCN analysis. In total, 41,770 genes across six samples were used to
construct an mGCN to determine key modules of drought-tolerant transgenic rice, OsAbp57-
OE. In Figure 2A, the dendrogram demonstrates the clustering of six samples, whereby the
samples were clustered based on wild-type samples (turquoise) and OsAbp57-OE samples
(red). Using the default parameters, the soft-threshold value (β) of 14 was selected by a
scale-free topology fit (R2) of 0.824, indicating the best threshold for a scale-free network
model (Figure 2B). A total of 13 co-expressed modules containing 3596 genes (i.e., M1 to
M12, including one noncorrelated module, M13) were identified using the dissimilarity
threshold of 0.8 as a hierarchical clustering cut-off. Module M1 holds the highest number
of co-expressed genes (2004), followed by other modules in the following order, and the
smallest number of genes (41) was discovered in M11 and M12. Of these, only 11 co-
expressed modules (M2 to M12) with a p-value less than 0.05 were subjected to significant
module activity. All module enrichment plots discovered in co-expression analysis were
shown to be upregulated in the class of OsAbp57-OE samples (OE) compared with the
wild-type samples (WT), except for module M6 of Abp57-OE, which featured a general
downregulation when compared with the WT sample (Figure 2C). The upregulation in
Abp57-OE class and downregulation in WT class has suggested the sensitivity of transgenic
rice, OsAbp57, towards drought stress.Agronomy 2022, 12, x FOR PEER REVIEW 8 of 22 
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Figure 2. CEMiTool outputs for the OsAbp57-OE line microarray dataset. (A) Clustering dendrogram
of genes based on the expression profiles. The turquoise colour indicates MR219, and the red colour
represents the OsAbp57-OE line. (B) Scale-free topology (R2) and mean connectivity to identify the
soft-threshold power (β) between 1 and 20. The scale-freeness of the network was determined at
a soft threshold of 14, above the R2 threshold of 0.8. (C) Gene set enrichment analysis for module
activity of the OsAbp57-OE line (OE) and MR219 (WT). The size and colour of the modules represent
the normalised enrichment score (NES). All modules were upregulated in OE except M6, with
downregulation in OE and upregulation in WT.

In OE, modules M2 (OE; NES = 3.39; WT; NES = −3.46) and M3 (OE; NES = 3.58;
WT; NES = −3.63) featured strong upregulation and downregulation in module activity
(Figure 2C). The enrichment analysis of each module demonstrated that co-expressed genes
in modules M2 and M3 were involved in GO terms transmembrane transport including
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metal ion transport and response to oxidative stress (Figure 3A,B). Module M2 was enriched
in defence response (adjusted p = 0.30099; 11/1117 genes), cell redox homeostasis (adjusted
p = 0.37956; 10/1117 genes), and proteolysis (adjusted p = 0.3183; 51/1117 genes). How-
ever, genes in module M3 were involved in the fatty acid biosynthetic process (adjusted
p = 0.88612; 18/1117 genes) and signal transduction (adjusted p = 0.88612; 13/1117 genes).
Overall, other modules were also strongly enriched in response to oxidative stress, such as
modules M4, M5, M7, M8, M10, and M11 (Supplementary Materials Table S2).
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3.3. Hub Genes’ Identification in OsAbp57-OE Associated with Drought Stress

A hub gene is a high-degree gene in the module and is presumed to be a vital candidate
that controls other genes in the network. The top 10 most connected genes in each module
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were determined using the abovementioned methods. We identified 123 hub genes in
12 modules (i.e., M1 to M12). Detailed information on the hub genes of each module is
listed in Supplementary Materials File S1. The hub gene analysis discovered 15 origin hubs,
which were initially found in the CEMiTool module, including UGDH and ONI3 in module
M1; KINUA, TPR, and ABC-1 in M2; HRZ2 in M3; SUPM1 and BAK1 in M5; AAO2 and
4CL1 in M7; PEPC-2 and NPR5 in M10; PPR and OAT in M11; OsMutY in M12. Moreover,
we found that origin hubs associated with drought stress mechanisms were upregulated in
the network, particularly HRZ2 in response to Fe3+ starvation and JA-mediated signalling
pathway, AAO2 in response to water distress, and OAT in various responses to abiotic
stress tolerance such as to water distress, osmotic and salt stress, hormonal stimuli of ABA,
JA, BR, and IAA.

Figure 3B,D demonstrate the gene network for interesting modules M2 and M3,
respectively. We discovered several upregulated genes in enriched OsAbp57-OE modules
M2 and M3 such as HSP70, KINUA, TPR, ABC-1, PK, Os01g0655500, PRR1, MDH, HRZ2,
TIG, PTR, PRF1, and KAR (Table 2). Interestingly, the Gene Ontology annotation shows
that some hub genes are significantly involved in stress-related biological processes, for
instance, in response to the metal ion, Cd2+ (i.e., HSP70), Fe3+ starvation and JA-mediated
signalling pathway (i.e., HRZ2), and reactive oxygen species (ROS) (i.e., MDH), including
PRR1, are reported to play a role in the phosphorelay signal transduction system and the
regulation of circadian rhythm, PK in glycolysis, KAR in elongation of fatty acid, and TIG
and PTR in transport function of protein and oligopeptide, respectively. However, although
several defence-related biological processes have been reported through the GO annotation,
the potential mechanisms underlying the regulation of drought tolerance genes by OsAbp57
are not well understood. A further experiment must be conducted to determine how these
hub genes may navigate the function of defence during drought conditions in rice.

Table 2. Hub genes from interesting modules M2 and M3.

Probe ID Gene ID Gene Name Description Gene Ontology Trait Ontology Log2FC Up or Down

16381052 Os01g0100700 RPS5-1 40S ribosomal
protein S5-1

Defence response to fungus,
response to H2O2, ABA, salt

stress, water deprivation

Oxidative stress, sheath
blight disease resistance,

drought and salt tolerance,
ABA sensitivity

0.04197709 Down

16388768 Os01g0686800 RACK1A
WD

repeat-containing
protein

Shoot and root development,
seed germination, circadian
rhythm, detection of redox
state, defence response to

fungus, ET- and
SA-activated signalling
pathway, SA-mediated

signalling pathway,
photoperiodism, response to

SA, ET, salt stress,
H2O2, and Cd2+

ABA content, blast
disease, disease resistance,

ET sensitivity,
photoperiod sensitivity,

salt tolerance

0.0606787 Down

16391508 Os01g0840100 HSP70 Heat shock protein
Hsp70 Response to Cd2+ and stress – 0.09918908 Up

16454811 Os02g0797400 MCM5 MCM family
protein Cell cycle, DNA replication – 0.0735361 Down

16444532 Os02g0805200 PCNA Proliferating cell
nuclear antigen

Regulation of DNA
replication, double-stranded

break repair, response to
gamma ray, DNA damage

stimulus, UV, radiation,
and H2O2

UV light sensitivity 0.0467894 Down

16457043 Os03g0152900 KINUA Kinesin-like
protein KIN-UA

Microtubule-based
movement – 0.13444718 Up

16471736 Os03g0308800 TPR
Tetratricopeptide-

like helical domain
containing protein

RNA processing, regulation
of translation – 0.1440686 Up

16484814 Os04g0598200 RPL12 60S ribosomal
protein L12

Translation, ribosomal large
subunit assembly, defence

response to bacterium,
response to heat, cold, SA,

JA, H2O2, and water
deprivation

Heat, cold & drought
tolerance, JA sensitivity,
bacterial blight disease

resistance, oxidative stress

0.1768968 Down

16545101 Os08g0117200 RPS13 40S ribosomal
protein S13

Translation, defence
response to fungus, response

to water deprivation, salt
stress, ABA, H2O2

Drought & salt tolerance,
oxidative stress, sheath

blight disease resistance,
ABA sensitivity.

0.93240096 Down
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Table 2. Cont.

Probe ID Gene ID Gene Name Description Gene Ontology Trait Ontology Log2FC Up or Down

16545104 Os08g0117300 RPS13 40S ribosomal
protein S13 Translation – 0.0503529 Down

16551132 Os09g0250700 ABC-1 ABC-1 domain
containing protein. – – 0.1204065 Up

16414285 Os10g0466700 RPL17 60S ribosomal
protein L17 Translation – 0.0262824 Down

16417752 Os11g0216000 PK Pyruvate kinase
family protein Glycolysis – 0.09241819 Up

16388283 Os01g0655500 Os01g0655500
Protein kinase, core
domain containing

protein.
Protein phosphorylation – 0.27208653 Up

16442445 Os02g0618200 PRR1

Two-component
response

regulator-like PRR1
(Pseudo-response

regulator 1)

Phosphorelay signal
transduction system,

regulation of circadian
rhythm

– 0.10612373 Up

16477082 Os03g0773800 MDH Malate
dehydrogenase

Response to ROS, metabolic
processes of malate and
carbohydrate, cell redox
homeostasis, TCA cycle

– 0.11776116 Up

16503455 Os05g0143800 GH3.6

GH3
auxin-responsive
promoter domain
containing protein

Response to IAA, light
stimulus, salt stress Salt tolerance 0.2140365 Down

16501757 Os05g0551000 HRZ2

Hemerythrin
motif-containing

RING- and
Zn-finger protein2

Response to Fe3+ starvation,
JA-mediated signalling

pathway
Fe3+ sensitivity 0.24291249 Up

16513254 Os06g0308000 TIG Trigger factor-like
protein

Protein folding and
transport – 0.09959792 Up

16411623 Os10g0111700 PTR POT family protein,
peptide transporter Oligopeptide transport – 0.20793006 Up

16407843 Os10g0323600 PRF1 Profilin A
Cytoskeleton organisation,

sequestering of actin
monomers

– 0.16372392 Up

16420775 Os11g0106700 FER1 FERRITIN 1

Response to Fe3+, Zn2+,
H2O2, ABA, bacterdium and

cold; leaf and flower
development; Fe3+ transport

and homeostasis;
photosynthesis

– 0.1615892 Down

16430188 Os12g0106000 FER2 FERRITIN 2

Response to Fe3+, Zn2+, Cu2+,
H2O2, cold, bacterium, ABA;
leaf and flower development;

Fe3+ transport and
homeostasis; photosynthesis

Temperature response
trait, Cu2+ sensitivity 0.1529454 Down

16427113 Os12g0242700 KAR Beta-ketoacyl
reductase Fatty acid elongation – 0.48300481 Up

To validate the hub gene, Figure 4 demonstrates the interaction network for all hub
gene modules: M1 to M12. The network consisted of 125 nodes and 584 edges of which
14 were identified as single nodes. Figure 4B showed β-ketoacyl reductase (KAR),
a fatty acid biosynthetic gene, which was highly upregulated in OsAbp57-OE. We
found that stress-related hub genes, including HSP70, HRZ2, and MDH, significantly
interacted with other upregulated hub genes (Figure 4B). For instance, HSP70 with
EF2; PK, PPR, and MDH, HRZ2 with Os01g0655500; and MDH with CFR, ACP, ACP-1,
ACP3, ppc4, PK, cytME2, HSP70, and PPR1. Several downregulated genes were also
identified to interact with HSP70 and MDH, suggesting its potential negative regulation
of drought responses in OsAbp57-OE.
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related hub genes: (i) MDH, (ii) HSP70, and (iii) HRZ2.

3.4. Pathway Mapping Analysis of OsAbp57-OE

The number of genes from network modules M1 to M12 was assigned according
to their presence in the KEGG pathway maps. The pathway maps are categorised into
metabolism, organismal systems, cellular processes, and environmental and genetic
information processing. The modules M1 to M11 demonstrated active involvement
in metabolism (Supplementary File S2). Genes with a putative function in cellular
processes were absent in modules M5 to M7, M9, M10, and M12, including the absence
of environmental information processing in M4, M5, M7 to M9, and M12, organis-
mal systems in M7 to M12, and genetic and environmental processing in M3, M4,
M8, and M10. The hub genes showed high participation in the genetic information
process (30 genes) and metabolism (29 genes) including participation in the environ-
mental information process (4 genes), cellular processes (3 genes), and organismal
systems (2 genes) (Figure 5A). In addition, integration with protein–protein interaction
data validated the correlation of hubs between the pathway maps. The hubs under
the phenylpropanoid biosynthesis were correlated to the porphyrin and chlorophyll
metabolism map in module M7 (Figure 5B).
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Figure 5. Pathway mapping analysis of OsAbp57-OE. (A) Classification of hub genes in the modular
network into five main pathway maps: cellular processes, environmental information processing,
genetic information processing, and organismal systems; (B) interaction between M7 hubs in the
porphyrin and chlorophyll metabolism pathway, and phenylpropanoid biosynthesis maps are repre-
sented with red lines.

No correlation of hubs within other modules was identified between the pathway
maps. Pathway analysis of several hubs under plant hormone signal transduction showed
interaction with the MAPK signalling pathway map. Two hubs of GH3 in M3 and M6,
GH3.6 and GH3.11 under plant hormone signal transduction for plant growth, showed
interplay to disease resistance NPR5 and stress-tolerant response CatC under the MAPK
signalling pathway map (Figure 6).
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4. Discussion

In the present study, we demonstrated that the overexpression of an auxin-binding
protein, OsAbp57, can enhance the drought tolerance of a popular Malaysian rice cultivar,
MR219. A comparative analysis of drought tolerance among two OsAbp57 overexpressing
lines and MR219 revealed a much delayed drought-induced leaf senescence in OsAbp57
overexpressing lines compared to MR219. Numerous previous studies have reported that
delayed drought-induced leaf senescence is one of the important traits that can enhance
the tolerance of a plant toward drought stress [8,39,40]. This has been further supported
by Liu et al. (2016) [41], who reported that transgenic rice with accelerated drought-
induced senescence exhibited higher sensitivity to drought stress than its nontransgenic
parental line.

Further examination of the physio-morphological traits also revealed that the per-
formance of both OsAbp57 overexpressing lines was superior to MR219 in most of the
traits evaluated under both watering regimes. We noticed that the root dry weight of
OsAbp57 overexpressing exhibited the greatest responsiveness towards drought conditions.
Compared to its counterparts grown under the normal condition, the root dry weight of
OsAbp57 overexpressing lines grown under drought conditions and the root weight of both
OsAbp57 overexpressing lines grown under drought conditions exhibited more than 47%
of increments (OE1: 47%; OE2: 52%). Being the primary organ involved in plant water
uptake and the first organ to perceive drought stress, the root traits have long been known
as one of the determining factors in plant productivity under drought stress [42]. This is
particularly true for the plant species employing drought avoidance mechanisms, such as
rice. Previous studies on rice have also reported that the root mass and length are good
predictors of rice yield under drought due to improved contact between the root and the
shrinking soil water [43]. Therefore, higher responsiveness of the root weight of OsAbp57
overexpressed in response to drought stress may be one of the factors contributing to the
drought resistance of transgenic rice, which allows the transgenic plant to avoid a drastic
reduction of plant water potential despite a shortage of soil moisture.
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Although OsAbp57 overexpressing lines exhibited a higher drought tolerance than
MR219, we also observed that the overexpression of OsAbp57 led to approximately a
23–48% reduction in the leaf photosynthetic rate compared to MR219. This implies that
the OsAbp57 overexpression may have a negative effect on the photosynthetic activities of
rice. Suboptimal performance of transgenic rice under well-irrigated conditions has also
been reported in many previous studies. One of the examples was the transgenic plant
overexpressing OsPYL/RCAR5 [44], whereby the overexpression had resulted in dwarf
phenotype and yield reduction. In addition, the transgenic plant overexpressing OsNAC6
produced shoot growth retardation under control conditions [45]. Therefore, employing
drought-inducible promoters may avoid the adverse effects imposed by the overexpression
of OsAbp57 under well-irrigated conditions.

Our transcriptome data showed that OsAbp57 regulated redox metabolism in rice. The
overexpressing of OsAbp57 led to changes in redox activity and increased iron ion uptake
in transgenic rice. Iron is essential for plant growth, but excess Fe2+ can generate ROS
via the Fenton reaction. These results signified the involvement of ROS metabolism in
plants. OsAbp57 has been proven to bind to IAA and directly activate plasma membrane
H+-ATPase. These findings agree with previous studies, whereby plant growth and devel-
opment activities governed by auxin are closely associated with ROS. The application of
auxin to cells rapidly induced ROS generation. Although ROS caused considerable cellular
damage, these molecules are also important signalling molecules for stress tolerance. The
possibility of utilising a gene involved in Fe2+ homeostasis in establishing drought-tolerant
rice has been demonstrated by a recent journal. According to the author, the expression of
the nicotianamine biosynthetic genes (OsNAS1 and OsNAS2) was upregulated significantly
in several drought-tolerant transgenic rice. Previous ChIP-seq analysis showed that Os-
NAS1 and OsNAS2 are the direct targets of a stress-responsive transcription factor called
OsNAC6, which is necessary for drought response. The overexpression of OsNAS1 and
OsNAS2 has also demonstrated the importance of the accumulation of NA for drought
tolerance in rice [46].

The ROS in plants must be kept at a safe level to avoid cellular damage and death.
Previous studies showed that drought stress would lead to a burst of different ROS in
different cellular compartments, such as mitochondria, chloroplast, and peroxisome [47].
Increasing evidence indicates that enhanced production of ROS may play a role in plant
stress signalling, which can facilitate plants to perceive stress levels in different organs.
However, the unregulated production of ROS is detrimental to the cell. Therefore, an
increase in ROS production must be accompanied by upregulation of the ROS scavenging
system. Our microarray data shows that biosynthesis of flavonoids was upregulated in
transgenic rice overexpressing OsAbp57. Flavonoid has solid antioxidative properties by
reducing the production and quenching ROS, especially those derived from photosynthetic
apparatus. This is done through several mechanisms, such as suppression of singlet
oxygen, inhibiting enzymes that generate ROS, and chelate ions of transition metals that
may catalyse ROS production.

Decreased plant height and increased branching are essential characteristics for rice
crop improvement and are also part of a plant’s acclimatisation strategy to diminish stress
exposure (stress-induced morphogenic responses, SIMRs). The interactive network of
auxin, ROS, and antioxidants has been proposed to form a redox signalling module that
links plant development and environmental cues. According to Xia et al. (2020) [48],
OsWUS plays a significant function in tiller development and weak apical dominance, and
the loss of OsWUS function influenced rice plant morphology. Furthermore, auxin response
is significantly enhanced due to the inhibition of auxin-associated gene ASP1, a physical
interactor of OsWUS that suppressed the formation of tiller buds in OsWUS loss-of-function
mutant, decreased culm number 1 (dc1).

Our results showed that overexpression of OsAbp57 enhanced drought tolerance in
transgenic rice. This might be due to the altered auxin homeostasis in the plant. Previ-
ous studies indicated that endogenous and exogenous auxin positively regulated ROS
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metabolism and antioxidant activity. Likewise, transgenic potato overexpressing AtYUC6
(member of the YUCCA family of flavin-containing monooxygenase) showed high auxin
and enhanced drought-tolerant phenotype through a regulated ROS homeostasis [8]. En-
hanced ROS production or ROS signalling is also associated with various abiotic stresses,
such as drought, salt stress, oxidative stress, UV-radiation stress, and heavy metal stress.
The disturbed ROS homeostasis during stress conditions could act as a signal to activate
a stress response pathway, such as mitogen-activated protein kinase (MAPK) cascades.
Moreover, our microarray analysis also showed downregulation of gibberellin biosynthesis
activity. According to Zawaski and Busov (2014) [49], gibberellin (GA) catabolism and
repressive signalling mediate shoot growth inhibition and physiological adaptation in
response to drought. The transgenic plants with GA-deficiency or GA-insensitive dis-
played more excellent resistance to drought. In addition, GA-deficiency in response to
Fe homeostasis could also lead to dwarfism of the shoot, where Fe-deficient causes foliar
chlorosis and decreased leaf biomass. The concentrations of Fe and CHL, an indicator of Fe
status, were higher in the leaves of dwarfed transgenic rice [50].

The modular co-expression network (mGCN) constructed based on our microarray
data, showed strong upregulation of module activity in OsAbp57. Modules M2 and M3 refer
to transmembrane transport, which significantly adjusts water scarcity by allocating various
molecules through the root, stomata, and cuticle [51]. Although the transport of several
metal ions, including K+, Na+, and Cl-, has been reported to be critical in counteracting
drought stress [51], the role of Fe3+ transport in rice is still not well understood. In fact, the
presence of Fe causes the activation of reactive oxygen species (ROS) scavenging enzymes,
such as catalase and peroxidase, which are known to regulate the expression of the stress-
responsive gene to confer tolerance to environmental stress [52,53]. Also, GSEA revealed
promising insights into the tolerance mechanisms of OsAbp57 against drought. For instance,
the activity of most of the modules, which are associated with oxidative stress, suggests an
intense regulation of ROS and ROS-mediated signalling pathways during drought. Our
mGCN study revealed the dynamics of genes involved in drought tolerance due to the
possible increase of reactive oxygen species (ROS) levels when oxidative stress is induced
during water depletion. This leads to redox homeostasis, thus activating redox-dependent
signalling that could initiate the adaptive plant response. To escape such water scarcity,
membrane transport will take place to transfer molecules, metal ions, and water in the
context of root response to drought. However, further experiments are much needed to
assess the importance of Fe3+ transport during a water shortage.

Integration of mGCN with protein–protein interaction (PPI) data revealed the putative
involvement of OsAbp57 hubs in drought stress tolerance. Interestingly, the origin hub
that is unlikely present in the PPI data has shown to be upregulated under drought stress.
Under drought conditions, Fe micronutrients play a key role in enhancing stress tolerance
as it produces assimilates [52]. HRZ2 functions to negatively regulate the response of
Fe deficiency and activate JA signalling at the early stages of Fe sufficiency [54,55]. The
OsAbp57 tolerance of Fe-sufficient conditions may have incurred as manifest in module M3
by origin hub HRZ2, which was reported previously to increase the expression of genes
involved in Fe uptake and translocation in the HRZ-knockdown shoots and roots [56]. The
other predicted origin hub, AAO2, is specifically expressed in shoot and shows drastic
changes in transcript accumulation under drought and salinity stress [57].

Meanwhile, OAT, controlled by a stress-responsive transcription factor, SNAC2, con-
fers good tolerance to drought and osmotic stress through activation of ROS-scavenging
enzymes and ABA-mediated pathways [58]. The regulation of origin hubs identifies new
potential genes that may have functioned to increase drought tolerance in OsAbp57. The
presence of MDH and PK further explains the possible occurrence of carbohydrate synthesis
and glycolysis, respectively [59,60]. In contrast, TIG, a distant FKBP family, contains a
targeting region that binds to ribosomes and helps to determine the subcellular localisation
of mature protein during water deficit [61]. The presence of PTR infers the oligopeptide
transport events [62] and explains possibilities for nutrient uptake and transport in rice,
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such as nitrogen and arsenic [63,64]. In rice, PRR1, a component of the circadian clock, plays
a vital role in regulating the photoperiod of flowering response. However, a recent study
by Wei et al. (2021) [65] reported that PRR73 positively regulated salt tolerance by co-joint
with HDAC10 to repress the transcription of Na+ transporter HKT2;1 in transgenic rice.

We noticed several important hubs physically interacting with each other based on the
PPI data. From the interesting modules, we discussed the results based on the upregulated
hub associated with drought stress and hub interaction between the pathway maps.

In module M2, HSP70 functions in protein folding and preventing DNA degradation
or fragmentation under stressed and unstressed conditions [66,67]. We found HSP70 to
be upregulated in OsAbp57, considering this gene confers drought stress tolerance by
maintaining the protein structure or DNA of the plant cell. The interaction of HSP70
with MDH and PK, which are involved in carbohydrate synthesis and glycolysis, may be
regarded as a crucial trait for plant-life-sustaining activities. Drought causes changes in
sucrose and amino acid content, which was revealed by an increased phosphoenolpyruvate
carboxylase (PEPC) expression in starch and sucrose metabolism [68]. In poplar, the PPR
gene may be involved in environmental adaptation as it was confirmed to respond to cold,
salinity, and JA conditions [69] and under drought in Arabidopsis [70]. In M3, the interacted
genes, HRZ2 and Os01g0655500, are related in function. As HRZ2 plays a dominant role in
Fe uptake and translocation, Os01g0655500, a protein kinase-containing domain gene, is
regulated in response to Fe deficiency and excess [71]. Among the MDH neighbours, ACP
may suggest an essential role in type II fatty acid synthesis and mitochondrial protection
against drought stress [72]. In mitochondrial protection, ACP has been identified as a
transmitter for nutrient status concerning mitochondria biogenesis [73]. We found ACPs,
including ACP1 and ACP3, were upregulated in OsAbp57, which has previously been
reported to improve salt tolerance through alterations of fatty acid composition and control
the concentration of Na+/K+ [74]. In addition, by scavenging ROS at higher concentrations
of Na+, another interesting hub, CFR, may enable the protection of chloroplasts from
chlorophyll degradation and photodamage of photosystem II [75].

Of all interesting hubs, the flavonoid biosynthesis pathway seems to be functionally
correlated to porphyrin and chlorophyll metabolism through the correlation between 4CL1
and NOL genes. The relationship between these two pathways is likely to co-exist during
adverse environmental conditions that cause leaf colour to shift due to changes in pigment
ratios. In a study by Shen et al. (2018) [76], the synergistic effect of flavonoid reduction
and porphyrin and chlorophyll enhancement resulted in a change in the leaf colour of tea
plants. Hub genes encoding proteins of the MAPK signalling pathway were also associated
with plant hormone signal transduction maps. Upon water scarcity or drought conditions,
the accumulation of ABA and H2O2 activates the MAPK signalling pathway, thereby
promoting the catalase activity, which is responsible for maintaining the optimal level
of H2O2 in plant cells [77]. Our findings found that GH3 genes (i.e., GH3.11 and GH3.6)
were involved in plant growth and development via the IAA signal transduction pathway.
However, a GH3 family gene, GH3-2, modulated ET-IAA crosstalk to confer drought and
cold tolerance in rice [78]. The interplay of the SA signal transduction pathway with the
MAPK signalling pathway and IAA signal transduction pathway inferred the possible
event of combined biotic and abiotic stresses. Abiotic stress weakens plant immunity and
enhances plant susceptibility to pathogenic organisms [79].

5. Conclusions

This work provided new insight into the emergence of drought tolerance in OsAbp57.
We presented a solid integration study that can analyse transcriptomics data to discover
potential candidates for the drought-responsive gene via modular gene correlations. In-
tegration of our present results and the literature search portrayed the hub gene function
of mGCN involved in important biological processes associated with drought stress tol-
erance. We demonstrated possible hub genes underpinning potential drought tolerance
by increased reactive oxygen species (ROS) level at the state of water depletion, therefore
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causing the occurrence of metal ion transport, redox homeostasis, and activation of redox-
dependent signalling that may trigger the adaptive response in rice. The hub genes also
link the chlorophyll and flavonoid metabolism pathways and feature the interplay between
the MAPK signalling pathway with IAA and SA signal transduction pathways. These
concurrent events might have occurred in OsAbp57 due to the effect of colour changes in
plant cells, stimulated by 4CL and NOL genes, and the possible occurrence of combined
stresses activated by GH3, CATC, and NPR genes through the pathogenic susceptibility
via weakened immunity during drought stress. The hub genes discovered in our mGCN
are crucial in rice breeding strategies to enhance yield and produce drought-tolerant rice
varieties. Some of the hub genes and pathways indicated in this study are established can-
didates associated with drought stress, confirming the functional validity of these findings.
However, other poorly investigated genes could necessitate novel mechanisms in OsAbp57,
worthwhile of further investigations in future research.
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