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Abstract: Peanut (Arachis hypogaea L.) is an important food crop for the U.S. and the world. The
Virginia-Carolina (VC) region (Virginia, North Carolina, and South Carolina) is an important peanut-
growing region of the U.S and is affected by numerous biotic and abiotic stresses. Identification of
stress-resistant germplasm, along with improved phenotyping methods, are important steps toward
developing improved cultivars. Our objective in 2017 and 2018 was to assess the U.S. mini-core col-
lection for desirable traits, a valuable source for resistant germplasm under limited water conditions.
Accessions were evaluated using traditional and high-throughput phenotyping (HTP) techniques,
and the suitability of HTP methods as indirect selection tools was assessed. Traditional phenotyping
methods included stand count, plant height, lateral branch growth, normalized difference vegetation
index (NDVI), canopy temperature depression (CTD), leaf wilting, fungal and viral disease, thrips
rating, post-digging in-shell sprouting, and pod yield. The HTP method included 48 aerial vegetation
indices (VIs), which were derived using red, blue, green, and near-infrared reflectance; color space
indices were collected using an octocopter drone at the same time, with traditional phenotyping.
Both phenotypings were done 10 times between 4 and 16 weeks after planting. Accessions had yields
comparable to high yielding checks. Correlation coefficients up to 0.8 were identified for several
Vis, with yield indicating their suitability for indirect phenotyping. Broad-sense heritability (H2)
was further calculated to assess the suitability of particular VIs to enable genetic gains. VIs could
be used successfully as surrogates for the physiological and agronomic trait selection in peanuts.
Further, this study indicates that UAV-based sensors have potential for measuring physiologic and
agronomic characteristics measured for peanut breeding, variable rate input application, real time
decision making, and precision agriculture applications.

Keywords: peanut; U.S. mini-core collection; Virginia-Carolina region; vegetation indices;
high-throughput phenotyping; color space indices; crop physiology

1. Introduction

Peanut (Arachis hypogaea L.) is an important oil and food crop, with an acreage of
42 million worldwide. It is one of the major oilseed crops, and China, India, Nigeria, and
the U.S. contribute to about 70% of its global production [1]. In 2019, in the U.S., over
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5.5 billion pounds were produced from 567 thousand hectares across 11 states, which are
limited to three geographical regions: Southeast region (Alabama, Florida, Georgia, and
Mississippi), Southwest region (Oklahoma, New Mexico, and Texas), and VC region (North
Carolina, South Carolina, and Virginia) [2]. Because each growing region differs in climate
and disease pressures, breeding programs develop peanut varieties specifically adapted
to each growing region [3,4]. The VC region primarily produces the large seeded Virginia
peanut market type, and has an annual production of around $170 million [2]. The climate
of the VC region is different from the other regions. Virginia and the Carolinas have a
humid, subtropical climate with a 35-year multi-annual cumulative precipitation at 590
mm, average minimum, and maximum temperatures of 4 ◦C and 36 ◦C, respectively, and
78% relative humidity during the peanut growing season (May to September) (Figure 1).
Because of the warm and humid climate, the peanut is prone to numerous diseases and
pathogens including southern stem rot (SSR) [caused by athelia rolfsii (Curzi) C.C. Tu and
Kimbr.], sclerotinia blight (SB, caused by sclerotinia minor, Jagger), cylindrocladium black
rot (CBR, caused by calonectria ilicicola, Boedijn and Reitsma) and tomato spotted wilt virus
(TSWV, genus Tospovirus, family Bunyaviridae) [5]. As soils are shallow and sandy, and
summer temperatures are high, peanut crops can experience sudden drought in the VC
region [6]. Water deficit during pegging or pod formation stages severely effect peanut
yield [7–10]. Low-moisture stress may also reduce nitrogen (N) fixation and biomass
growth, and increase aflatoxin contamination [11–14]. Future predictions have also shown
that peanuts would be one of the worst affected crops, as a result of global warming and
associated climate change by 2050 [15].
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Figure 1. Weather data at Suffolk, VA, including: (a) diurnal minimum (solid line) and maximum 
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Figure 1. Weather data at Suffolk, VA, including: (a) diurnal minimum (solid line) and maximum
(dashed line) temperatures (◦C); (b) cumulative growing degree days calculated from daily min and
max temperatures with 13 ◦C as base temperature (GDD13); and (c) cumulative rainfall (mm) for
2017, 2018, and multiannual (1984–2019) average.

Identification of sources with resistance to biotic and abiotic stressors is needed to
further improve peanut production in the VC region, but its success heavily relies on the
phenotyping methods [16,17]. Aerially derived vegetation indices (VIs) from red-green-blue
(RGB) and near-infrared (NIR) imagery were recently used for phenotyping morphological,
physiological, and agronomic characteristics of multiple crops: peanut [18–21]; winter
wheat (Triticum aestivum L.) [22,23]; sorghum (Sorghum bicolor L. Moench) [24–26]; cotton
(Gossypium hirsutum L.) [27]; tall fescue (Festuca arundinacea Schreb) [28]; corn (Zea mays
L.) [29]; soybean (Glycine max L.) [30–32]; and other crops [33]. However, to effectively use
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the VIs in breeding, they need to be heritable [34], i.e., a high proportion of the VIs’ variation
is attributable to genetic factors [35–37]. Therefore, information on the VIs accuracy to
predict crop characteristics, along with their heritability, is needed to develop successful
high-throughput (HTP) methods for breeding selection.

The U.S. peanut germplasm collection currently has 7432 accessions, and is a potential
resource for resistance to biotic and abiotic stresses. In the late 1990s, approximately 10%
of these accessions, representing the geographical and morophological variation of the
entire collection, were selected as the U.S. peanut core collection [38]. Because evaluating
all 831 core accessions in the field is difficult, a 112-accession representative subset of the
core collection, the mini-core collection, was selected to identify genes of interest in peanut
breeding [39]. The mini-core collection has been evaluated in the Southeast and South-
west for multiple traits, including resistance to the peanut root-knot nematode (caused by
meloidogyne arenaria [Neal] Chitwood), early leaf spot (caused by passalora arachidicola [Hori]
U. Braun), late leaf spot (caused by nothopassalora personata [Berk. and M.A. Curtis] U. Braun,
C. Nakash., Videira and Crous), TSWV, SSR, and SB; post-harvest quality traits including
oil, fatty acid, flavonoid, and resveratrol content; and seed dormancy [39–47]. To our knowl-
edge, the U.S. peanut mini-core has neither been evaluated in the VC region, nor has it
been evaluated for morphological, physiological, and agronomic characteristics anywhere
else. The objectives of this study were: (1) to assess the mini-core accessions for morpholog-
ical, physiological, and agronomic characteristics relevant to the VC environment, using
traditional and new phenotyping techniques such as RGB and NIR aerial imagery; and
(2) to demonstrate the suitability of the new techniques for high throughput phenotyping.

2. Materials and Methods
2.1. Germplasm Information

The mini-core collection includes accessions with varieties hirsuta, hypogaea, fasti-
giata, vulgaris, and peruviana, and four peanut market types, Runner, Virginia, Spanish,
and Valencia [38,48,49]. Varieties hypogaea and hirsuta belong to peanut subspecies hy-
pogaea, which includes Runner and Virginia market types. Varieties vulgaris, peruviana,
and fastigiata, belong to subspecies fastigiata, which includes Spanish and Valencia mar-
ket types [50]. Details on the botanical and market types of the mini-core accession are
available within the Germplasm Resource Information Network (GRIN) plant germplasm
database (https://npgsweb.ars-grin.gov/gringlobal/search, accessed on 14 June 2020) and
several publication; however, for some accessions, the information differs depending on the
source. A compiled list of 112 accessions of the U.S. mini-core peanut germplasm collection,
with information regarding taxonomy, market and variety, pod weight, 100 seed weight,
and seed kernel color properties from all sources, is available to date and presented in
Table 1 (GRIN database, https://npgsweb.ars-grin.gov/gringlobal/search, accessed on
14 June 2020) [39,41,48]. As some sources presented different market and varieties with
the same PI numbers, separate columns for each source were included within Table 1.
The kernel color information in Table 1, i.e., hue, lightness (L), a*, and b* color properties,
were derived by pictures available on the GRIN database. The pictures were checked
for uniformity to ensure each picture had similar resolution, background, and margins,
before color properties of the kernels were extracted using BreedPix tool from the CIMMYT
maize scanner 1.16 plugin (http://github.com/george-haddad/CIMMYT, accessed on
18 September, 2020; Copyright 2015 Shawn Carlisle Kefauver, University of Barcelona),
produced as a part of the Image J/Fiji (open source software; http://fiji.sc/Fiji, accessed on
18 September 2020) [51,52]. In Table 1, the PI accessions used in this study are underlined.

https://npgsweb.ars-grin.gov/gringlobal/search
https://npgsweb.ars-grin.gov/gringlobal/search
http://github.com/george-haddad/CIMMYT
http://fiji.sc/Fiji
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Table 1. List of the 112 accessions of the U.S. mini-core peanut germplasm collection, including PI
numbers from the GRIN database. The table includes market type, variety, pod type, pod shape, and
100-seed weight, compiled from different sources (in the footnote). Kernel color (CIE Lab) is also
included, derived from seed pictures available on the GRIN database. The underlined PI and CC
numbers were planted for this study.

S.
No. PI Number CC

Market
Type 1

Market
Type 2 Variety 3 Pod Type 4 Pod Shape 4 100 Seed wt. (g) 4 Kernel Color 5

Hue L a b

1 PI 152146 406 Spanish Spanish . Spanish hypogaea 48.5 28.4 67.2 3.96 26.0
2 PI 155107 384 . Valencia vulgaris Spanish vulgaris 38.3 28.9 67.3 4.18 27.1
3 PI 157542 553 . Runner vulgaris Virginia hypogaea 60.8 26.6 64.2 3.79 23.1
4 PI 158854 559 Valencia Valencia fastigiata . vulgaris 60.8 10.6 57.0 11.73 18.6
5 PI 159786 334 Virginia Virginia hypogaea Virginia . 34.8 27.2 64.2 4.03 24.1
6 PI 162655 388 Spanish Spanish hypogaea Virginia . 39.5 28.1 67.3 4.73 27.1
7 PI 162857 731 Virginia Virginia hypogaea Virginia hypogaea 87.2 24.4 61.3 7.25 25.7
8 PI 196622 802 Virginia Virginia hypogaea Virginia . 50.9 26.1 61.8 5.28 24.6
9 PI 196635 270 Runner Runner hypogaea Virginia . 32.8 26.9 64.4 4.57 24.9
10 PI 200441 266 Spanish Spanish fastigiata Spanish vulgaris 42.4 28.7 69.0 3.18 25.3
11 PI 240560 725 . Runner hypogaea Spanish . 38.2 29.4 67.5 4.00 27.4
12 PI 259617 508 . Mixed fastigiata Valencia fastigiata . 11.4 57.2 9.60 17.6
13 PI 259658 506 Runner Runner hypogaea Virginia . . 24.7 64.8 6.77 26.0
14 PI 259836 546 Spanish Spanish fastigiata Valencia . 30.8 13.0 58.8 8.58 17.9
15 PI 259851 277 Virginia Virginia hypogaea Virginia hypogaea 59.8 26.2 65.4 5.14 25.2
16 PI 262038 408 Valencia Valencia fastigiata Valencia . 34.3 10.3 57.4 10.00 17.3
17 PI 268586 580 Valencia Valencia hypogaea Virginia . 48.1 18.6 57.3 0.99 13.2
18 PI 268696 338 Spanish Spanish hypogaea Spanish . 38.5 30.1 69.0 3.04 26.7
19 PI 268755 481 . Runner hypogaea Spanish . 49.5 28.6 66.8 3.22 24.8
20 PI 268806 477 Spanish Spanish hypogaea Spanish . 49.0 29.7 67.7 3.27 26.5
21 PI 268868 367 Virginia Virginia hypogaea Virginia fastigiata 46.2 29.3 67.9 1.91 23.2
22 PI 268996 458 . Runner hypogaea Virginia . 38.7 26.7 64.0 4.75 24.8
23 PI 270786 485 . Mixed hypogaea Spanish . 38.5 25.9 51.0 −0.89 11.9
24 PI 270905 446 . Mixed hypogaea Virginia . 48.8 25.3 64.0 5.17 24.0
25 PI 270907 433 . Mixed hypogaea Virginia hypogaea 47.1 27.1 65.4 4.06 24.4
26 PI 270998 468 . Mixed vulgaris Spanish . . 16.6 61.2 5.68 17.7
27 PI 271019 579 . Mixed vulgaris Spanish . 35.0 28.2 68.0 4.55 27.1
28 PI 274193 208 Virginia Virginia hypogaea Spanish vulgaris 52.3 6.6 54.0 9.50 14.7
29 PI 288146 516 Virginia Virginia vulgaris Spanish . 36.8 28.7 66.8 3.87 26.2
30 PI 288210 526 . Runner vulgaris Virginia hypogaea 31.7 31.1 65.6 −0.58 18.7
31 PI 290536 233 Virginia . hypogaea Virginia hypogaea 40.1 26.4 65.2 4.42 24.2
32 PI 290560 221 . Spanish vulgaris Spanish vulgaris 36.0 31.1 68.4 2.49 26.8
33 PI 290566 227 Runner Runner fastigiata Valencia fastigiata 43.2 26.6 64.0 3.78 23.0
34 PI 290594 230 Runner Runner hypogaea Valencia fastigiata 48.8 26.4 65.9 5.83 26.6
35 PI 290620 223 Virginia Virginia fastigiata Spanish vulgaris 44.8 28.8 63.5 2.34 22.6
36 PI 292950 728 Runner Mixed hypogaea Virginia hypogaea 67.8 45.6 71.8 −4.63 27.1
37 PI 295250 540 Virginia Virginia hypogaea Virginia hypogaea 44.8 9.8 58.6 11.37 18.1
38 PI 295309 541 . Mixed hypogaea Virginia hypogaea 56.9 26.0 64.0 4.30 23.3
39 PI 295730 8 Virginia Virginia fastigiata Valencia vulgaris 41.2 27.2 65.4 4.16 24.7
40 PI 296550 534 . Runner hypogaea Virginia hypogaea 78.7 29.3 67.2 2.99 25.2
41 PI 296558 535 . Runner hypogaea Virginia hypogaea 56.2 27.1 67.7 4.23 25.2
42 PI 298854 342 . Runner hypogaea Virginia hypogaea 80.9 24.0 62.5 6.55 24.5
43 PI 313129 381 . Mixed fastigiata Valencia . 46.7 31.1 67.9 2.61 26.8
44 PI 319768 529 Virginia Virginia hypogaea Virginia hypogaea 45.2 28.4 61.5 4.99 26.7
45 PI 319770 . . . . . vulgaris 44.2 34.0 66.1 0.82 26.0
46 PI 323268 812 Virginia Virginia hypogaea Virginia . 72.0 25.6 63.1 5.01 24.0
47 PI 325943 548 Valencia Valencia hypogaea Valencia fastigiata 42.9 8.9 56.9 11.09 17.2
48 PI 331297 202 . Mixed hypogaea Virginia hypogaea . 10.4 53.9 9.74 16.6
49 PI 331314 187 . Mixed hypogaea Valencia vulgaris 33.4 17.2 51.6 9.80 20.6
50 PI 337293 431 Valencia . hypogaea Spanish . 44.0 25.0 57.5 2.04 17.6
51 PI 337399 808 Spanish . hypogaea Spanish . 40.8 27.3 66.9 4.57 25.8
52 PI 337406 310 Runner Runner fastigiata Spanish vulgaris 39.9 30.7 51.5 −1.75 12.0
53 PI 338338 552 . Valencia peruviana . . 34.1 14.5 54.7 1.70 12.2
54 PI 339960 189 Valencia Valencia fastigiata Valencia fastigiata 54.3 9.3 58.1 11.75 18.0
55 PI 343384 249 Intermediate Mixed hypogaea Virginia hypogaea 57.3 13.3 56.2 9.59 18.5
56 PI 343398 246 . Virginia fastigiata Virginia . 63.0 25.9 62.9 5.14 24.4
57 PI 355268 805 Virginia . hypogaea Virginia . 45.4 25.4 62.8 5.45 24.3
58 PI 355271 287 . Runner hypogaea Virginia . 58.1 24.4 65.8 5.25 23.6
59 PI 356004 488 . Mixed fastigiata Valencia . 38.2 11.1 57.3 9.86 17.6
60 PI 370331 542 Virginia Virginia hypogaea Virginia hypogaea . 9.6 54.9 9.00 15.9
61 PI 371521 255 . . hypogaea Virginia hypogaea . 25.8 65.6 4.81 24.3
62 PI 372271 294 Virginia Virginia hypogaea Valencia fastigiata 45.8 25.7 64.4 4.94 24.1
63 PI 372305 698 Virginia Virginia hypogaea Virginia . 43.7 28.7 66.4 3.10 24.5
64 PI 399581 296 Virginia Virginia hypogaea Virginia hypogaea 52.6 28.0 61.9 4.82 26.0
65 PI 403813 588 Spanish Valencia vulgaris Valencia vulgaris 36.0 10.2 55.5 10.73 17.5
66 PI 407667 740 Spanish Spanish vulgaris Spanish . 59.0 26.2 66.2 4.13 23.7
67 PI 408743 631 Intermediate Mixed . Spanish vulgaris . 46.3 71.5 −4.93 23.7
68 PI 429420 787 Valencia Valencia fastigiata Valencia . 44.3 9.0 55.4 10.89 16.9
69 PI 433347 643 Spanish . . Virginia hypogaea . 33.0 62.3 0.54 22.8
70 PI 442768 763 Virginia Virginia hypogaea Virginia hypogaea 43.0 29.0 64.2 4.01 26.2
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Table 1. Cont.

S.
No. PI Number CC

Market
Type 1

Market
Type 2 Variety 3 Pod Type 4 Pod Shape 4 100 Seed wt. (g) 4 Kernel Color 5

Hue L a b

71 PI 461427 647 . . hypogaea Valencia fastigiata 47.3 11.3 57.3 10.02 17.8
72 PI 461434 798 . Runner hypogaea runner vulgaris 47.3 29.8 69.1 3.24 26.8
73 PI 468271 . . . . Virginia hypogaea . 47.2 59.9 −4.40 16.4
74 PI 471952 760 Spanish Spanish hypogaea Virginia hypogaea 73.5 24.1 63.1 5.82 23.7
75 PI 471954 781 Valencia Valencia fastigiata Valencia fastigiata 41.0 28.4 64.2 5.16 27.6
76 PI 475863 87 Valencia Valencia fastigiata Valencia fastigiata 38.5 18.5 61.5 8.26 21.6
77 PI 475918 605 . . fastigiata Valencia . 37.3 12.0 58.9 9.71 18.2
78 PI 475931 610 Virginia Virginia . Valencia fastigiata . 29.7 57.6 −1.14 14.5
79 PI 476025 711 . . fastigiata Valencia . 56.7 20.3 54.6 0.23 12.4
80 PI 476432 703 Intermediate Mixed hypogaea Spanish . . 7.2 58.1 10.68 16.2
81 PI 476596 . . Runner . . . . . . . .
82 PI 476636 678 Virginia Virginia hypogaea Virginia . 50.5 29.6 62.9 2.77 24.2
83 PI 478819 650 Valencia Valencia vulgaris Virginia . 55.4 28.1 65.3 3.47 24.4
84 PI 478850 747 . Valencia fastigiata Valencia peruviana 33.4 8.2 56.5 12.64 17.8
85 PI 481795 673 Spanish Spanish hypogaea Spanish . 34.8 27.2 66.5 4.43 25.4
86 PI 482120 775 . Spanish hypogaea . . 36.6 27.0 67.3 5.44 27.0
87 PI 482189 755 Spanish Spanish fastigiata Valencia fastigiata 41.0 28.6 67.0 3.82 26.0
88 PI 493329 12 Valencia Valencia fastigiata Valencia fastigiata 40.9 26.0 61.3 3.68 21.8
89 PI 493356 16 Virginia Virginia fastigiata Valencia fastigiata 34.2 9.7 57.6 10.57 17.4
90 PI 493547 33 Valencia Valencia fastigiata . . 37.6 11.1 55.8 9.92 17.4
91 PI 493581 38 Valencia Valencia fastigiata Valencia fastigiata 39.7 12.2 58.0 9.27 17.8
92 PI 493631 41 Valencia Valencia fastigiata . . 40.6 9.2 53.6 12.25 17.7
93 PI 493693 47 Virginia Virginia fastigiata Valencia fastigiata 53.5 28.1 67.8 4.34 26.6
94 PI 493717 50 Valencia Valencia fastigiata . . 52.0 26.9 66.7 5.85 27.4
95 PI 493729 53 . . fastigiata . . 40.1 29.4 68.1 3.30 26.2
96 PI 493880 68 Valencia Valencia fastigiata . . 50.7 5.1 54.5 15.37 17.4
97 PI 493938 75 . . fastigiata . . 33.5 27.1 55.7 −1.34 12.5
98 PI 494018 80 . . vulgaris . . 35.2 29.4 50.8 −1.73 11.4
99 PI 494034 82 Spanish Spanish vulgaris . . 33.0 29.1 54.7 −1.39 12.9

100 PI 494795 166 Runner Runner hypogaea . . . 31.2 67.1 −0.85 18.5
101 PI 496401 115 Virginia Virginia hypogaea . . 45.7 27.0 62.3 4.49 24.3
102 PI 496448 119 Virginia Virginia hypogaea . . 47.5 26.2 63.3 5.67 25.6
103 PI 497318 92 . . hypogaea Valencia . 42.9 22.4 59.3 3.03 17.7
104 PI 497395 97 Virginia Virginia hypogaea . . . 6.3 53.5 9.09 14.3
105 PI 497517 112 Valencia Valencia fastigiata . . 37.5 9.8 56.6 11.11 17.7
106 PI 497639 132 Valencia Valencia fastigiata Valencia fastigiata . 32.3 69.2 2.46 28.7
107 PI 497668 . . . . . . . . . . .
108 PI 502037 . . . . Valencia peruviana . 35.2 65.4 −1.11 21.3
109 PI 502040 149 Spanish Spanish fastigiata . . 24.9 31.6 68.0 2.17 26.7
110 PI 502111 155 . Valencia peruviana Valencia peruviana . 23.5 55.4 5.05 20.5
111 PI 502120 157 . Virginia peruviana . . 53.8 29.1 66.1 3.76 26.2
112 PI 504614 125 . Mixed hypogaea Virginia hypogaea 53.7 28.5 67.3 3.79 25.8

1–[43]; 2–[41]; 3–[48]; 4–Germplasm Resource Information Network (GRIN); 5–Kernel colors were derived as a
part of this study using BreedPix tool of the CIMMYT maize scanner using kernel pictures in GRIN database. The
dot in Table 1 means missing values or information not found.

2.2. Experiment Information

The experiment was conducted at Virginia Tech’s Tidewater Agricultural Research
and Extension Center (TAREC) in Suffolk, VA (latitude 36.66 N, longitude 76.73 W).
Based on seed availability, 93 mini-core accessions and 11 check cultivars were planted
in 2017, and 81 accessions and 7 check cultivars were planted in 2018. The checks were:
‘Wynne’ [53], ‘Walton’ [54], ‘TAMVal OL14’ (TVOL14) [55], ‘Tamspan 90’ (TS90) [56], ‘Tam-
run OL11’ (TROL11) [57], ‘New Mexico Valencia’ (NMVal) [58], ‘C76-16’, ‘Southwest
Runner’ (SWR) [59], ‘Sullivan’ [53], ‘OLé’ [60], and ‘Georgia-09B’ (GA09B) [61]. In 2017,
mini-core peanut accessions included 48 hypogaea, 23 fastigiata, 31 vulgaris, and two peru-
viana varieties; in 2018, 41 hypogaea, 21 fastigiata, 24 vulgaris, and two peruviana accessions
were planted [48]. Seeds were planted in two-row plots of 3.05 m long × 0.9 m wide, in a
randomized complete block design (RCBD) with three replications. The size of each block
was 37.3 m long by 13.7 m wide. Genotypes were planted on 15 May 2017 and 13 May 2018,
on uniformly raised beds of 15 cm height, with one seed planted every 11 cm in the center
of the bed. Approximately 55 seeds were planted per plot; however, a few accessions had
limited seeds and, for these, fewer than 20 seeds per plot were planted. In 2017, 95% of the
accessions and checks were provided by USDA-ARS in Stillwater, OK; 5% of the accessions
were from Texas. In 2018, seed for all accessions were from Oklahoma. Cultural practices
were performed following extension recommendations [62]. Plots were not irrigated.
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Weather data were recorded using on-site weather station (WatchDog 2000 Series
Weather Station). Rainfall, air temperature, and relative humidity (RH) were recorded
daily starting from May 1 until September 30 (Figure 1). Daily growing degree days
(GDD13) were calculated from min and max daily temperatures, using a base temperature
of 13 ◦C. Only positive values were used, and negative values were recorded as 0. Similarly,
the temperatures above 35 ◦C were taken as 35 ◦C. Cumulative GDD13 from 1 May to
30 September were computed from the daily GDDs for both growing seasons.

2.3. Traditional, Ground-Based Phenotyping

Stand counts were collected at 2 weeks after planting (WAP) by counting the total
number of peanut plants in both rows of every plot (Table 2).

Table 2. Peanut crop growth stages, with respect to weeks after planting (WAP), when the measure-
ments were taken.

WAP Crop Growth Stages Measurements Taken

2017 2018

0 Planting (15 May 2017 and 13 May 2018)
2 Emergence Stand count Stand count
3
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Growth stages were evaluated according to [63].

Plant height was collected weekly between 4 WAP and 9 WAP, randomly from every
row, and the length of the main stem from the ground to the tip of the newest leaf of one
randomly selected plant per row was recorded. Plant height values from two rows were
averaged to obtain the plant height of each plot. Similar to plant height, lateral branch
growth was measured from one randomly selected plant within each row, and the two
rows of a plot were averaged for the lateral growth of the plot. Plants from end of plots
were avoided.

The normalized difference vegetation index (NDVI) of each row was measured using a
GreenSeeker Handheld Crop Sensor (Trimble Ag., Sunnyvale, CA, USA). The GreenSeeker
was scanned over the foliage of the entire row at a height of 50 cm and NDVI from both
rows of each plot were averaged. NDVI was measured every two weeks from 4 WAP to
12 WAP (full seed stage), for a total of four assessments in 2017, and seven in 2018.

The canopy temperature depression (CTD) of each row was measured using an AGRI-
THERM II™ (Model 100 L) Infrared Thermometer. The “diff” option was selected and
the CTD value was calculated by subtracting the canopy temperature from the ambient
air temperature. CTD was measured over a random spot on each row, and values from
two rows were averaged for plot CTD. As CTD is sensitive to wind and intermittent cloud
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covers, data were collected on sunny days with minimal wind. CTD was measured from
5 to 12 WAP, for a total of four assessments each year.

Leaf wilting was visually assessed using the following 0–5 rating scale: 0, healthy
plant with no visible wilting or leaves drooping; 1, some terminal and newer leaves wilted
but overall the plant looked healthy; 2, almost all upper leaves with visible signs of wilting,
and lower and older leaves started to fold; 3, all leaves wilting and drooping, drought
effect on older leaves was prominent, and bare ground starting to become visible; 4, all
leaves wilted and some leaves started to change color due to chlorophyll degradation, bare
ground prominently visible, some leaves dried and crisped; 5, all leaves were severely
wilted and light green to yellow in color, bare ground fully visible, more than 50% of leaves
desiccated, and the plant almost physiologically dead [64]. Leaf wilting was measured
from 5 to 12 WAP, for a total of four assessments per year (Table 2).

Disease incidence, the percentage of diseased plants exhibiting symptoms of TSWV,
SSR, SB, and CBR, in each plot, was rated at 10 and 12 WAP each year. The percentage was
calculated as a fraction of the number of diseased plants observed, to the number of plants
in each plot. Thrips (scirtothrips dorsalis) damage was rated using a scale from 0 to 10, with
0 being a plant not damaged by thrips and 10 being all leaves damaged [65].

At the physiological maturity (16 WAP), peanut pods were dug (15 September 2017,
and 17 September 2018) using a Sweere C200 peanut digger, windrow dried for 7 days and
combined using an Amadas 2110 two row peanut combine. For each plot, pod yield was
calculated at 7% seed moisture. Peanut sprouting was evaluated 7 days after digging by
counting the number of germinated seeds on the ground.

2.4. Aerial Data Collection

Aerial images were taken every 2 weeks starting at 4 WAP to 14 WAP for estimation
of leaf reflectance and color space indices (Table 3). An AscTec® Falcon 8 octocopter UAV
platform (Ascending Technologies, Krailling, Germany), equipped with an RGB digital
camera [Sony® α6000, 24.3-megapixel, (6000 × 4000)] and a near infra-red (NIR) camera
[Tetracam® ADC micro, 3.2-megapixel, (2048 × 1536)] was used. The flight campaign
was in waypoint navigation, auto pilot, and at 20 m altitude with an image overlap of
75% forward and 90% sideways. Flight campaigns were created in AscTec®Navigator
3.4.5 software (Ascending Technologies, Krailling, Germany). The UAV used its built-in
GPS (accuracy within 20 cm) to navigate, acquire nadir images, and coordinate recordings
of individual images. Image orthomosaic was processed using Pix4Dmapper Version
4.2.26 software (Prilly, Switzerland) to create a RGB field map. The ‘reflectance map’ option
in ‘index calculator’ under ‘DSM, orthomosaic, and index’ step of Pix4D processing was
used to create individual red, green, and blue reflectance maps. The same settings were
used for NIR orthomosaic to create an NIR reflectance map, and an additional ‘reflectance
map’ option was used to generate the NDVI orthomosaic using red and NIR from the
NIR images.
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Table 3. Spectral reflectance (red, green, blue, and near-infrared) derived using aerial images, and
vegetation indices derived using reflectance (S. No. 1–24); and red-green-blue (RGB) color space
indices derived from the same images using Breedpix software and indices derived using arithmetic
combinations of color indices (S. no. 24–48).

S. No. Indices Full Name Formula Reference

1 Red

Aerial leaf reflectance
2 Green
3 Blue
4 Near-Infrared (NIR)
5 BGI Blue green pigment index Blue

Green [66]
6 RGR Red-Green ratio Red

Green [67]
7 NPPR Normalized Plant Pigment ratio Green

Red+Blue [68]

8 NGRDI Normalized Green Red
Difference Index

Green−Red
Green+Red [69]

9 PPR Plant Pigment Ratio Green−Blue
Green+Blue [70]

10 NCPI Normalized Pigment
Chlorophyll Index

Red−Blue
Red+Blue [71]

11 NDVI Normalized difference
vegetation index

NIR−Red
NIR+Red [72]

12 SRI Simple ratio index NIR
Red [73]

13 GRVI Green Ratio Vegetation Index NIR
Green [74]

14 IO Simple Ratio Red/Blue Iron
Oxide

Red
Blue [75]

15 GNDVI Green Normalized difference
vegetation index

NIR−Green
NIR+Green [76]

16 BNDVI Blue Normalized difference
vegetation index

NIR−Blue
NIR+Blue [77]

17 CIG Chlorophyll index green NIR
Green − 1 [78]

18 CVI Coloration index Red−Blue
Red [79]

19 GLI Green leaf index 2×Green−(Red+Blue)
2×Green+(Red+Blue)

[80]

20 GBNDVI Green-Blue NDVI NIR−(Green+Blue)
NIR+(Green+Blue)

[81]

21 GRNDVI Green-Red NDVI NIR−(Green+Red)
NIR+(Green+Red)

[81]

22 RBNDVI Red-Blue NDVI NIR−(Green−(Blue−Red))
NIR−(Green+(Blue−Red))

[81]

23 mSR Modified Simple Ratio NIR−Blue
Red+Blue [82]

24 GARI Green atmospherically resistant
vegetation index

NIR−(Blue+Red)
NIR+(Blue+Red)

[76]

25 Intensity Measures greyness in 0 (black) to 1
(white) scale in HSI color space [83]

26 Hue Color judgement (in ◦) based on
position in HSI color space [83]

27 Saturation Measures dilution of pure color (hue)
with white light within 0 to 1 [83]

28 Lightness Light reflected by a non-luminous
body [0 (black) to 100 (white)] [84]

29 a* color shift from green (−a) to red (+a)
in CIE-Lab color space [84]

30 b* color shift from blue (−b) to yellow
(+b) in CIE-Lab color space [84]

31 u* color shift from green (−a) to red (+a)
in CIE-Luv color space [84]

32 v* color shift from blue (−b) to yellow
(+b) in CIE-Luv color space [84]
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Table 3. Cont.

S. No. Indices Full Name Formula Reference

33 GA Green area Percentage of pixels in 60◦–120◦ hue
angle in CIE-Lab [85]

34 GGA Greener area Percentage of pixels in 80◦–120◦ hue
angle in CIE-Lab [85]

35 CSI Crop senescence index 100×(GA−GGA)
GA

[86]
36 ab a* × b* [28]
37 uv u* × u* [28]
38 abI ab Index a∗

b∗
39 uvI uv Index u∗

v∗
40 auI au Index a∗

u∗
41 bvI bv Index b∗

v∗
42 NDabI Normalized difference ab Index b∗−a∗

b∗+a∗
43 NDuvI Normalized difference uv Index v∗−u∗

v∗+u∗
44 NDLab Normalized difference CIELab Index 1−a∗−b∗

1−a∗+b∗ [87]
45 NDLuv Normalized difference CIELuv Index 1−u∗−v∗

1−u∗+v∗ [87]
46 GI Greenness Index GA

GGA
47 GPI Greenness product index GA × GGA
48 NDGI Normalized difference greenness Index GA−GGA

GA+GGA

Red, green, blue, NIR, and NDVI orthomosaics were exported to ArcMap (ver-
sion 10.6) tool of ArcGIS (ESRI, Redlands, CA, USA). Polygons bordering every row
were drawn on the orthomosaic. Each polygon had the same dimension as that of each
row (3.05 m long × 0.9 m wide) and was numbered. Polygons were shifted to overlap the
respective plot rows and collated into a single shapefile to create a fishnet. Fishnets were
common for all images from every flight campaign with georeferencing. Georeferencing
was done using GPS coordinates of pre-installed ground control points (GCPs) on the study
field. The zonal statistics option was used to extract the digital numbers (DNs) of each row.
This process averaged the raster information of every pixel within each polygon to give the
DN of red, green, blue, and NIR rasters.

Calibration was performed using a reflectance panel with eight different shades, from
white to black. The DNs of the eight shades were recorded for red, green, blue, and
NIR rasters from each orthomosaic. On the day of every flight, the reflectance from each
of the eight shades of the panel were measured using an ASD HH2 Hand-held VNIR
Spectroradiometer (Malvern Panalytical, Malvern, UK). The DNs and reflectance from the
panel were fitted in exponential regression models. The models trained to derive reflectance
values from DNs were:

Equation A− red = 0.1263× 1.0091DNr

Equation B− green = 0.1263× 1.0087DNg

Equation C− blue = 0.1144× 1.0087DNb

Equation D− NIR = 0.0563× 1.0147DNn

where red, green, blue, and NIR are the reflectance from the respective rasters; and DNr, DNg,
DNb, and DNn, are the digital numbers from red, green, blue, and NIR rasters, respectively.
The reflectance values of both rows of each plot were averaged to obtain the average
reflectance value of the plot.

2.5. Calculation of the VIs

A total of 48 VIs were extracted, or calculated, and their definitions are presented
in Table 3. Twenty-four VIs were calculated using the four bands (red, green, blue, near-
infrared) of leaf reflectance. The VIs were selected based on their power to discriminate
among healthy, stressed, and dead vegetation (https://www.indexdatabase.de, accessed
on 3 March 2020) [66,70,71].

https://www.indexdatabase.de
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An additional 24 VIs were extracted, or computed, from the color space indices
extracted from the RGB orthomosaic using ArcMap. Individual rows (two rows per plot)
were used to extract eight RGB color space indices using BreedPix tool. The extracted indices
were intensity, hue, saturation, lightness, a*, b*, u*, and v*. The green area (GA), greener
area (GGA), crop senescence index (CSI), along with 13 other indices, were computed from
the extracted indices, as shown in Table 3 [88–92].

2.6. Data Analyses

Statistical analyses were performed in Statistical Analysis Software (SAS) 9.4 (SAS
Institute Inc., Cary, NC, USA). PROC GLM was used for analysis of variance (ANOVA).
Measurements collected multiple times (plant height, lateral growth, NDVI, CTD, leaf
wilting, and disease ratings) were analyzed as repeated measures ANOVA using “nouni”
command and repeated option in PROC GLM. Fisher’s protected least significant difference
(LSD) was used for mean separation, when appropriate, based on the number of levels
in a particular factor. When designs were unbalanced, least square means (LSmeans)
mean separation procedure adjusted for Student’s t-test was used. PROC CORR was used
for Pearson’s correlation analysis. All image derived VIs and color space indices were
correlated to ground based traits. Pearson’s correlation was performed separately for
image and ground traits of each botanical variety. Since only two genotypes of variety
peruviana were included, it was pooled along with vulgaris, owing to their morphological
similarities (Stalker, 2017). PROC CORR was further used to create Pearson’s correlation
matrix heatmap. Graphs and figures were built using JMP® Pro 15.0.0 (SAS Institute Inc.,
Cary, NC, USA).

Calculation of the broad sense heritability: Broad sense heritability (H2) was calculated as
the ratio of genotypic variance (σ2

G) by phenotypic variance (σ2
P). Variance was calculated

as the ratio of the total sum of squares (TSS) to population size (n). H2 was calculated for
all ground based and aerially derived traits.

H2 =
σ2

G

σ2
G +

σ2
Gσ2

E
E +

σ2
E

ER

here: σ2
P = σ2

G +
σ2

Gσ2
E

E +
σ2

E
ER

σ2
E = environmental variance;

E = number of environments;
R = number of replications

3. Results
3.1. ANOVA of Genotype and Variety

In both years, repeated measures ANOVA showed significant WAP × genotype, and
WAP × variety interaction, for plant height, lateral growth, leaf wilting, ground NDVI, and
CTD. Therefore, with factorial ANOVA reported in Table 4, and trait means reported in
Tables 5 and 6, averages of all WAP were used only for the traits for which these interactions
were not significant, i.e., TSW, SSR, SB, and CBR. For plant height, lateral branching, and
NDVI, data at 6 WAP were used. Based on our visual observations, 6 WAP coincided with
the maximum point of the rapid growth phase before growth rate slowed and, even though
continued through 10 WAP, steadied; 6 WAP also marked the end of vegetative and the
beginning of the generative growth stage. For wilting and CTD, average values from 10 and
12 WAP in 2017, and 5 and 7 WAP in 2018, were used. During these times, sudden droughts
were encountered, and plants experienced low moisture stress; the interactions of these
WAP with genotype and variety were not significant. In this way, ANOVA showed that year,
genotype, and their interactions, had significant effects on morphological, physiological,
and agronomic characteristics, measured on the ground (Table 4). Stand count, plant height,
lateral branching, leaf wilting, TSW, SSR, post-harvest sprouting, and pod yield, varied
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significantly (p < 0.05) among genotypes (p < 0.05 to p < 0.0001) (Table 4). Ground NDVI
was significant at p < 0.1 (p = 0.074). Among the varieties, only plant height in 2017, wilting
in both years, and sprouting in 2018 were significantly different at p < 0.05; pod yield, along
with stand count and SB, were significant at p < 0.1(Table 4).

Table 4. a: Analysis of variance for the effect of genotype, year, and their interaction on morpholog-
ical, physiological, and agronomic characteristics, measured in 2017 and 2018 on the U.S. peanut
germplasm mini-core collection. b: Analysis of variance for the effect of variety, year, and their
interaction on morphological, physiological, and agronomic characteristics, measured in 2017 and
2018 on the U.S. peanut germplasm mini-core collection.

Source of
Variation

Stand
Count

Plant
Height

Lateral
Growth NDVI CTD Wilting TSW SSR SB CBR Thrips

Damage
Pod

Yield Sprouting

DF p-Value
year 1 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

block 2 0.001 0.110 <0.0001 0.703 <0.0001 <0.0001 0.0003 <0.0001 0.619 0.009 0.248 0.211 <0.0001
genotype 102 <0.0001 <0.0001 <0.0001 0.074 0.114 <0.0001 <0.0001 0.039 0.232 0.329 0.678 <0.0001 0.005

year*genotype 87 <0.0001 <0.0001 0.0041 0.461 0.003 0.366 0.409 0.011 0.049 0.658 0.303 <0.0001 0.766
Error 381

year 1 0.164 0.061 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.005
block 2 0.193 0.236 <0.0001 0.701 <0.0001 0.0016 0.001 <0.0001 0.619 0.01 0.249 0.425 <0.0001

variety 3 0.090 0.0003 0.925 0.2159 0.527 <0.0001 0.406 0.454 0.092 0.839 0.512 0.096 0.11
year*variety 3 0.092 0.013 0.129 0.6538 0.315 0.9781 0.262 0.427 0.097 0.668 0.512 0.283 0.976

Error 566

TSW–tomato spotted wilt; SSR–southern stem rot; SB–sclerotinia blight; CBR-cylindrocladium black rot.

3.2. Mean Separation of Genotypes

Even though fresh seed was produced for each planting year, several genotypes had
insufficient seed and this resulted in significantly poor stand in 2017 for some accessions; for
this reason, these accessions were removed from the test in 2018 (Table 5). Plant height and
lateral growth at 6 WAP was significantly different (p < 0.0001) within genotypes (Table 5).
In 2017, genotypes CC760 and CC605 were the tallest (42.5 and 40.6 cm, respectively) and
had the most lateral growth (65.4 cm and 64.1 cm, respectively); whereas CC115B and
CC631 were the shortest (12.3 cm and 16.1 cm tall, and 23.5 cm and 27.7 cm lateral growth,
respectively) (Table 5). Genotypes CC588 and CC760 showed severe leaf wilting (around
three) in both years, whereas CC208, CC223, CC296, CC342, CC381, CC458, CC535, CC548,
CC559, CC698, CC703B, CC812, and Wynne, were least wilted (<2) in both years. Incidence
of TSWV and SSR differed significantly among the genotypes. In both years, CC053 and
CC781 had one of the highest incidences of TSWV, whereas Wynne and Walton had the
lowest. For SSR, there were no differences among genotypes in 2017; however, in 2018,
CC781 showed the highest and CC787 the lowest incidences of SSR (Table 6). There were
no differences for SB, CBR, and thrips damage incidence, among genotypes in 2017 and
2018. Pod yield between years were significantly different (p < 0.0001) within genotypes
with Wynne (8253 kg ha−1 in 2017 and 6276 kg ha−1 in 2018), Walton (8459 kg ha−1 in 2017
and 6915 kg ha−1 in 2018), and C76-16 (8407 kg ha−1 in 2017 and 4753 kg ha−1 in 2018)
performing among the best in both years (Table 5). Average pod yield was significantly
lower in 2018 (2886 kg ha−1), as compared to 2017 (5334 kg ha−1). Post-harvest sprouting
showed no significant difference among genotypes in 2017; however, in 2018, CC038 had
the highest post-harvest sprouting (51.7 seeds per plot [5.5 m2]) (Table 5).

3.3. Mean Separation of Varieties

Among the varieties, vulgaris was the tallest and had the most robust lateral growth
(Table 7). Variety peruviana had the highest wilting score, followed by vulgaris and fastigiata;
variety hypogaea had the least wilting score in both years. There were no differences among
botanical varieties for disease incidence, or thrips damage. Although variety hypogaea had
significantly higher yield in 2017 than other varieties, no yield differences were observed
among varieties in 2018. Post-harvest sprouting was higher for fastigiata and vulgaris in
2018, than in hypogaea and peruviana (Table 7).
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Table 5. Plant growth and yield parameters (stand count, plant height, lateral growth, normalized ifference vegetation index (NDVI), canopy temperature depression
(CTD), leaf wilting, pod yield, and post-harvest sprouting) of 104 mini-core genotypes of peanut in 2017, and 88 in 2018. The plant height, lateral growth, and
NDVI, are measured at maximum vegetative growth [6 weeks after planting (WAP). Leaf wilting and canopy temperature depression (CTD) are the average of two
dates (10 and 12 WAP in 2017 and 5 to 7 WAP in 2018), with highest values corresponding to sudden droughts. The values followed by the same letters are not
significantly different using Fisher’s protected LSD at α = 0.05.

Genotypes

Stand Count
(Plants/Plot) Plant Height (cm) Lateral Growth (cm) NDVI (0–1) CTD (◦C) Leaf Wilting (0–5) Pod Yield

(kg ha−1)
Sprouting

(#/Plot)

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

Wynne 33 k-s 16 j 24 h-t 26 a 49 a-k 67 a 0.90 a-d 0.69 a −0.8 e-u 3.2 a-d 1.2 f-j 1.5 h 8253 a-d 6276 a 0 a 0 h
Walton 40 c-q 36 c-i 24 f-t 28 a 53 a-j 68 a 0.89 a-d 0.74 a −0.4 b-q 1.8 d-r 1.2 f-j 2.0 b-h 8459 a 6915 a 2 a 0 h

TVOL14 47 a-m 50 a-g 32 a-p 31 a 51 a-k 64 a 0.89 a-d 0.69 a −0.1 a-k 1.0 qr 1.6 c-j 2.7 a-h 5915 a-j 2424 f-s 3 a 4 gh
TS90 49 a-j 52 a-e 30 a-r 29 a 51 a-k 72 a 0.88 a-d 0.75 a −0.6 b-t 2.5 b-o 2.1 a-i 3.0 a-h 7056 a-h 2702 c-r 6 a 5 gh

TROL11 32 l-s 43 a-i 22 j-t 23 a 46 a-l 58 a 0.85 cd 0.67 a 0.5 a-c 3.6 a-c 1.1 g-j 2.9 a-h 5999 a-j 3260 c-m 5 a 8 e-h
NMVAL 53 a-e 52 a-c 34 a-l 28 a 52 a-j 59 a 0.87 a-d 0.75 a −0.4 b-q 1.4 k-r 2.1 a-j 3.3 a-e 4667 a-j 1627 rs 1 a 28 b-d
CC812 47 a-m 39 b-i 28 b-s 27 a 61 a-e 58 a 0.88 a-d 0.76 a 0.2 a-f 2.2 c-q 1.1 g-j 1.7 f-h 6214 a-j 3766 b-g 1 a 0 h
CC808 53 a-e 53 a-c 33 a-m 28 a 51 a-k 62 a 0.87 a-d 0.78 a 0.8 a 1.8 f-r 2.4 a-e 2.8 a-h 4829 a-j 2874 c-r 3 a 13 c-h
CC805 49 a-j 37 c-i 24 h-t 31 a 52 a-j 64 a 0.88 a-d 0.77 a −0.8 f-u 2.6 b-n 1.1 g-j 2.1 b-h 5481 a-j 2860 c-r 1 a 0 h
CC802 52 a-g 51 a-f 28 b-s 26 a 48 a-k 63 a 0.89 a-d 0.79 a −0.8 e-u 2.4 c-p 1.3 e-j 2.7 a-h 4768 a-j 2702 c-r 3 a 7 f-h
CC798 51 a-h 50 a-f 31 a-r 28 a 50 a-k 55 a 0.89 a-d 0.80 a −1.7 tu 2.8 a-k 1.5 c-j 2.8 a-h 4911 a-j 4004 bc 3 a 9 e-h
CC787 47 a-m 43 a-i 38 a-g 28 a 59 a-f 64 a 0.87 a-d 0.75 a −0.2 a-n 1.7 h-r 2.0 a-j 3.0 a-h 4640 b-j 2311 i-s 4 a 2 gh
CC781 50 a-i 53 a-c 37 a-h 28 a 61 a-d 64 a 0.88 a-d 0.71 a −0.3 a-q 2.5 b-o 2.4 a-e 3.3 a-d 5047 a-j 2602 d-s 1 a 28 b-d
CC775 37 f-r 38 c-i 32 a-o 28 a 52 a-j 66 a 0.88 a-d 0.71 a −0.4 b-q 3.8 ab 1.5 c-j 2.2 a-h 4476 d-j 1747 p-s 2 a 4 gh
CC760 49 a-j 42 a-i 43 a 27 a 65 a 71 a 0.86 a-d 0.66 a −0.2 a-m 1.1 p-r 2.7 a-c 3.6 a 5902 a-j 3147 c-o 5 a 30 bc
CC755 52 a-g 47 a-i 36 a-i 25 a 60 a-e 62 a 0.86 b-d 0.75 a 0.6 ab 2.8 a-k 2.3 a-g 3.3 a-d 4550 c-j 2425 f-s 1 a 4 gh
CC740 50 a-h 43 a-i 27 d-s 25 a 42 a-l 58 a 0.88 a-d 0.71 a −1.4 p-u 1.4 l-r 2.0 a-j 2.4 a-h 6423 a-i 2964 c-r 6 a 27 b-e
CC725 50 a-h 51 a-e 38 a-f 26 a 49 a-k 62 a 0.88 a-d 0.74 a −0.8 f-u 2.3 c-q 1.3 e-j 2.6 a-h 5176 a-j 2776 c-r 8 a 28 b-d
CC711 38 e-r 32 h-j 27 b-s 28 a 46 a-l 68 a 0.88 a-d 0.74 a −0.2 a-n 2.9 a-j 1.7 b-j 2.3 a-h 4094 f-j 2284 i-s 2 a 0 h

CC703B 39 d-q 50 a-h 23 i-t 26 a 52 a-j 57 a 0.90 a-d 0.77 a −1.2 k-u 1.7 i-r 1.0 h-j 1.8 e-h 6593 a-i 3711 b-h 1 a 0 h
CC703A 48 a-j 50 a-g 28 b-s 27 a 40 b-l 59 a 0.87 a-d 0.77 a −1.4 n-u 1.7 g-r 2.1 a-i 2.7 a-h 5210 a-j 3386 b-m 1 a 0 h
CC698 23 r-u 40 a-i 19 n-t 28 a 31 j-l 57 a 0.89 a-d 0.73 a −0.7 e-u 2.7 a-m 0.8 j 1.8 e-h 3522 g-j 3360 c-m 1 a 0 h
CC678 15 t-v 41 a-i 18 o-t 28 a 36 f-l 55 a 0.89 a-d 0.76 a −1.0 g-u 2.4 b-p 1.0 h-j 2.0 b-h 5327 a-j 3475 b-k 5 a 0 h
CC673 50 a-i 51 a-e 32 a-o 24 a 48 a-k 55 a 0.88 a-d 0.71 a −0.7 c-t 2.7 a-l 1.4 d-j 2.3 a-h 4465 d-j 3141 c-o 4 a 8 e-h
CC650 48 a-k 42 a-i 29 b-s 29 a 50 a-k 56 a 0.88 a-d 0.73 a −1.1 i-u 2.3 c-q 1.3 e-j 2.3 a-h 8351 a-c 1772 n-s 1 a 5 gh
CC643 28 p-t 43 a-i 28 b-s 27 a 52 a-j 66 a 0.89 a-d 0.69 a −0.3 a-q 2.2 d-r 2.1 a-i 3.3 a-e 5373 a-j 2382 g-s 3 a 2 gh
CC605 56 ab 52 a-d 41 a-c 27 a 64 ab 59 a 0.89 a-d 0.71 a −0.7 e-u 2.2 c-q 2.8 ab 3.0 a-h 5650 a-j 2824 c-r 3 a 13 c-h
CC588 58 a 47 a-i 40 a-d 31 a 54 a-j 63 a 0.88 a-d 0.66 a −0.3 a-q 2.2 c-q 3.0 a 3.0 a-h 4247 f-j 2327 h-s 6 a 30 bc
CC580 52 a-f 53 a-c 35 a-k 25 a 53 a-j 67 a 0.86 a-d 0.72 a −0.6 b-s 2.9 a-j 1.8 a-j 2.9 a-h 4925 a-j 2918 c-r 1 a 6 gh
CC579 49 a-j 49 a-h 32 a-p 29 a 43 a-l 66 a 0.87 a-d 0.67 a −0.5 b-q 1.9 d-r 1.5 c-j 2.2 a-h 4815 a-j 2702 c-r 4 a 7 f-h
CC559 48 a-j 36 c-i 24 h-t 27 a 37 e-l 55 a 0.90 a-d 0.68 a −0.6 b-r 1.8 f-r 1.3 e-j 1.8 d-h 3743 g-j 2101 k-s 2 a 0 h
CC553 53 a-d 50 a-g 33 a-m 26 a 47 a-l 61 a 0.88 a-d 0.74 a −1.7 s-u 1.8 e-r 1.1 g-j 2.1 b-h 6291 a-j 2425 f-s 1 a 10 d-h
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Table 5. Cont.

Genotypes

Stand Count
(Plants/Plot) Plant Height (cm) Lateral Growth (cm) NDVI (0–1) CTD (◦C) Leaf Wilting (0–5) Pod Yield

(kg ha−1)
Sprouting

(#/Plot)

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

CC548 36 h-s 44 a-i 26 d-s 28 a 56 a-i 61 a 0.88 a-d 0.71 a −0.3 a-q 2.3 c-q 1.0 h-j 1.5 h 6446 a-i 3523 b-j 0 a 0 h
CC546 52 a-e 51 a-e 35 a-l 27 a 49 a-k 59 a 0.87 a-d 0.71 a −1.9 u 2.6 b-n 2.2 a-h 2.7 a-h 4700 a-j 2354 h-s 2 a 9 e-h
CC535 51 a-h 33 f-j 32 a-q 25 a 45 a-l 61 a 0.90 a-c 0.70 a −0.7 d-t 3.1 a-g 1.0 h-j 1.5 h 6792 a-i 3161 c-n 0 a 0 h
CC529 47 a-l 47 a-i 24 g-t 26 a 38 d-l 63 a 0.91 a 0.66 a −0.2 a-n 2.7 a-m 1.3 e-j 2.1 b-h 5032 a-j 2977 c-r 1 a 4 gh
CC526 31 n-s 56 ab 26 f-t 30 a 44 a-l 65 a 0.88 a-d 0.77 a 0.2 a-g 0.8 r 1.9 a-j 3.1 a-g 5480 a-j 3186 c-m 1 a 17 b-h
CC508 52 a-e 50 a-g 38 a-g 24 a 54 a-j 65 a 0.87 a-d 0.71 a −0.7 e-u 2.4 c-p 1.8 b-j 2.8 a-h 5653 a-j 2989 c-r 0 a 2 gh
CC488 55 ab 52 a-d 40 a-e 24 a 53 a-j 65 a 0.89 a-d 0.79 a −0.2 a-o 2.3 c-q 2.3 a-f 3.3 a-e 5507 a-j 2523 e-s 3 a 20 b-g
CC485 39 d-q 44 a-i 31 a-r 29 a 49 a-k 58 a 0.88 a-d 0.70 a 0.4 a-e 1.7 i-r 2.3 a-g 2.6 a-h 4152 f-j 1628 rs 2 a 8 e-h
CC481 46 a-n 47 a-i 31 a-r 27 a 51 a-k 69 a 0.89 a-d 0.72 a 0.1 a-h 1.4 k-r 1.6 c-j 2.7 a-h 5050 a-j 3414 b-l 7 a 18 b-h
CC477 50 a-i 52 a-d 30 a-r 29 a 45 a-l 65 a 0.86 a-d 0.73 a 0.0 a-i 2.1 d-r 1.4 d-j 2.5 a-h 4427 e-j 3857 b-e 8 a 17 b-h
CC458 35 i-s 47 a-i 18 p-t 24 a 43 a-l 58 a 0.90 a-c 0.74 a −0.2 a-n 2.0 d-r 1.0 h-j 1.5 h 4340 e-j 2931 c-r 3 a 0 h
CC446 50 a-i 53 a-c 34 a-l 25 a 42 a-l 61 a 0.85 d 0.72 a −1.2 k-u 2.5 b-p 1.8 a-j 2.3 a-h 4139 f-j 2079 l-s 6 a 11 d-h
CC431 50 a-i 46 a-i 30 a-s 27 a 46 a-l 58 a 0.88 a-d 0.70 a −0.6 c-t 3.1 a-i 1.8 a-j 2.8 a-h 4982 a-j 1758 o-s 0 a 14 c-h
CC408 49 a-j 49 a-h 36 a-i 27 a 56 a-h 59 a 0.88 a-d 0.73 a 0.0 a-j 1.3 m-r 2.6 a-d 3.2 a-f 5881 a-j 2496 e-s 5 a 30 bc
CC406 51 a-h 48 a-h 30 a-s 28 a 42 a-l 66 a 0.89 a-d 0.74 a −0.4 b-q 2.1 d-r 1.4 d-j 2.5 a-h 5806 a-j 3600 b-i 3 a 3 gh
CC388 49 a-j 44 a-i 29 b-s 25 a 48 a-k 63 a 0.87 a-d 0.93 a 0.3 a-f 2.7 b-m 1.9 a-j 2.8 a-h 5263 a-j 2867 c-r 1 a 30 bc
CC384 54 a-c 48 a-i 34 a-l 24 a 46 a-l 64 a 0.88 a-d 0.60 a 0.2 a-g 2.5 b-o 1.3 e-j 2.0 b-h 4341 e-j 3022 c-q 5 a 5 gh
CC381 46 a-n 34 e-j 24 h-t 29 a 49 a-k 60 a 0.88 a-d 0.64 a −1.3 l-u 3.1 a-h 1.0 h-j 1.8 e-h 6070 a-j 2563 d-s 0 a 0 h
CC342 46 a-n 34 e-j 26 e-t 31 a 63 a-c 70 a 0.89 a-d 0.75 a −0.2 a-o 2.4 c-p 1.1 g-j 1.6 gh 7030 a-h 2456 f-s 1 a 0 h
CC338 52 a-f 46 a-i 33 a-m 28 a 42 b-l 61 a 0.88 a-d 0.76 a 0.2 a-g 2.3 c-q 1.9 a-j 2.3 a-h 4770 a-j 3121 c-p 1 a 25 b-f
CC310 57 a 49 a-h 30 a-r 29 a 50 a-k 63 a 0.87 a-d 0.72 a 0.2 a-g 1.2 o-r 2.2 a-h 2.8 a-h 5483 a-j 3170 c-m 2 a 35 ab
CC296 47 a-k 43 a-i 29 a-s 26 a 50 a-k 60 a 0.89 a-d 0.75 a −0.2 a-o 2.2 d-r 2.1 a-i 2.6 a-h 6463 a-i 2425 f-s 0 a 4 gh
CC287 49 a-j 40 a-i 28 b-s 29 a 53 a-j 64 a 0.88 a-d 0.75 a −0.3 a-p 3.2 a-e 1.1 g-j 1.9 c-h 5697 a-j 2441 f-s 1 a 3 gh
CC277 49 a-j 33 e-j 30 a-r 30 a 47 a-l 63 a 0.90 ab 0.68 a −1.4 o-u 2.3 c-q 1.2 f-j 1.8 e-h 5439 a-j 2707 c-r 1 a 0 h
CC266 29 o-t 44 a-i 25 f-t 33 a 42 a-l 74 a 0.87 a-d 0.65 a −0.3 a-q 1.8 f-r 1.8 b-j 2.2 a-h 4076 f-j 3323 c-m 1 a 15 c-h
CC249 48 a-k 44 a-i 34 a-l 28 a 47 a-l 72 a 0.90 a-c 0.78 a −0.6 c-t 1.9 d-r 1.1 g-j 1.9 c-h 6295 a-j 3154 c-n 1 a 1 h
CC246 51 a-g 36 c-i 25 f-t 28 a 40 c-l 69 a 0.88 a-d 0.78 a −1.7 r-u 2.4 b-p 1.2 f-j 2.1 b-h 8095 a-e 2538 e-s 3 a 0 h
CC233 47 a-l 45 a-i 21 k-t 29 a 46 a-l 61 a 0.89 a-d 0.73 a −0.5 b-q 1.3 n-r 1.0 h-j 1.8 e-h 6400 a-j 3198 c-m 0 a 0 h
CC230 49 a-j 49 a-h 27 b-s 25 a 58 a-h 65 a 0.90 a-c 0.74 a −1.3 k-u 2.6 b-o 1.0 h-j 2.4 a-h 6660 a-i 3324 c-m 0 a 1 h
CC227 47 a-l 38 b-i 25 f-t 32 a 48 a-k 70 a 0.89 a-d 0.69 a −1.2 j-u 2.5 b-p 1.3 e-j 2.5 a-h 6504 a-i 2626 c-s 1 a 18 b-h
CC223 49 a-j 33 e-j 27 c-s 30 a 58 a-g 64 a 0.90 a-d 0.74 a −0.3 a-q 3.2 a-f 1.4 d-j 2.5 a-h 7222 a-g 2087 k-s 0 a 2 gh
CC221 46 a-n 43 a-i 32 a-p 28 a 42 a-l 58 a 0.87 a-d 0.76 a −1.5 q-u 1.5 k-r 1.8 a-j 2.3 a-h 4317 e-j 2001 m-s 3 a 28 b-d
CC208 52 a-f 30 j 24 h-t 24 a 48 a-k 60 a 0.89 a-d 0.73 a −1.0 h-u 2.3 c-q 1.8 b-j 1.8 d-h 4455 d-j 2111 k-s 0 a 1 h
CC202 51 a-h 47 a-i 35 a-k 29 a 56 a-i 60 a 0.88 a-d 0.68 a 0.5 a-d 2.6 b-o 2.2 a-h 2.8 a-h 5751 a-j 2303 i-s 2 a 13 c-h
CC189 48 a-j 50 a-g 36 a-j 23 a 56 a-h 64 a 0.87 a-d 0.70 a 0.3 a-f 2.6 b-n 2.1 a-i 2.9 a-h 5345 a-j 2146 j-s 2 a 9 e-h
CC187 41 b-q 44 a-i 27 b-s 30 a 40 b-l 61 a 0.87 a-d 0.72 a 0.2 a-g 1.2 n-r 1.3 e-j 2.4 a-h 4603 c-j 3056 c-q 2 a 27 b-e
CC157 43 a-p 36 c-i 31 a-r 23 a 50 a-k 60 a 0.88 a-d 0.80 a −0.1 a-k 2.6 b-n 1.8 a-j 2.6 a-h 4884 a-j 2890 c-r 1 a 0 h
CC155 47 a-l 32 ij 26 e-t 27 a 47 a-k 67 a 0.88 a-d 0.73 a −0.7 e-u 2.6 b-n 1.9 a-j 2.8 a-h 5482 a-j 2434 f-s 2 a 2 gh
CC149 51 a-g 43 a-i 28 b-s 25 a 42 a-l 63 a 0.88 a-d 0.70 a −0.8 e-u 2.3 c-q 2.0 a-j 2.8 a-h 3835 g-j 2566 d-s 2 a 2 gh
CC125 45 a-n 43 a-i 34 a-l 29 a 54 a-j 65 a 0.89 a-d 0.76 a −1.0 h-u 2.6 b-n 1.7 b-j 2.3 a-h 7035 a-h 3406 b-l 1 a 4 gh
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Table 5. Cont.

Genotypes

Stand Count
(Plants/Plot) Plant Height (cm) Lateral Growth (cm) NDVI (0–1) CTD (◦C) Leaf Wilting (0–5) Pod Yield

(kg ha−1)
Sprouting

(#/Plot)

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

CC119 50 a-h 46 a-i 29 b-s 25 a 48 a-k 63 a 0.87 a-d 0.74 a −0.5 b-r 1.6 j-r 2.1 a-i 2.8 a-h 6081 a-j 3175 c-m 2 a 3 gh
CC115A 10 uv 46 a-i 20 m-t 27 a 32 i-l 70 a 0.80 e 0.71 a −0.9 g-u 3.2 a-e 1.0 h-j 1.6 gh 4873 a-j 3808 b-f 1 a 2 gh
CC112 50 a-h 52 a-d 38 a-g 28 a 53 a-j 57 a 0.88 a-d 0.72 a −1.1 i-u 1.6 j-r 2.1 a-i 3.5 ab 5644 a-j 3552 b-i 2 a 18 b-h
CC087 50 a-i 47 a-i 34 a-l 27 a 54 a-j 63 a 0.87 a-d 0.58 a −0.4 b-q 2.6 b-o 1.9 a-j 2.6 a-h 4640 b-j 3815 b-f 2 a 2 gh
CC082 46 a-n 48 a-h 31 a-r 28 a 48 a-k 67 a 0.87 a-d 0.72 a −1.4 m-u 2.8 a-k 1.9 a-j 2.5 a-h 4157 f-j 2403 g-s 9 a 30 bc
CC080 48 a-j 55 a-c 33 a-m 26 a 54 a-j 60 a 0.87 a-d 0.79 a −0.4 b-q 3.2 a-e 1.8 a-j 2.9 a-h 4165 f-j 2148 j-s 1 a 25 b-f
CC075 46 a-n 44 a-i 31 a-r 29 a 51 a-k 64 a 0.87 a-d 0.75 a −0.5 b-q 2.4 c-q 2.1 a-i 2.9 a-h 3852 f-j 2588 d-s 2 a 3 gh
CC068 52 a-g 52 a-d 40 a-d 32 a 57 a-h 74 a 0.87 a-d 0.70 a 0.1 a-h 1.8 d-r 2.1 a-i 2.6 a-h 4942 a-j 3935 b-d 1 a 2 gh
CC053 51 a-h 46 a-i 41 ab 29 a 60 a-e 59 a 0.88 a-d 0.75 a −0.5 b-q 2.6 b-n 2.3 a-g 3.2 a-f 4748 a-j 2832 c-r 0 a 2 gh
CC047 49 a-j 44 a-i 33 a-m 28 a 53 a-j 65 a 0.86 a-d 0.74 a −0.1 a-k 1.6 j-r 2.6 a-d 3.3 a-d 6132 a-j 3560 b-i 2 a 2 gh
CC041 49 a-j 44 a-i 30 a-r 30 a 42 a-l 62 a 0.88 a-d 0.74 a −0.1 a-k 2.0 d-r 1.8 a-j 3.3 a-d 5101 a-j 1699 q-s 1 a 20 b-g
CC038 45 a-n 35 d-i 36 a-j 29 a 52 a-j 64 a 0.88 a-d 0.72 a −0.4 b-q 4.1 a 2.4 a-e 3.4 a-c 5915 a-j 1290 s 0 a 52 a
CC033 46 a-n 37 c-i 32 a-p 25 a 50 a-k 58 a 0.89 a-d 0.77 a −1.0 g-u 2.4 c-q 2.1 a-i 2.8 a-h 5543 a-j 2395 g-s 4 a 17 b-h
CC016 48 a-k 51 a-e 40 a-e 28 a 57 a-h 61 a 0.88 a-d 0.78 a −0.3 a-q 2.2 d-r 2.2 a-h 3.4 a-c 4233 f-j 2870 c-r 5 a 17 b-h
CC012 50 a-h 42 a-i 32 a-n 32 a 46 a-l 62 a 0.88 a-d 0.71 a −0.7 e-u 1.7 h-r 2.3 a-g 2.9 a-h 4966 a-j 2574 d-s 1 a 9 e-h
C76-16 44 a-o 33 g-j 25 f-t 24 a 54 a-j 58 a 0.90 a-c 0.73 a 0.2 a-g 3.1 a-i 1.2 f-j 1.8 d-h 8407 ab 4753 b 1 a 0 h
SWR 44 a-o . 27 c-s . 59 a-f . 0.86 a-d . −0.3 a-q . 1.8 a-j . 5713 a-j . 1 a .

Sullivan 37 g-s . 22 i-t . 39 c-l . 0.89 a-d . −0.7 d-t . 1.0 h-j . 7651 a-f . 0 a .
OLE 52 a-f . 34 a-l . 52 a-j . 0.88 a-d . −0.8 f-u . 1.9 a-j . 6973 a-h . 0 a .

GA09B 40 c-q . 18 q-t . 47 a-l . 0.89 a-d . −1.0 h-u . 0.9 ij . 8105 a-e . 1 a .
CC763 22 s-u . 21 l-t . 34 h-l . 0.87 a-d . −1.3 k-u . 1.3 e-j . 2606 j . 1 a .
CC631 9 uv . 16 st . 28 kl . 0.85 b-d . −0.5 b-r . 1.3 e-j . 3502 g-j . 4 a .
CC610 6 v . 18 r-t . 34 g-l . 0.71 f . −0.3 a-q . 1.7 b-j . 3971 f-j . 1 a .

CC552B 30 o-t . 26 f-t . 39 c-l . 0.88 a-d . −0.7 e-u . 2.0 a-j . 3337 h-j . 1 a .
CC552A 27 q-t . 28 b-s . 44 a-l . 0.87 a-d . −0.9 f-u . 2.3 a-f . 3535 g-j . 2 a .
CC516B 38 d-q . 25 f-t . 45 a-l . 0.88 a-d . −0.2 a-m . 1.7 b-j . 5233 a-j . 3 a .
CC516A 54 a-c . 36 a-i . 59 a-f . 0.86 b-d . 0.2 a-g . 2.2 a-h . 5644 a-j . 2 a .
CC433A 32 m-s . 24 f-t . 43 a-l . 0.88 a-d . 0.1 a-i . 2.0 a-j . 4433 e-j . 1 a .
CC132 22 s-u . 27 d-s . 45 a-l . 0.86 a-d . 0.1 a-h . 1.8 a-j . 3335 h-j . 1 a .

CC115B 15 t-v . 12 t . 24 l . 0.78 e . −0.4 b-q . 1.1 g-j . 3535 g-j . 0 a .
CC050 34 j-s . 22 i-t . 36 f-l . 0.88 a-d . −0.2 a-l . 2.1 a-i . 3167 ij . 3 a .

Mean 44 44 29 27 48 63 0.9 0.73 −0.5 2.3 1.7 2.5 5334 2886 2 10
p-value <0.0001 <0.0001 <0.0001 0.998 <0.0001 0.436 <0.0001 0.421 0.0006 0.004 <0.0001 <0.0001 <0.0001 <0.0001 0.098 <0.0001
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Table 6. Disease and insect damage parameters (spotted wilt (TSWV), southern stem rot (SSR), sclerotinia blight (SB), cylindrocladium black rot (CBR), and thrips
damage) of 104 mini-core genotypes of peanut in 2017, and 88 in 2018. Values for TSWV, SSR, SB, and CBR, are averages over both measurement dates (10 and
12 WAP). The values followed by the same letters are not significantly different using Fisher’s protected LSD at α = 0.05.

Genotypes
TSWV (%) † SSR (%) SB (%) CBR (%) Thrips Damage

(0–10) ‡

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

Wynne 4.4 f-g 17.3 b 0.0 a 3 k-n 0.5 a 3 a 0 a 4.9 a 0 a 3.8 a
Walton 5.4 e-g 17.1 b 0.5 a 2.9 l-n 1.5 a 2.9 a 0 a 2.9 a 0 a 2.8 a

TVOL14 16.7 b-g 48.6 ab 0.0 a 8.4 e-n 2 a 14 a 0 a 4.6 a 0 a 3.8 a
TS90 18.6 b-g 38.7 b 0.0 a 14.1 a-j 2.5 a 3.8 a 1.5 a 8.5 a 0 a 2.5 a

TROL11 10.8 b-g 40.1 b 0.0 a 5.3 h-n 1.5 a 4.3 a 0 a 4.3 a 0 a 3.3 a
NMVAL 23.2 a-g 38.3 b 0.7 a 10.7 c-n 4 a 18.3 a 2.2 a 10.6 a 0 a 3.3 a
CC812 16.7 b-g 34.3 b 1.0 a 10 c-n 1.5 a 4.4 a 0 a 3.5 a 0 a 3.1 a
CC808 34.8 a-d 43.2 b 0.5 a 12 b-n 2.9 a 14.8 a 2 a 8.2 a 0 a 4.0 a
CC805 24.0 a-g 40.8 b 1.5 a 8.4 e-n 2.5 a 7.4 a 0 a 4.6 a 0 a 2.7 a
CC802 16.7 b-g 39.4 b 1.5 a 13.7 a-l 4.9 a 2.4 a 0.5 a 6.2 a 0 a 2.8 a
CC798 21.1 a-g 38.3 b 0.0 a 12.8 a-n 2 a 5.2 a 0 a 7.2 a 0 a 2.2 a
CC787 25.5 a-g 37.8 b 0.5 a 2.3 n 2.9 a 10.7 a 0 a 5.1 a 0 a 3.3 a
CC781 49.5 a 48.8 ab 1.0 a 23.2 a 1.5 a 6.2 a 0 a 4.3 a 0 a 3.2 a
CC775 32.4 a-f 38.3 b 0.0 a 19.8 a-d 4.4 a 5.4 a 0.5 a 8.3 a 0 a 2.3 a
CC760 33.8 a-e 37.2 b 0.5 a 5.8 g-n 2.9 a 4.9 a 0 a 3.9 a 0 a 4.2 a
CC755 25.5 a-g 32.6 b 0.0 a 15.8 a-h 4.9 a 1.8 a 0 a 8.3 a 0 a 2.4 a
CC740 24.0 a-g 38.2 b 0.0 a 9.1 d-n 0.5 a 9.2 a 1 a 5.2 a 0 a 3.2 a
CC725 24.0 a-g 40.6 b 0.0 a 15.2 a-i 2 a 4.8 a 0.5 a 6.7 a 0 a 2.8 a
CC711 27.9 a-g 53.0 ab 0.0 a 7.2 f-n 3.4 a 5.3 a 0 a 4.3 a 0 a 3.2 a

CC703B 7.4 c-g 42.8 b 0.0 a 6.5 g-n 0 a 2.7 a 0 a 2.7 a 0 a 3.3 a
CC703A 16.7 b-g 42.0 b 1.5 a 17.6 a-f 4.4 a 10 a 0 a 3.4 a 0 a 2.8 a
CC698 9.3 b-g 38.7 b 0.0 a 5.9 g-n 3.4 a 3.1 a 0 a 5 a 0 a 2.8 a
CC678 8.8 b-g 39.1 b 0.0 a 3.5 j-n 0 a 5.4 a 0 a 4.4 a 0 a 2.6 a
CC673 22.6 a-g 29.9 b 2.5 a 7.4 f-n 2 a 6.5 a 0 a 11.1 a 0 a 2.8 a
CC650 12.3 b-g 30.5 b 0.5 a 12.6 a-n 4.9 a 6.1 a 0 a 6.1 a 0 a 3.0 a
CC643 24.0 a-g 36.5 b 0.0 a 13.9 a-l 3.9 a 4.5 a 0 a 8.3 a 0 a 3.5 a
CC605 32.8 a-f 42.0 b 0.0 a 6.2 g-n 4.9 a 13.8 a 0 a 3.2 a 0 a 4.1 a
CC588 18.1 b-g 47.9 ab 0.0 a 7.2 f-n 8.3 a 8.1 a 0.5 a 10.1 a 0 a 2.6 a
CC580 35.8 a-c 41.0 b 2.0 a 9.9 c-n 2.5 a 9 a 1 a 3.4 a 0 a 2.4 a
CC579 20.1 b-g 36.8 b 1.0 a 13.2 a-n 3.4 a 4.9 a 0 a 4.9 a 0 a 3.1 a
CC559 22.1 a-g 52.7 ab 0.5 a 4 j-n 3.9 a 6.8 a 0 a 8.8 a 0 a 3.2 a
CC553 22.1 a-g 36.5 b 2.0 a 11 b-n 1.5 a 9.1 a 1 a 8.2 a 0 a 2.8 a
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Table 6. Cont.

Genotypes
TSWV (%) † SSR (%) SB (%) CBR (%) Thrips Damage

(0–10) ‡

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

CC548 11.3 b-g 42.2 b 0.0 a 3.4 j-n 1 a 2.5 a 0 a 5.3 a 0 a 2.9 a
CC546 26.0 a-g 48.1 ab 1.5 a 8.5 e-n 1.5 a 7.6 a 1 a 6.6 a 0 a 3.2 a
CC535 25.0 a-g 36.7 b 2.0 a 4.7 h-n 2.9 a 2.9 a 0 a 7.6 a 0 a 2.5 a
CC529 8.8 b-g 37.0 b 0.0 a 10.8 b-n 2.5 a 5 a 0 a 5 a 0 a 2.9 a
CC526 14.7 b-g 40.0 b 0.0 a 15.2 a-i 0 a 9.4 a 0 a 5.5 a 0 a 2.9 a
CC508 31.4 a-f 52.3 ab 2.0 a 10.5 c-n 3.9 a 2.8 a 0 a 14.1 a 0 a 3.6 a
CC488 18.1 b-g 38.1 b 0.0 a 6.6 f-n 0 a 9.4 a 0 a 12.4 a 0 a 3.8 a
CC485 22.1 a-g 44.1 ab 2.0 a 2.5 mn 6.4 a 10.1 a 0 a 6.3 a 0 a 3.4 a
CC481 29.9 a-g 39.6 b 2.5 a 4.7 h-n 2 a 6.7 a 0 a 2.9 a 0 a 3.0 a
CC477 18.6 b-g 33.5 b 1.5 a 9.1 d-n 1 a 10.9 a 0 a 10.9 a 0 a 3.9 a
CC458 13.2 b-g 44.4 ab 0.5 a 3.4 j-n 0.5 a 7.2 a 0 a 3.4 a 0 a 3.5 a
CC446 23.0 a-g 44.5 ab 0.0 a 2.4 mn 5.9 a 8 a 0 a 5.3 a 0 a 3.1 a
CC431 22.6 a-g 45.3 ab 0.0 a 16.7 a-g 1.5 a 5.2 a 0 a 6.1 a 0 a 3.3 a
CC408 22.1 a-g 43.0 b 0.5 a 12.7 a-n 0 a 11.7 a 0 a 6.9 a 0 a 3.7 a
CC406 21.6 a-g 35.5 b 0.0 a 9.3 d-n 2.5 a 2.7 a 0 a 6.5 a 0 a 2.6 a
CC388 19.1 b-g 40.9 b 0.0 a 15.2 a-i 0.5 a 6.4 a 1 a 13.1 a 0 a 3.1 a
CC384 33.3 a-f 31.8 b 0.0 a 8.1 e-n 4.9 a 2.5 a 1.5 a 5.4 a 0 a 3.3 a
CC381 15.7 b-g 33.2 b 0.5 a 5.9 g-n 1 a 6.9 a 0 a 2.2 a 0 a 2.5 a
CC342 19.6 b-g 43.3 ab 0.5 a 5.6 h-n 1.5 a 4.6 a 0 a 5.6 a 0 a 3.1 a
CC338 22.1 a-g 37.8 b 1.0 a 9.7 c-n 2 a 6.9 a 3.4 a 12.4 a 0 a 2.8 a
CC310 29.9 a-g 46.0 ab 0.0 a 18.5 a-e 1.5 a 3.2 a 1.5 a 7.9 a 0 a 3.2 a
CC296 24.5 a-g 46.2 ab 0.5 a 5 h-n 2 a 9.8 a 1.5 a 11.8 a 0 a 2.8 a
CC287 11.3 b-g 44.7 ab 0.0 a 7.4 f-n 0 a 2.6 a 1.5 a 2.6 a 0 a 3.6 a
CC277 14.7 b-g 29.0 b 0.0 a 4.4 i-n 2.5 a 2.5 a 0 a 3.5 a 0 a 2.9 a
CC266 29.9 a-g 42.8 b 1.0 a 13.4 a-m 1.5 a 8.6 a 0 a 4.8 a 0 a 3.5 a
CC249 22.1 a-g 48.9 ab 0.0 a 12.8 a-n 3.9 a 7.2 a 2.5 a 5.2 a 0 a 3.5 a
CC246 6.4 d-g 29.8 b 0.0 a 4.4 i-n 0 a 6.2 a 0 a 8 a 0 a 3.4 a
CC233 8.3 b-g 40.6 b 0.0 a 8.9 d-n 0 a 3.2 a 0 a 11.8 a 0 a 2.9 a
CC230 6.9 c-g 39.0 b 0.0 a 12.8 a-n 0 a 4.4 a 0 a 5.4 a 0 a 2.8 a
CC227 10.3 b-g 45.5 ab 0.0 a 3.5 j-n 0.5 a 11.1 a 0 a 11.1 a 0 a 2.5 a
CC223 7.8 c-g 53.6 ab 5.4 a 14.2 a-j 0 a 13.3 a 0.5 a 5.8 a 0 a 2.4 a
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Table 6. Cont.

Genotypes
TSWV (%) † SSR (%) SB (%) CBR (%) Thrips Damage

(0–10) ‡

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

CC221 20.1 b-g 39.6 b 1.0 a 20.7 a-c 2.5 a 2.9 a 0 a 6.6 a 0 a 3.6 a
CC208 23.5 a-g 45.1 ab 1.5 a 8.1 e-n 0.5 a 2.5 a 0 a 6.3 a 0 a 3.7 a
CC202 21.6 a-g 37.9 b 2.0 a 9.4 d-n 2.9 a 12.4 a 3.4 a 8.5 a 0 a 3.3 a
CC189 26.5 a-g 38.9 b 1.0 a 21.9 ab 0 a 14.4 a 0 a 3.9 a 0 a 2.5 a
CC187 21.1 a-g 39.2 b 0.5 a 10.9 b-n 0 a 6.2 a 0.5 a 10.9 a 0 a 3.3 a
CC157 31.4 a-f 45.3 ab 2.5 a 10.9 b-n 2 a 5 a 0 a 3.1 a 0 a 3.3 a
CC155 15.2 b-g 41.3 b 0.0 a 7 f-n 1.5 a 6.1 a 0 a 8 a 0 a 3.3 a
CC149 27.0 a-g 45.6 ab 2.0 a 14 a-k 2.5 a 8.3 a 0 a 7.2 a 0 a 3.3 a
CC125 29.4 a-g 40.3 b 0.5 a 11.1 b-n 0.5 a 7.2 a 0 a 6.3 a 0 a 3.5 a
CC119 24.0 a-g 39.2 b 0.0 a 7.3 f-n 2 a 4.5 a 1.5 a 8.2 a 0 a 2.3 a

CC115A 9.3 b-g 38.0 b 0.0 a 15.2 a-i 0.5 a 2.9 a 0 a 6.7 a 0 a 3.3 a
CC112 16.2 b-g 39.6 b 0.0 a 11.6 b-n 0 a 10.8 a 0 a 3.1 a 0 a 4.5 a
CC087 25.0 a-g 42.1 b 0.0 a 8.9 d-n 2 a 14.7 a 0 a 7.1 a 0 a 3.7 a
CC082 17.6 b-g 36.3 b 0.0 a 13.8 a-l 2.9 a 4.1 a 0 a 6 a 0 a 3.8 a
CC080 27.5 a-g 33.9 b 0.0 a 6.6 f-n 1 a 9.5 a 0 a 5.7 a 0 a 3.1 a
CC075 23.5 a-g 35.3 b 0.5 a 5.5 h-n 1.5 a 6.5 a 0 a 11.3 a 0 a 2.8 a
CC068 19.6 b-g 33.9 b 4.4 a 7.6 e-n 3.4 a 10.4 a 0 a 3.8 a 0 a 3.8 a
CC053 28.4 a-g 95.7 a 0.0 a 5 h-n 0 a 10.7 a 1 a 3.1 a 0 a 3.3 a
CC047 19.1 b-g 36.4 b 0.0 a 3.6 j-n 2.5 a 3.6 a 1 a 5.5 a 0 a 2.7 a
CC041 27.0 a-g 44.6 ab 0.0 a 5.6 h-n 0.5 a 16.1 a 0 a 5.7 a 0 a 3.6 a
CC038 29.4 a-g 46.9 ab 0.0 a 10.1 c-n 1 a 13.7 a 1 a 4.4 a 0 a 3.3 a
CC033 21.6 a-g 35.6 b 1.0 a 2.6 mn 3.9 a 4.5 a 1.5 a 9.2 a 0 a 2.3 a
CC016 18.1 b-g 44.0 ab 0.5 a 12.7 a-n 2.9 a 12.8 a 1 a 5.2 a 0 a 4.0 a
CC012 18.1 b-g 32.0 b 0.0 a 5.1 h-n 1.5 a 1.4 a 0 a 6.1 a 0 a 3.0 a
C76-16 6.9 c-g 30.2 b 1.0 a 4.7 i-n 1.5 a 2.8 a 0 a 5.6 a 0 a 2.2 a
SWR 13.7 b-g . 0.0 a . 3.4 a . 0 a . 0 a .

Sullivan 4.4 fg . 0.0 a . 0.5 a . 0 a . 0 a .
OLE 16.7 b-g . 0.5 a . 1 a . 0 a . 0 a .

GA09B 2.0 g . 0.0 a . 0 a . 0 a . 0 a .
CC763 25.5 a-g . 1.0 a . 1.5 a . 1 a . 0 a .
CC631 17.2 b-g . 0.0 a . 1 a . 0.5 a . 0 a .
CC610 11.8 b-g . 0.0 a . 1.5 a . 0 a . 0 a .

CC552B 26.5 a-g . 0.0 a . 2.5 a . 0.5 a . 0 a .
CC552A 26.5 a-g . 0.5 a . 0 a . 0 a . 0 a .
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Table 6. Cont.

Genotypes
TSWV (%) † SSR (%) SB (%) CBR (%) Thrips Damage

(0–10) ‡

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

CC516B 25.0 a-g . 0.5 a . 0 a . 0 a . 0 a .
CC516A 21.6 a-g . 0.0 a . 3.4 a . 0 a . 0 a .
CC433A 16.2 b-g . 0.0 a . 3.4 a . 0 a . 0 a .
CC132 25.5 a-g . 0.0 a . 2.9 a . 0 a . 0 a .

CC115B 15.7 b-g . 0.0 a . 0 a . 0 a . 0 a .
CC050 37.3 ab . 0.0 a . 1 a . 1 a . 0 a .

Mean 20.5 40.4 0.6 9.42 2 6.98 0.4 6.48 0 3.1
p-value <0.0001 0.041 0.785 <0.001 0.092 0.109 0.391 0.479 - 0.495

† Disease percentage was calculated as a fraction of the number of diseased plants observed, to the number of plants in each plot. ‡ Thrips damage was rated using a scale from 0 to 10, 0
being a plant not damaged by thrips, and 10 being all leaves damaged.

Table 7. The 2017 and 2018 stand count, plant height, lateral growth, Normalized Difference Vegetation Index (NDVI), canopy temperature depression (CTD), leaf
wilting, tomato spotted wilt (TSW), southern stem rot (SSR), sclerotinia blight (SB), cylindrocladium black rot (CBR), thrips damage, pod yield, and post-harvest
sprouting by varieties of the U.S. mini-core peanut collection. The plant height, lateral growth, and NDVI, are measurements taken at maximum vegetative growth
(6 weeks after planting (WAP)). Leaf wilting and canopy temperature depression (CTD) are the average of two dates (10 and 12 WAP in 2017 and 5 to 7 WAP in 2018),
with the highest values corresponding to sudden droughts. Values for TSW, SSR, SB, and CBR, are averages over both measurement dates (10 and 12 WAP). The
values followed by the same letters are not significantly different using Fisher’s protected LSD at α = 0.1.

Varieties

Stand Count
(Plants/Plot) Plant Height (cm) Lateral Growth

(cm) NDVI CTD (◦C) Leaf Wilting
(0–5) TSW (%) SSR (%) SB (%) CBR (%) Thrips Damage

(0–10) Pod Yield (kg ha−1) Sprouting (#/Plot)

2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

Fastigiata 42 a 45 a 29 ab 28 a 48 a 63 a 0.88 a 0.73 a −0.5 a 2.1 a 2 bc 3 ab 22 a 41 a 0.4 a 10.5 a 1.9 a 5.8 a 0.3 a 6.8 a 0 a 3.3 a 5312 a 2836 a 2.4 a 13.0 a
Hypogaea 44 a 43 a 28 b 27 a 48 a 63 a 0.88 a 0.73 a −0.5 a 2.4 a 2 c 2 b 18 a 40 a 0.7 a 9.4 a 2.0 a 6.7 a 0.5 a 6.4 a 0 a 3.1 a 5569 a 2921 a 1.9 a 6.9 b
Peruvian 49 a 38 a 27 b 26 a 45 a 65 a 0.88 a 0.71 a −0.7 a 2.5 a 2 a 3 a 21 a 44 a 1.0 a 10.5 a 2.0 a 7.2 a 0.0 a 7.6 a 0 a 3.3 a 4658 a 2500 a 1.7 a 1.8 b
Vulgaris 46 a 46 a 32 a 28 a 50 a 62 a 0.87 a 0.71 a −0.5 a 2.3 a 2 ab 3 ab 23 a 40 a 0.5 a 8.5 a 2.0 a 8.5 a 0.3 a 6.2 a 0 a 3.1 a 5037 a 2903 a 2.2 a 12.6 a

Mean 45 43 29 27 48 63 0.88 0.72 −0.5 2.3 2 3 21 41 1 9.7 2.0 7.1 0.3 6.8 0 3.2 5144 2790 2.0 8.6
p-value 0.665 0.785 <0.0001 0.679 0.998 0.569 0.556 0.384 0.893 0.183 0.0003 0.009 0.266 0.938 0.652 0.486 0.997 0.082 0.266 0.823 - 0.572 0.420 0.802 0.647 0.005
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3.4. Progression of Morphological and Physiological Traits among Varieties

On average, in all genotypes, plant height, lateral growth, and NDVI were significantly
different across WAP; maximal growth rates shown by NDVI were reached at 9 WAP in
2017, and 6 WAP in 2018, with significant but small changes afterwards (Figure 2). Among
varieties, vulgaris was significantly taller than the other varieties, whereas lateral growth
was not statistically different among varieties (Figure 3). NDVI differed during the early
stages of growth until 6 WAP, with vulgaris having the highest NDVI and peruviana the
lowest, in both years. Because of NDVI saturation during the late season (12 WAP), all
varieties showed no significant differences for NDVI at later growth stages (Figure 3).
Sudden droughts were recorded at 10 and 12 WAP in 2017, and 5 and 7 WAP in 2018.
During these times, CTD and wilting significantly increased for all varieties, in comparison
with times of no drought stress within each year (Figure 4). Even though peruviana showed
significantly lower CTD values in the absence of drought, indicating cooler canopies, there
were no significant differences among botanical varieties for CTD during sudden droughts
(Table 6). In 2017, wilting was low with no differences among varieties at 5 and 7 WAP, and
visual scores ranged from 0 to 1. Towards the end of the season (after 10 WAP), wilting
scores were higher, and varieties peruviana and vulgaris showed significantly more wilting
than hypogaea and fastigiata (Table 6). In 2018, more wilting was observed at 5 and 7 WAP
than at 10 and 12 WAP. As in 2017, in 2018, peruviana and vulgaris were significantly more
wilted than hypogaea and fastigiata (Figure 4). Based on data from 2017, taller genotypes
were more wilted and had more TSW pressure than smaller genotypes (Figure 5).
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Figure 2. The x-axis shows progression of measured growth traits (plant height, lateral growth, and
NDVI) for 104 mini-core peanut genotypes in 2017, and 88 in 2018, with weeks after planting on the
y-axis. Each box and whisker plot represents the measured trait, including all genotypes on that day.
Plots with the same letters are not significantly different across weeks after planting using LS means
at α = 0.05.
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NDVI) for four peanut varieties (fastigiata, hypogaea, peruviana, and vulgaris) of the U.S. mini-core
peanut collection in 2017 and 2018, with weeks after planting on the x-axis. The bars with no or
similar letters are not significantly different within individual weeks after planting using LS means at
α = 0.05.
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the lower graph is average plant height vs. TSW at 12 WAP, averaged across replications in 2017. 

Figure 5. Correlation of wilting and tomato spotted wilt (TSW) with plant height for the U.S. peanut
mini-core collection genotypes. Each data point for the upper graph is average plant height vs.
maximum wilting at 10 weeks after planting (WAP), averaged across replications; each data point for
the lower graph is average plant height vs. TSW at 12 WAP, averaged across replications in 2017.
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3.5. Correlation of Ground Data with Aerially Derived Leaf Reflectance and Indices

There were significant correlations (p < 0.0001) among ground data with aerially
derived VIs. In 2017, plant height and lateral growth of hypogaea, fastigiata, vulgaris, and
peruviana were negatively correlated to red, green, and blue reflectance (r = −0.32 to
−0.80); and positively correlated with aerial NDVI (r = 0.24 to 0.51) and RGB color indices,
including but not limited to lightness, a*, and u* (r = −0.53 to −0.80), green area (GA)
(r ≥ 0.69), and greener area (GGA) (r ≥ 0.59) (Table 8). Leaf wilting, TSW, SSR, SB, CBR,
and thrips damage, were significantly correlated (p < 0.0001) with red, green, and blue leaf
reflectance, and RGB color space indices b*, v*, and CSI, among others. In 2017, peanut pod
yield was correlated to several VIs, with regards to the variety (Table 8). The correlations
were weaker in 2018 than 2017 for most traits, but with a similar trend of correlations
(Table 9).

3.6. Heritability

Stand count was highly heritable (H2 = 0.87), based on data in both years (Table 10).
Plant height recorded greatest heritability (H2 from 0.45 to 0.94) in mid-season; while
ground NDVI and CTD were at the beginning of the season (H2 > 0.9), after which H2

gradually declined. Leaf wilting was mostly heritable (H2 = 0.65) at 7 WAP, coinciding
with high heritability of CTD (H2 = 0.79) at that growth stage. All diseases had highest
heritability (H2 > 0.5) at 10–11 WAP, when most severe disease incidence was recorded. Pod
yield had poor heritability. Averaging the measured traits over the growing season did not
yield any significant improvement in heritability. Overall, VIs had higher heritability than
red, green, and blue reflectance (Table 11). Though none of the VIs had high heritability
values (H2 > 0.5) consistently throughout the growing season, NIR, RGR, NDRGI, GNDVI,
BNDVI, CIG, GLI, and mSR, performed better than the others at certain times during the
growing season. When averaged over the growing season, red, green, blue, BGI, RGR,
NGRDI, PPR, NCPI, and CVI, had heritability above 50%. Among color space indices,
most had high heritability when estimated early in the season (up to 8 WAP). Only auI had
consistently high heritability values over the growing season. When averaged over the
different growth stages, a*, ab, uv, auI, NDabI, and NDuvI, had over 50% heritability.
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Table 8. Heatmap correlation matrix of aerial reflectance, color space indices, and their derived vegetation indices, with physiological, morphological, and agronomic
traits of peanuts in 2017.
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Red −0.72 −0.29 −0.76 −0.74 0.41 0.59 0.48 −0.12 0.27 0.06 −0.57 0.35 −0.69 −0.62 −0.60 −0.71 0.45 0.45 0.45 0.25 0.34 0.23 −0.40 0.14 −0.75 −0.64 −0.74 −0.81 0.36 0.30 0.24 0.17 −0.04 0.04 −0.58 0.18
Green −0.72 −0.42 −0.74 −0.74 0.38 0.49 0.44 −0.12 0.22 0.01 −0.59 0.33 −0.64 −0.60 −0.44 −0.65 0.49 0.65 0.50 0.34 0.31 0.23 −0.40 0.12 −0.62 −0.66 −0.62 −0.69 0.33 0.19 0.18 0.13 −0.11 0.05 −0.54 0.18
Blue −0.80 −0.40 −0.78 −0.77 0.40 0.57 0.32 −0.17 0.15 0.11 −0.46 0.20 −0.68 −0.71 −0.60 −0.76 0.41 0.44 0.25 0.02 0.44 0.18 −0.30 −0.33 −0.75 −0.70 −0.77 −0.83 0.33 0.24 0.10 0.07 −0.24 0.07 −0.43 −0.03
NIR −0.05 −0.39 0.37 0.02 0.14 0.20 0.15 0.32 0.09 0.10 0.27 0.03 −0.17 −0.25 0.16 −0.09 0.25 0.40 0.14 0.09 0.30 0.16 0.14 0.43 −0.27 −0.58 −0.16 −0.24 0.18 −0.01 0.26 −0.01 0.35 0.11 0.41 −0.08

NDVI 0.35 −0.07 0.69 0.46 −0.16 −0.15 −0.15 0.28 −0.07 0.03 0.54 −0.23 0.36 0.26 0.52 0.44 −0.14 −0.19 −0.32 −0.18 −0.03 −0.08 0.57 0.19 0.35 0.04 0.45 0.43 −0.13 −0.08 0.11 −0.07 0.26 0.04 0.55 −0.14
BGI −0.63 −0.05 −0.27 −0.26 0.12 −0.13 −0.45 −0.01 −0.25 0.16 0.03 −0.05 −0.07 −0.21 −0.31 −0.21 −0.18 −0.47 −0.38 −0.45 0.13 −0.08 0.03 −0.39 −0.19 −0.05 −0.28 −0.23 −0.04 0.08 −0.17 −0.12 −0.29 0.04 −0.20 −0.12
RGR −0.36 0.33 0.11 0.14 −0.01 −0.01 0.29 −0.10 0.29 0.22 −0.36 0.34 0.25 0.26 −0.03 0.22 −0.35 −0.39 −0.01 −0.24 0.17 0.09 −0.26 0.17 0.24 0.43 0.24 0.29 −0.19 0.24 0.27 0.20 0.29 −0.02 −0.56 0.20

NPPR 0.56 −0.15 0.06 0.04 −0.06 0.05 0.13 0.03 −0.01 −0.23 0.07 −0.19 −0.08 −0.01 0.19 0.01 0.27 0.40 0.29 0.44 −0.16 0.02 0.03 0.24 −0.05 −0.24 −0.02 −0.06 0.12 −0.15 −0.04 −0.02 0.04 −0.02 0.31 −0.04
NGRDI 0.35 −0.33 −0.12 −0.14 0.02 0.01 −0.29 0.09 −0.29 −0.22 0.33 −0.35 −0.25 −0.26 0.04 −0.21 0.34 0.38 0.01 0.23 −0.17 −0.10 0.25 −0.16 −0.24 −0.43 −0.24 −0.28 0.18 −0.23 −0.28 −0.19 −0.29 0.02 0.55 −0.21

PPR 0.61 0.05 0.26 0.25 −0.12 0.13 0.44 0.01 0.24 −0.16 −0.08 0.04 0.08 0.22 0.31 0.22 0.17 0.46 0.38 0.45 −0.13 0.08 −0.06 0.41 0.20 0.05 0.28 0.23 0.03 −0.08 0.17 0.12 0.29 −0.04 0.16 0.09
NCPI 0.54 0.43 0.47 0.48 −0.18 0.59 0.57 −0.04 0.38 −0.04 −0.27 0.22 0.37 0.55 0.34 0.50 −0.16 0.36 0.41 0.40 −0.07 0.12 −0.18 0.44 0.53 0.60 0.62 0.62 −0.19 0.68 0.28 0.20 0.39 −0.05 −0.04 0.17
SRI 0.33 −0.09 0.68 0.44 −0.14 −0.19 −0.21 0.32 −0.14 0.04 0.53 −0.24 0.36 0.27 0.53 0.43 −0.14 −0.23 −0.35 −0.18 −0.04 −0.11 0.58 0.25 0.35 0.04 0.45 0.43 −0.12 −0.06 0.02 −0.11 0.26 0.06 0.60 −0.20

GRVI 0.38 0.02 0.68 0.46 −0.14 −0.12 −0.17 0.30 −0.10 0.07 0.50 −0.15 0.44 0.36 0.48 0.49 −0.27 −0.17 −0.35 −0.24 −0.01 −0.08 0.50 0.36 0.40 0.26 0.49 0.49 −0.19 −0.02 0.06 −0.08 0.30 0.06 0.54 −0.15
IO 0.53 0.43 0.47 0.48 −0.17 0.59 0.57 −0.03 0.38 −0.05 −0.31 0.18 0.37 0.55 0.34 0.50 −0.15 0.36 0.41 0.41 −0.07 0.12 −0.20 0.45 0.52 0.60 0.62 0.62 −0.19 0.68 0.27 0.20 0.38 −0.05 −0.09 0.10

GNDVI 0.40 0.04 0.69 0.48 −0.15 −0.09 −0.11 0.27 −0.04 0.06 0.51 −0.17 0.43 0.34 0.46 0.48 −0.26 −0.14 −0.33 −0.23 0.01 −0.06 0.50 0.30 0.41 0.26 0.48 0.49 −0.19 −0.05 0.13 −0.05 0.29 0.04 0.51 −0.12
BNDVI 0.42 0.06 0.73 0.53 −0.19 −0.07 −0.01 0.30 0.03 0.02 0.42 −0.11 0.46 0.42 0.59 0.57 −0.18 0.14 −0.07 0.06 −0.06 0.00 0.27 0.54 0.49 0.28 0.60 0.59 −0.18 −0.05 0.17 −0.02 0.32 0.02 0.42 −0.01

CIG 0.38 0.02 0.68 0.46 −0.14 −0.12 −0.17 0.30 −0.10 0.07 0.50 −0.15 0.44 0.36 0.48 0.49 −0.27 0.36 −0.35 −0.24 −0.01 −0.08 0.50 0.36 0.40 0.26 0.49 0.49 −0.19 −0.02 0.06 −0.08 0.30 0.06 0.54 −0.15
CVI 0.55 0.43 0.46 0.48 −0.18 0.59 0.58 −0.04 0.38 −0.04 −0.20 0.24 0.37 0.55 0.33 0.50 −0.16 0.42 0.41 0.40 −0.08 0.13 −0.17 0.44 0.53 0.61 0.62 0.62 −0.19 0.68 0.29 0.20 0.39 −0.05 0.00 0.20
GLI 0.57 −0.16 0.07 0.05 −0.06 0.07 0.15 0.05 0.01 −0.24 0.13 −0.18 −0.10 −0.03 0.19 0.00 0.29 0.24 0.29 0.44 −0.17 0.02 0.07 0.21 −0.06 −0.25 −0.02 −0.07 0.13 −0.16 −0.04 −0.03 0.04 −0.02 0.36 −0.02

GBNDVI 0.40 0.04 0.71 0.50 −0.16 −0.09 −0.09 0.29 −0.03 0.05 0.48 −0.15 0.45 0.38 0.52 0.53 −0.24 −0.04 −0.25 −0.14 −0.02 −0.04 0.44 0.44 0.45 0.27 0.54 0.54 −0.19 −0.05 0.13 −0.05 0.31 0.03 0.49 −0.09
GRNDVI 0.38 −0.01 0.70 0.47 −0.15 −0.12 −0.14 0.28 −0.07 0.05 0.52 −0.20 0.41 0.31 0.50 0.47 −0.22 −0.17 −0.33 −0.21 −0.01 −0.07 0.55 0.27 0.40 0.19 0.49 0.48 −0.17 −0.06 0.10 −0.07 0.28 0.04 0.54 −0.15
RBNDVI 0.25 −0.17 0.53 0.28 −0.07 −0.13 −0.15 0.22 −0.02 0.02 0.58 −0.25 0.12 −0.09 0.21 0.11 −0.08 −0.40 −0.44 −0.37 0.05 −0.08 0.51 −0.06 0.00 −0.28 0.02 0.01 −0.05 −0.10 0.19 −0.03 0.18 0.05 0.41 −0.06

mSR 0.37 −0.01 0.70 0.49 −0.16 −0.15 −0.14 0.33 −0.09 0.03 0.46 −0.17 0.42 0.39 0.58 0.53 −0.17 −0.05 −0.22 −0.06 −0.06 −0.07 0.41 0.52 0.45 0.21 0.57 0.54 −0.15 −0.04 0.06 −0.08 0.32 0.05 0.51 −0.13
GARI 0.38 −0.01 0.71 0.49 −0.17 −0.13 −0.10 0.30 −0.05 0.03 0.49 −0.19 0.41 0.34 0.56 0.51 −0.17 −0.06 −0.23 −0.09 −0.05 −0.05 0.47 0.40 0.43 0.16 0.54 0.52 −0.15 −0.06 0.12 −0.05 0.29 0.03 0.51 −0.10

Intensity −0.85 −0.65 −0.82 −0.93 0.56 0.27 0.16 −0.20 −0.06 0.02 −0.56 0.32 −0.83 −0.86 −0.78 −0.92 0.45 0.48 0.32 0.19 0.09 0.11 −0.45 0.05 −0.82 −0.87 −0.86 −0.93 0.37 0.25 −0.16 −0.01 −0.16 0.01 −0.48 0.12
Hue 0.79 0.64 0.64 0.83 −0.65 −0.40 −0.22 0.23 0.00 −0.05 0.54 −0.36 0.70 0.69 0.70 0.82 −0.28 −0.62 −0.22 −0.15 0.20 −0.06 0.55 −0.33 0.69 0.46 0.57 0.74 −0.40 −0.27 0.10 −0.04 −0.07 0.02 0.63 −0.27

Saturation 0.83 0.52 0.76 0.69 −0.26 0.12 0.35 0.22 0.42 −0.05 0.09 0.12 0.55 0.72 0.56 0.59 −0.38 0.44 0.37 0.35 0.13 0.14 −0.09 0.43 0.55 0.72 0.72 0.67 −0.19 −0.35 0.33 0.14 0.29 −0.04 0.18 0.14
Lightness −0.82 −0.63 −0.80 −0.92 0.56 0.31 0.24 −0.18 0.01 0.01 −0.59 0.34 −0.84 −0.84 −0.77 −0.92 0.45 0.57 0.43 0.30 0.15 0.15 −0.51 0.13 −0.82 −0.87 −0.85 −0.92 0.38 0.24 −0.10 0.02 −0.15 0.01 −0.50 0.17

a* −0.72 −0.69 −0.77 −0.88 0.56 −0.04 −0.36 −0.23 −0.39 0.09 −0.22 0.05 −0.78 −0.91 −0.83 −0.89 0.37 −0.36 −0.46 −0.40 −0.31 −0.19 −0.09 −0.06 −0.80 −0.73 −0.85 −0.92 0.35 0.36 −0.41 −0.17 −0.06 −0.02 −0.43 −0.02
b* 0.60 0.46 0.69 0.57 −0.17 0.46 0.61 0.06 0.46 −0.06 −0.31 0.29 0.41 0.61 0.41 0.43 −0.29 0.64 0.53 0.44 0.21 0.20 −0.23 0.30 0.48 0.60 0.64 0.58 −0.15 −0.17 0.48 0.28 0.18 0.01 −0.12 0.27
u* −0.69 −0.66 −0.67 −0.84 0.60 0.05 −0.24 −0.24 −0.32 0.09 −0.31 0.16 −0.75 −0.82 −0.80 −0.88 0.33 −0.20 −0.41 −0.37 −0.34 −0.18 −0.21 0.06 −0.74 −0.61 −0.73 −0.83 0.35 0.33 −0.37 −0.13 −0.02 −0.03 −0.49 0.08
v* 0.41 0.42 0.62 0.50 −0.13 0.47 0.56 −0.03 0.34 −0.05 −0.46 0.32 0.33 0.55 0.32 0.34 −0.23 0.66 0.54 0.43 0.22 0.20 −0.28 0.24 0.44 0.51 0.58 0.53 −0.13 0.03 0.36 0.24 0.02 0.03 −0.33 0.28

GA 0.89 0.70 0.81 0.91 −0.60 0.04 0.08 0.22 0.25 −0.01 0.43 −0.09 0.82 0.91 0.83 0.92 −0.46 0.29 0.28 0.07 0.47 0.05 0.32 −0.17 0.86 0.79 0.87 0.97 −0.42 −0.20 0.33 0.10 0.18 0.01 0.46 0.06
GGA 0.85 0.62 0.80 0.90 −0.61 −0.25 −0.11 0.24 0.08 −0.07 0.55 −0.34 0.78 0.86 0.82 0.89 −0.36 −0.49 −0.12 0.00 0.15 0.02 0.52 −0.28 0.75 0.63 0.78 0.86 −0.33 −0.36 0.14 0.00 0.00 −0.02 0.58 −0.25
CSI −0.67 −0.42 −0.66 −0.81 0.63 0.44 0.25 −0.20 0.07 0.13 −0.55 0.38 −0.55 −0.43 −0.50 −0.64 0.14 0.64 0.29 0.04 0.05 0.00 −0.30 0.27 −0.18 0.00 −0.15 −0.22 0.07 0.37 0.04 0.08 0.17 0.02 −0.56 0.28
ab −0.71 −0.67 −0.80 −0.84 0.46 −0.28 −0.54 −0.17 −0.46 0.09 0.06 −0.16 −0.72 −0.91 −0.79 −0.82 0.38 −0.53 −0.51 −0.46 −0.25 −0.19 0.10 −0.26 −0.76 −0.79 −0.90 −0.90 0.30 0.30 −0.48 −0.26 −0.11 −0.01 −0.16 −0.20
uv −0.63 −0.66 −0.69 −0.84 0.57 −0.22 −0.47 −0.18 −0.41 0.10 −0.07 −0.07 −0.77 −0.87 −0.82 −0.89 0.36 −0.47 −0.50 −0.46 −0.30 −0.20 −0.01 −0.16 −0.75 −0.66 −0.79 −0.86 0.34 0.27 −0.48 −0.24 −0.03 −0.04 −0.29 −0.13
abI −0.72 −0.61 −0.58 −0.78 0.61 0.43 0.25 −0.23 0.03 0.05 −0.56 0.36 −0.67 −0.68 −0.70 −0.79 0.25 0.62 0.21 0.14 −0.20 0.06 −0.56 0.33 −0.64 −0.44 −0.56 −0.70 0.34 0.29 −0.04 0.06 0.10 −0.02 −0.66 0.30
uvI −0.73 −0.64 −0.64 −0.83 0.62 0.36 0.14 −0.25 −0.07 0.05 −0.52 0.35 −0.72 −0.75 −0.75 −0.85 0.29 0.49 0.05 0.00 −0.25 −0.01 −0.50 0.28 −0.71 −0.54 −0.66 −0.79 0.36 0.33 −0.14 0.01 0.01 −0.01 −0.62 0.26
auI −0.27 0.40 0.56 0.55 −0.34 0.18 0.04 −0.01 0.02 0.10 0.11 0.04 0.19 0.26 0.20 0.17 −0.30 0.13 −0.23 −0.19 −0.38 −0.14 −0.30 0.28 0.18 0.16 0.07 0.23 −0.08 0.18 −0.35 −0.08 −0.07 −0.05 0.03 0.08
bvI 0.77 0.48 0.73 0.69 −0.26 −0.28 −0.13 0.23 0.07 −0.01 0.49 −0.14 0.58 0.70 0.56 0.61 −0.40 −0.28 −0.19 −0.06 −0.08 −0.07 0.27 0.42 0.52 0.72 0.68 0.63 −0.18 −0.32 0.10 0.00 0.23 −0.05 0.39 0.04

NDabI 0.69 0.48 0.55 0.65 −0.44 −0.53 −0.36 0.25 −0.12 −0.06 0.68 −0.38 0.54 0.66 0.66 0.66 −0.13 −0.63 −0.20 −0.15 0.20 −0.09 0.54 −0.34 0.49 0.29 0.48 0.55 −0.17 −0.31 −0.12 −0.09 −0.16 −0.01 0.70 −0.31
NDuvI 0.71 0.59 0.63 0.76 −0.54 −0.45 −0.20 0.26 0.01 −0.06 0.61 −0.38 0.65 0.76 0.75 0.77 −0.23 −0.51 −0.05 0.00 0.25 −0.02 0.53 −0.28 0.62 0.47 0.63 0.70 −0.25 −0.36 0.04 −0.04 −0.06 −0.01 0.68 −0.28
NDLab 0.71 0.60 0.55 0.77 −0.62 −0.41 −0.25 0.22 −0.03 −0.04 0.53 −0.36 0.68 0.65 0.68 0.80 −0.26 −0.65 −0.27 −0.19 0.16 −0.08 0.55 −0.33 0.64 0.44 0.54 0.69 −0.37 −0.27 0.05 −0.06 −0.09 0.02 0.65 −0.29
NDLuv 0.75 0.65 0.63 0.85 −0.64 −0.32 −0.13 0.24 0.08 −0.04 0.45 −0.33 0.76 0.72 0.73 0.88 −0.33 −0.53 −0.11 −0.04 0.22 −0.01 0.44 −0.27 0.74 0.56 0.64 0.81 −0.43 −0.30 0.16 0.00 0.01 0.02 0.60 −0.25

GI 0.68 0.42 0.66 0.80 −0.62 −0.44 −0.26 0.20 −0.08 −0.12 0.55 −0.38 0.55 0.43 0.50 0.63 −0.14 −0.64 −0.29 −0.04 −0.06 0.00 0.30 −0.27 0.17 0.00 0.14 0.20 −0.06 −0.38 −0.09 −0.10 −0.20 −0.03 0.57 −0.30
GPI 0.78 0.61 0.78 0.84 −0.53 −0.18 −0.06 0.25 0.13 −0.05 0.54 −0.31 0.73 0.90 0.85 0.83 −0.35 −0.36 0.00 0.02 0.27 0.03 0.52 −0.29 0.71 0.69 0.85 0.85 −0.25 −0.34 0.19 0.02 0.06 −0.02 0.56 −0.21

NDGI −0.66 −0.43 −0.66 −0.79 0.62 0.42 0.24 −0.20 0.06 0.12 −0.52 0.36 −0.57 −0.43 −0.50 −0.66 0.17 0.64 0.29 0.03 0.06 −0.01 −0.22 0.25 −0.17 −0.01 −0.15 −0.21 0.07 0.37 0.05 0.10 0.19 0.02 −0.53 0.28
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Table 9. Heatmap correlation matrix of aerial reflectance, color space indices, and their derived vegetation indices, with physiological, morphological, and agronomic
traits of peanuts in 2018.
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Red −0.40 −0.50 −0.26 −0.25 0.34 −0.31 0.12 0.27 0.34 0.18 −0.31 0.36 0.04 0.07 0.06 −0.32 −0.23 −0.27 −0.15 0.19 0.13 0.16 −0.56 −0.38 0.13 −0.10 −0.33 −0.27 0.18 −0.31 0.05 −0.05 0.10 −0.36 −0.46 0.36
Green −0.57 −0.60 −0.27 −0.40 0.37 −0.46 −0.01 0.25 0.17 0.13 −0.23 0.35 −0.07 −0.05 0.03 −0.50 −0.11 −0.40 −0.09 0.29 0.18 0.05 −0.52 −0.42 0.26 −0.26 −0.33 −0.51 0.18 −0.33 0.06 −0.16 0.01 −0.34 −0.47 0.34
Blue −0.55 −0.62 −0.24 −0.37 0.28 −0.34 0.03 0.00 −0.09 0.15 −0.26 −0.17 −0.36 −0.08 0.11 −0.43 −0.10 −0.27 0.02 −0.02 −0.09 0.36 −0.28 −0.49 0.19 −0.39 −0.48 −0.52 0.39 −0.45 −0.02 0.13 0.28 −0.13 −0.39 0.44
NIR 0.35 0.31 0.38 0.57 −0.39 −0.02 0.14 0.04 0.05 0.03 0.02 −0.01 0.01 −0.07 −0.17 0.18 −0.02 0.12 0.18 0.25 0.33 0.08 −0.01 0.00 0.28 0.25 0.28 0.19 −0.08 0.04 0.28 0.18 −0.17 0.14 −0.03 0.11

NDVI 0.48 0.51 0.43 0.59 −0.49 0.14 −0.04 −0.19 −0.26 −0.15 0.23 −0.29 −0.05 −0.08 −0.17 0.27 0.09 0.20 0.18 −0.08 −0.01 −0.13 0.34 0.09 0.14 0.23 0.40 0.27 −0.13 0.18 0.04 0.13 −0.15 0.37 0.33 −0.24
BGI −0.47 −0.56 −0.19 −0.29 0.15 −0.20 0.06 −0.11 −0.13 0.10 −0.22 −0.30 −0.46 −0.13 0.16 −0.27 −0.03 −0.08 0.09 −0.12 −0.10 0.40 −0.02 −0.45 0.05 −0.32 −0.39 −0.41 0.46 −0.49 −0.05 0.16 0.26 0.02 −0.24 0.33
RGR 0.44 0.33 0.11 0.38 −0.13 0.38 0.22 0.25 0.45 0.20 −0.45 0.31 0.14 0.23 0.05 0.41 −0.21 0.32 −0.14 0.12 0.15 0.31 −0.53 −0.19 −0.20 0.24 0.03 0.39 0.08 0.00 0.06 0.05 0.16 −0.27 −0.36 0.32

NPPR 0.18 0.34 0.11 0.05 −0.05 −0.05 −0.22 −0.12 −0.24 −0.22 0.32 −0.02 0.41 −0.02 −0.16 0.00 0.14 −0.09 0.03 −0.05 −0.11 −0.49 0.34 0.41 0.10 0.20 0.43 0.09 −0.37 0.42 0.01 −0.07 −0.28 0.16 0.36 −0.31
NGRDI −0.44 −0.32 −0.11 −0.38 0.13 −0.38 −0.22 −0.24 −0.44 −0.20 0.43 −0.31 −0.13 −0.23 −0.05 −0.41 0.21 −0.32 0.13 −0.14 −0.19 −0.32 0.52 0.21 0.20 −0.23 −0.03 −0.39 −0.08 −0.01 −0.07 −0.01 −0.16 0.27 0.36 −0.30

PPR 0.46 0.56 0.19 0.29 −0.14 0.20 −0.06 0.11 0.14 −0.11 0.20 0.32 0.46 0.14 −0.16 0.27 0.02 0.08 −0.08 0.12 0.10 −0.40 0.06 0.45 −0.04 0.32 0.40 0.41 −0.46 0.49 0.06 −0.17 −0.25 −0.03 0.23 −0.31
NCPI 0.55 0.59 0.20 0.39 −0.17 0.32 0.05 0.20 0.32 −0.01 −0.03 0.41 0.41 0.24 −0.12 0.46 −0.08 0.23 −0.14 0.18 0.19 −0.22 −0.23 0.44 −0.11 0.33 0.30 0.51 −0.50 0.39 0.10 −0.17 −0.18 −0.14 0.07 −0.24
SRI 0.46 0.48 0.44 0.57 −0.47 0.14 −0.06 −0.25 −0.26 −0.14 0.23 −0.31 0.03 −0.05 −0.15 0.28 0.07 0.23 0.12 −0.19 −0.19 −0.23 0.40 0.02 0.13 0.24 0.40 0.29 −0.16 0.19 0.00 0.16 −0.15 0.32 0.32 −0.23

GRVI 0.53 0.52 0.43 0.62 −0.46 0.22 0.09 −0.18 −0.09 −0.08 0.08 −0.26 0.06 0.00 −0.12 0.35 0.01 0.28 0.14 −0.11 −0.01 −0.03 0.25 −0.07 0.03 0.33 0.39 0.42 −0.15 0.21 0.11 0.22 −0.10 0.37 0.25 −0.21
IO 0.55 0.59 0.20 0.38 −0.17 0.33 0.07 0.19 0.35 −0.07 −0.03 0.45 0.42 0.25 −0.11 0.45 −0.11 0.22 −0.12 0.17 0.17 −0.23 −0.13 0.40 −0.11 0.32 0.31 0.51 −0.50 0.39 0.07 −0.20 −0.15 −0.15 0.11 −0.23

GNDVI 0.55 0.55 0.42 0.64 −0.48 0.23 0.10 −0.13 −0.07 −0.08 0.07 −0.24 −0.01 −0.02 −0.15 0.34 0.04 0.26 0.18 −0.06 0.09 0.00 0.22 −0.05 0.04 0.33 0.39 0.40 −0.12 0.19 0.12 0.25 −0.11 0.39 0.24 −0.20
BNDVI 0.57 0.61 0.36 0.57 −0.41 0.23 0.03 0.04 0.11 −0.13 0.18 0.17 0.18 0.02 −0.18 0.36 0.05 0.22 0.06 0.09 0.17 −0.31 0.06 0.07 0.00 0.43 0.52 0.46 −0.30 0.33 0.10 −0.08 −0.32 0.15 0.36 −0.29

CIG 0.53 0.52 0.43 0.62 −0.46 0.22 0.09 −0.18 −0.09 −0.08 0.08 −0.26 0.06 0.00 −0.12 0.35 0.01 0.28 0.14 −0.11 −0.01 −0.03 0.25 −0.07 0.03 0.33 0.39 0.42 −0.15 0.21 0.11 0.22 −0.10 0.37 0.25 −0.21
CVI 0.56 0.59 0.19 0.39 −0.17 0.31 0.04 0.20 0.31 0.01 −0.01 0.39 0.40 0.23 −0.13 0.46 −0.06 0.24 −0.15 0.18 0.20 −0.20 −0.30 0.46 −0.12 0.33 0.29 0.52 −0.51 0.38 0.11 −0.15 −0.19 −0.13 0.05 −0.24
GLI 0.18 0.35 0.11 0.05 −0.06 −0.05 −0.21 −0.11 −0.24 −0.22 0.42 −0.02 0.40 −0.02 −0.15 0.00 0.14 −0.10 0.03 −0.02 −0.06 −0.47 0.34 0.39 0.09 0.20 0.43 0.09 −0.37 0.43 0.01 −0.12 −0.28 0.15 0.37 −0.34

GBNDVI 0.56 0.57 0.41 0.61 −0.45 0.23 0.08 −0.09 −0.02 −0.12 0.14 −0.11 0.12 0.01 −0.16 0.35 0.03 0.25 0.13 −0.01 0.11 −0.16 0.19 −0.01 0.02 0.40 0.48 0.44 −0.20 0.26 0.15 0.15 −0.26 0.36 0.38 −0.31
GRNDVI 0.52 0.53 0.43 0.62 −0.49 0.19 0.02 −0.18 −0.18 −0.12 0.16 −0.28 −0.01 −0.04 −0.15 0.32 0.05 0.24 0.17 −0.09 0.00 −0.09 0.29 0.01 0.08 0.29 0.40 0.35 −0.13 0.19 0.07 0.18 −0.13 0.38 0.30 −0.23
RBNDVI −0.19 −0.20 0.24 0.13 −0.30 −0.17 0.02 −0.14 −0.23 −0.11 0.11 −0.33 −0.18 −0.26 −0.03 −0.18 0.03 −0.01 0.24 −0.03 0.15 0.05 0.44 0.12 0.16 −0.28 −0.20 −0.19 0.20 −0.18 0.04 0.23 −0.01 0.35 0.18 −0.11

mSR 0.53 0.56 0.41 0.57 −0.42 0.21 −0.06 −0.17 −0.15 −0.18 0.28 −0.14 0.23 0.02 −0.15 0.35 0.03 0.25 0.05 −0.11 −0.09 −0.34 0.32 0.06 0.03 0.41 0.52 0.44 −0.27 0.31 0.09 0.09 −0.27 0.29 0.39 −0.29
GARI 0.53 0.57 0.41 0.59 −0.45 0.20 −0.03 −0.14 −0.17 −0.17 0.26 −0.17 0.10 −0.02 −0.17 0.32 0.06 0.22 0.14 −0.04 0.03 −0.24 0.27 0.09 0.06 0.39 0.52 0.38 −0.22 0.27 0.08 0.08 −0.25 0.35 0.40 −0.30

Intensity −0.39 −0.37 −0.38 −0.38 0.30 −0.34 0.07 0.24 0.23 0.19 −0.26 0.28 0.20 0.14 −0.14 −0.03 0.09 −0.11 −0.09 0.18 0.10 0.21 −0.46 −0.44 −0.25 0.11 −0.13 −0.39 0.24 −0.35 0.05 −0.04 0.15 −0.35 −0.47 0.41
Hue 0.50 0.48 0.40 0.54 −0.32 0.32 −0.18 −0.27 −0.47 −0.18 0.51 −0.39 0.52 0.27 −0.04 0.22 −0.13 0.13 0.19 −0.14 −0.16 −0.15 0.29 0.08 0.23 0.33 0.34 0.53 −0.24 0.17 −0.09 −0.06 −0.03 0.23 0.41 −0.35

Saturation 0.45 0.38 0.32 0.45 −0.40 0.33 −0.01 0.16 0.22 −0.07 0.09 0.36 −0.32 0.14 0.26 −0.30 −0.45 −0.36 −0.11 0.14 0.14 −0.34 0.10 0.49 −0.17 0.19 0.19 0.34 −0.23 0.37 0.08 −0.15 −0.23 −0.07 0.10 −0.32
Lightness −0.35 −0.34 −0.37 −0.34 0.28 −0.33 0.02 0.26 0.21 0.14 −0.25 0.35 0.19 0.20 −0.14 −0.02 0.05 −0.14 −0.09 0.27 0.18 0.09 −0.51 −0.41 −0.27 0.15 −0.08 −0.35 0.23 −0.34 0.07 −0.13 0.03 −0.35 −0.48 0.35

a* −0.48 −0.46 −0.36 −0.52 0.31 −0.27 0.27 0.15 0.43 0.18 −0.48 0.14 −0.49 −0.28 0.03 −0.18 0.17 −0.07 −0.15 −0.11 −0.06 0.34 −0.14 −0.07 −0.06 −0.31 −0.35 −0.51 0.25 −0.15 −0.01 0.21 0.24 −0.14 −0.15 0.27
b* 0.43 0.32 0.13 0.49 −0.40 0.19 0.00 0.24 0.25 0.04 −0.15 0.42 −0.19 0.32 0.11 −0.21 −0.38 −0.42 −0.13 0.28 0.23 −0.22 −0.41 0.09 −0.30 0.29 0.18 0.26 −0.16 0.21 0.07 −0.18 −0.17 −0.21 −0.13 −0.12
u* −0.46 −0.46 −0.37 −0.50 0.28 −0.27 0.25 0.21 0.47 0.17 −0.50 0.26 −0.53 −0.20 0.04 −0.22 0.09 −0.15 −0.20 −0.06 −0.04 0.22 −0.24 −0.05 −0.24 −0.14 −0.25 −0.49 0.26 −0.12 0.00 0.19 0.19 −0.24 −0.28 0.28
v* 0.29 0.21 0.00 0.36 −0.25 0.04 −0.02 0.25 0.20 0.07 −0.17 0.41 −0.09 0.38 0.03 −0.13 −0.32 −0.36 −0.11 0.32 0.25 −0.15 −0.57 −0.13 −0.32 0.30 0.17 0.22 −0.10 0.09 0.07 −0.19 −0.14 −0.25 −0.23 −0.02

GA 0.54 0.50 0.43 0.56 −0.36 0.37 −0.11 −0.31 −0.28 −0.26 0.50 0.02 0.59 0.14 −0.02 0.34 −0.01 0.23 0.18 0.15 0.10 −0.09 0.31 0.03 0.27 0.42 0.61 0.54 −0.24 0.24 0.02 −0.40 −0.13 0.14 0.42 −0.44
GGA 0.50 0.47 0.45 0.57 −0.41 0.26 −0.19 −0.27 −0.49 −0.15 0.41 −0.43 0.57 0.15 −0.12 0.32 0.08 0.18 0.13 −0.15 −0.16 −0.19 0.32 0.23 0.38 0.17 0.38 0.42 −0.31 0.18 −0.01 0.02 −0.09 0.37 0.31 −0.16
CSI −0.34 −0.34 −0.26 −0.41 0.37 0.05 0.17 0.26 0.50 0.12 −0.42 0.45 −0.38 −0.01 0.23 −0.18 −0.24 −0.01 −0.12 0.18 0.18 0.17 −0.33 −0.20 −0.32 0.08 −0.18 0.03 0.27 0.06 0.02 −0.03 0.09 −0.35 −0.25 0.13
ab −0.48 −0.46 −0.33 −0.52 0.32 −0.26 0.19 −0.07 0.09 0.09 −0.25 −0.24 −0.36 −0.31 0.01 −0.13 0.22 0.01 −0.05 −0.28 −0.26 0.35 0.08 −0.09 0.06 −0.34 −0.36 −0.49 0.24 −0.16 −0.07 0.26 0.25 0.04 −0.01 0.21
uv −0.45 −0.46 −0.37 −0.48 0.27 −0.27 0.26 0.12 0.38 0.13 −0.47 0.09 −0.49 −0.16 0.04 −0.23 0.07 −0.16 −0.20 −0.20 −0.21 0.21 −0.16 −0.02 −0.23 −0.05 −0.24 −0.47 0.25 −0.11 −0.06 0.27 0.24 −0.15 −0.19 0.22
abI −0.47 −0.46 −0.38 −0.51 0.29 −0.28 0.18 0.27 0.46 0.18 −0.49 0.39 −0.54 −0.23 0.05 −0.23 0.10 −0.15 −0.19 0.15 0.16 0.14 −0.31 −0.03 −0.26 −0.21 −0.23 −0.50 0.25 −0.13 0.08 0.04 0.02 −0.25 −0.41 0.30
uvI −0.47 −0.46 −0.37 −0.51 0.29 −0.28 0.20 0.27 0.47 0.20 −0.50 0.36 −0.55 −0.23 0.04 −0.21 0.11 −0.14 −0.17 0.11 0.12 0.21 −0.31 −0.09 −0.24 −0.23 −0.26 −0.50 0.26 −0.14 0.06 0.10 0.09 −0.25 −0.39 0.34
auI 0.07 0.05 0.17 0.16 −0.04 0.19 0.06 0.15 0.31 0.03 −0.07 0.12 0.03 0.02 −0.09 0.08 0.08 −0.11 −0.23 −0.11 −0.21 0.01 0.18 0.09 0.09 0.13 −0.25 0.12 −0.02 0.14 0.01 −0.57 −0.35 0.09 0.06 −0.17
bvI 0.25 0.20 0.26 0.21 −0.26 0.29 0.06 0.07 0.24 −0.08 0.15 0.21 −0.40 −0.23 0.30 −0.32 −0.22 −0.16 −0.12 −0.09 −0.04 −0.34 0.38 0.56 0.00 −0.04 0.08 0.16 −0.25 0.39 0.04 −0.02 −0.24 0.06 0.46 −0.46

NDabI 0.49 0.48 0.40 0.53 −0.31 0.31 −0.15 −0.19 −0.37 −0.16 0.43 −0.28 0.52 0.26 −0.06 0.25 −0.09 0.17 −0.09 −0.02 −0.25 −0.15 0.21 0.14 0.28 0.21 0.20 0.52 −0.26 0.13 −0.13 0.06 −0.11 0.16 0.41 −0.28
NDuvI 0.49 0.47 0.40 0.53 −0.31 0.31 −0.20 −0.23 −0.44 −0.19 0.44 −0.32 0.54 0.26 −0.05 0.23 −0.11 0.15 0.15 −0.18 −0.26 −0.25 0.44 0.18 0.26 0.23 0.25 0.51 −0.27 0.14 −0.11 0.05 −0.10 0.23 0.38 −0.30
NDLab 0.46 0.46 0.36 0.50 −0.27 0.26 −0.18 −0.28 −0.47 −0.17 0.50 −0.40 0.54 0.20 −0.05 0.22 −0.09 0.16 0.19 −0.12 −0.12 −0.12 0.29 −0.01 0.26 0.18 0.22 0.49 −0.25 0.12 −0.07 −0.08 −0.02 0.25 0.42 −0.30
NDLuv 0.45 0.45 0.35 0.49 −0.27 0.25 −0.19 −0.29 −0.47 −0.19 0.52 −0.37 0.56 0.18 −0.04 0.19 −0.10 0.13 0.18 −0.07 −0.06 −0.18 0.25 0.03 0.23 0.21 0.27 0.49 −0.26 0.13 −0.05 −0.17 −0.10 0.23 0.42 −0.36

GI 0.34 0.34 0.28 0.41 −0.37 −0.04 −0.17 −0.26 −0.49 −0.12 0.42 −0.45 0.38 0.03 −0.23 0.18 0.23 0.02 0.13 −0.18 −0.18 −0.18 0.34 0.19 0.32 −0.08 0.18 −0.04 −0.27 −0.06 −0.02 0.04 −0.08 0.35 0.26 −0.13
GPI 0.51 0.48 0.48 0.57 −0.40 0.34 −0.19 −0.27 −0.49 −0.17 0.38 −0.40 0.60 0.22 −0.08 0.33 0.00 0.22 0.14 −0.13 −0.16 −0.20 0.33 0.26 0.35 0.27 0.42 0.47 −0.30 0.21 0.01 0.01 −0.09 0.39 0.35 −0.17

NDGI −0.36 −0.36 −0.27 −0.41 0.38 0.03 0.17 0.25 0.48 0.09 −0.45 0.44 −0.36 0.00 0.23 −0.17 −0.23 −0.01 −0.18 0.15 0.11 0.15 −0.41 −0.11 −0.26 0.07 −0.22 0.05 0.27 0.07 0.00 −0.03 0.12 −0.32 −0.23 0.13
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Table 10. Heritability of physiological, morphological, disease, sprouting, and yield measurements,
of peanuts over different growth stages. Heritability values range from 0 to 1; the closer the values to
1 the higher the heritability.

Weeks after Planting

Traits 4 5 6 7 9 10 11 12 16 Average †
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Stand count 0.87 . . . . . . . . 0.87
Thrips 0.01 . . . . . . . . 0.01

Plant height 0.18 0.22 0.45 . 0.94 . . . . 0.37
Lateral growth 0.32 0.03 0.07 . . . . . . 0.07

NDVI 0.95 0.91 0.25 0.80 0.04 0.06 . 0.08 . 0.02
CTD . 0.97 0.03 0.79 0.11 0.33 . 0.26 . 0.07

Wilting . . . 0.65 . 0.05 . 0.16 . 0.32
TSW . . . . . 0.21 0.52 0.26 . 0.15
SSR . . . . . 0.58 0.33 0.15 . 0.10
SB . . . . . 0.24 0.66 0.52 . 0.20

CBR . . . . . 0.38 0.56 0.27 . 0.09
Sprouting . . . . . . . . 0.26 0.26

Yield . . . . . . . . 0.14 0.14
† Average values have been calculated by averaging the actual measurements over all weeks after planting.

Table 11. Heritability of aerially derived vegetation indices over different growth stages. Heritability
values range from 0 to 1; the closer the values to 1 the higher the heritability.

Weeks after Planting Weeks after Planting

Indices 4 6 8 10 12 14 Avg.
† Indices 4 6 8 10 12 14 Avg.
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Red 0.09 0.01 0.07 0.33 0.17 0.1 0.52 Intensity 0.31 0.33 0.25 0.49 0.23 0.13 0.42
Green 0.36 0.01 0.1 0.25 0.11 0.41 0.61 Hue 0.39 0.48 0.56 0.02 0.13 0.03 0.29
Blue 0.67 0.03 0.08 0.11 0.17 0.1 0.53 Saturation 0.3 0.38 0.24 0.05 0.05 0.21 0.49
NIR 0.22 0.7 0.07 0.47 0.21 0.48 0.45 Lightness 0.27 0.29 0.24 0.41 0.12 0.26 0.37

NDVI 0.25 0.52 0.05 0.23 0.13 0.22 0.42 a* 0.38 0.51 0.59 0.05 0.16 0.02 0.5
BGI 0.33 0.21 0.22 0.24 0.05 0.08 0.56 b* 0.17 0.24 0.3 0.29 0.06 0.58 0.34
RGR 0.06 0.72 0.87 0.02 0.45 0.02 0.54 u* 0.25 0.4 0.63 0.02 0.49 0.02 0.33

NPPR 0.63 0.26 0.53 0.08 0.1 0.03 0.39 v* 0.15 0.21 0.37 0.56 0.07 0.69 0.32
NGRDI 0.06 0.72 0.86 0.02 0.49 0.02 0.6 GA 0.4 0.36 0.51 0.9 0.19 0.04 0.24

PPR 0.33 0.21 0.22 0.24 0.06 0.09 0.5 GGA 0.12 0.44 0.39 0.53 0.07 0.02 0.05
NCPI 0.09 0.29 0.13 0.03 0.06 0.62 0.62 CSI 0.06 0.16 0.39 0.42 0.07 0.02 0.04
SRI 0.19 0.52 0.04 0.21 0.13 0.23 0.4 ab 0.44 0.54 0.46 0.27 0.06 0.05 0.52

GRVI 0.35 0.61 0.04 0.61 0.09 0.26 0.39 uv 0.2 0.36 0.63 0.07 0.14 0.02 0.52
IO 0.09 0.29 0.12 0.03 0.08 0.54 0.39 abI 0.3 0.43 0.52 0.02 0.13 0.03 0.28

GNDVI 0.43 0.61 0.05 0.67 0.09 0.25 0.35 uvI 0.31 0.45 0.6 0.02 0.19 0.03 0.25
BNDVI 0.64 0.63 0.04 0.37 0.25 0.16 0.38 auI 0.78 0.82 0.92 0.22 0.66 0.93 0.8

CIG 0.35 0.61 0.04 0.61 0.09 0.26 0.39 bvI 0.48 0.3 0.2 0.05 0.14 0.32 0.49
CVI 0.09 0.3 0.13 0.03 0.06 0.66 0.74 NDabI 0.33 0.42 0.43 0.87 0.44 0.06 0.87
GLI 0.63 0.26 0.52 0.08 0.1 0.03 0.46 NDuvI 0.32 0.44 0.54 0.03 0.3 0.03 0.5

GBNDVI 0.49 0.61 0.04 0.57 0.18 0.2 0.39 NDLab 0.27 0.41 0.54 0.02 0.11 0.04 0.18
GRNDVI 0.3 0.57 0.04 0.59 0.1 0.24 0.38 NDLuv 0.28 0.45 0.65 0.03 0.17 0.03 0.2
RBNDVI 0.53 0.55 0.15 0.09 0.1 0.41 0.34 GI 0.06 0.15 0.39 0.42 0.08 0.02 0.04

mSR 0.41 0.59 0.04 0.63 0.28 0.16 0.35 GPI 0.18 0.46 0.43 0.61 0.06 0.02 0.05
GARI 0.35 0.57 0.04 0.54 0.23 0.17 0.38 NDGI 0.06 0.17 0.39 0.44 0.1 0.02 0.03

† Average values have been calculated by averaging the actual measurements over all weeks after planting.
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4. Discussion

The information compiled in Table 1 could be a useful tool for further studies; updates
by other authors can be made when more data become available. In Table 1, the market
types described by [41,43] mostly coincided, but there were a few exceptions. For example,
accession PI 292950 was described as a Runner by one author and mixed type by the other.
Similarly, PI 403813 was classified as Spanish in one paper and Valencia in another. It was
most confusing when sorting the accessions by market and botanical types. It is expected
that Virginia and Runner market types have morphological types and belong to subspecies
hypogaea, Valencia market type to variety fastigiata, and Spanish market type to variety
vulgaris. However, the mini-core collection has unique phenotypes with market types that
do not match botanical varieties, or subspecies (Stalker 2017). For example, PI 268868 is a
Virginia market type belonging to the hypogaea variety, but its pod shape resembles fastigiata.
Even more interesting, PI 290566 is described as a Runner belonging to variety fastigiata
and having a fastigiata pod shape. In this table, we added kernel color information, i.e., hue,
lightness, a*, and b* color properties, derived from pictures available on the GRIN database.

In this study, trait differences among years may be explained, in part, by differences
in weather patterns during the growing seasons (Figure 1). For example, more GDD13
were accumulated before 6 WAP (26 June) in 2018, as compared to 2017, followed by an
increased mid- to end-season precipitation (Figure 1). Under these conditions, plants grew
faster in the early 2018 season, compared to 2017. In 2018, warm temperature to mid-season
was accompanied by heavy rainfall in subsequent weeks (8–10 WAP), causing a humid
environment (average RH was 88% during 8–10 WAP), and increased disease pressure
(p < 0.0001), compared to 2017. The average disease incidence in 2018 for TSW, SSR, SB,
and CBR, were 13.7, 3.2, 2.4, and 2.2, respectively, higher than 6.9, 0.19, 0.68, and 0.13,
respectively, in 2017.

Repeatedly measured ANOVA showed significant interactions of WAP with genotype
and variety for plant height, during the rapid growth phase from 4 to 6 WAP in both years
(Figure 2). Unlike in 2017, lateral growth seemed to plateau after 6 WAP in 2018, when
weather conditions favored excessive vegetative growth early in the season. In both years,
NDVI increased rapidly and reached close to the maximum values by 7 WAP. This coincided
with the beginning of the pegging growth stage, when lateral branches from two adjacent
rows are close to touching. At this point, agronomists recommend application of growth
regulators to restrain abundant biomass growth and maintain row direction visibility at
digging; otherwise, pods could be cut into the ground and yield substantially reduced [93].
Therefore, NDVI plateauing from several flight missions can be used as a marker for the
best time to control biomass accumulation with growth regulator applications. Our results
confirmed that variety vulgaris is morphologically taller than other varieties, and had the
highest NDVI early in the season [48,49,94] (Figure 3).

Leaf wilting varied by year. Compared to 2018, leaves in 2017 started to wilt later
in the season (10 WAP) after 12–14 days (17–29 July 2017) of insignificant precipitation
(Figure 4). Varieties vulgaris and fastigiata were more wilted than hypogaea; peruviana had
the highest wilting values. In 2018, wilting was highest at 5 to 7 WAP because of increased
temperatures at this time, reflected by more GDD13 accumulation than in 2017; peruviana
and vulgaris were more wilted than hypogaea and fastigiata. In both years, peruviana had
the coolest canopies among all varieties during sudden droughts (5 and 7 WAP in 2017;
10 and 12 WAP in 2018), which could be the result of increased transpiration, i.e. lower CTD
values, and increased water use efficiency [95]. Warmer temperatures and less rainfall in
2018 also resulted in higher thrips pressure [96], causing significantly more damage in 2018
(average value 3.12) as compared to almost zero in 2017. Among the genotypes, CC760
was the tallest and had one of the highest wilting scores (>3) in both years (Table 5); CC760
also had one of the highest incidences of TSW in 2017. In 2017, taller genotypes were more
prone to wilting (R2 = 0.58) and high TSWV incidence (R2 = 0.35) than shorter genotypes
(Figure 5). The positive relationship between plant height and leaf wilting may be related
to longer internodes, more open canopies, and increased exposure to radiation and wind,
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for tall genotypes favoring moisture loss through latent heat flux associated with boundary
layer thickness [97,98]. Longer internodes leading to open canopies could also be more
favorable to thrips infestation, and thrips-vectored TSWV incidence and severity [99–101].

Cultivars Wynne, Walton, and C76-16, were top yielders in both years, which is
expected as they were the high yielding checks selected for our study. However, a few
accessions were comparable with these cultivars for yield production. For example, in
2017, CC650, CC246, and CC223, produced comparable yield with the check genotypes,
above 7000 kg ha−1. In 2018, CC789, CC068, and CC477, produced over 3800 kg ha−1. The
average yield in Virginia was 5100 kg ha−1 in 2017 and 4700 kg ha−1 in 2018 (USDA-NASS,
2017 and 2018), which suggests that new sources for yield improvement exist within the
mini-core collection. Previous studies have also shown CC068 to be comparatively resistant
to SB and SSR [40,47]. Post-harvest sprouting was lower in 2017 than in 2018, with CC038
sprouting the most. Post-harvest sprouting is caused by weakened pegs allowing pods to
detach from the vines during digging [102]. Though the peanuts were harvested around 16
WAP in both years, disease pressure in 2018 may have reduced leaf photosynthesis and
assimilate partitioning to pegs during pod development, possibly resulting in weakened
pegs and more pod loss [103]. In 2018, post-harvest sprouting was significantly correlated
(p < 0.0001) to all three fungal diseases, SSR, SB, and CBR (data not shown).

Among varieties, vulgaris was the tallest and had the most lateral growth in 2017,
but in 2018 there were no differences. In 2018, increased GDD13 accumulation before
6 WAP may have reduced the differences among varieties. Variety hypogaea had the highest
pod yield in 2017, whereas in 2018, yield differences were minimized by heavy disease
pressure. In both years, post-harvest sprouting was more severe for vulgaris and fastigiata, in
comparison with hypogaea and peruviana, with the earlier maturing having higher sprouting
than the later.

Aerially collected VIs were significantly correlated with all morphological and agro-
nomic characteristics measured in this study, and was similar for each variety. In 2018,
correlations were weaker than in 2017, but this could have been caused by faster growth
early in the 2018 season. Fewer differences between entries and more disease were observed
in 2018, compared with 2017. Regardless, some VIs continued to show significant correla-
tions across years with the plant characteristics, in particular within variety hypogaea, which
seemed to be less affected by sudden droughts and had less disease than the other varieties
(Table 8 and 9). Of these, several VIs also showed improved H2 over yield and other peanut
traits, suggesting possible use for breeding selection for improved peanut cultivars.

Aerial imagery has shown potential to be a faster and relatively cheap option for
crop phenotyping [19,104,105]. It can be tool for varietal selection of crops by remote trait
estimation, and use of spectral reflectance and its derivatives, as a trait itself. However, in
light of recent technological advancements, we have observed UAVs and associated sensors
becoming outdated within the first couple of years. This is a challenge for low budget
research programs [106]. Further, little progress has been made in UAV autonomy and
in-season decision making using aerial sensors [107]. In-season decision making has been
hindered by a lack of high-end processing computers and autonomy in image processing;
the former being a budget issue, and the latter being an issue with the lack of technology.
Use of aerial imagery data for machine learning, deep learning, computer vision, internet-
of-things, and crop modelling approaches, requires significant technical expertise in the
field of computer science and calls for interdisciplinary research [107–109]. Although our
study offers a methodology for faster phenotyping, further research is required to make
this faster and more autonomous.
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5. Conclusions

In 2017 and 2018, in Suffolk, VA, this study evaluated up to 93 U.S. peanut mini-core
germplasm collection accessions for morphological, physiological and agronomic attributes,
viral and fungal diseases, pod yield, and post-harvest sprouting. This study also evaluated
24 VIs extracted from blue, green, red, and NIR reflectance; 11 VIs from color space indices
(CIE-Lab and CIE-Luv), and 13 VIs from combinations of reflectance and color space indices
extracted from aerially collected plot images. Genotypes CC548, CC535, CC249, and CC233,
were among the least wilted under intermittent drought conditions and produced high
yields each year. CC650 had a high yield in 2017, and CC068 produced the highest yield
under severe disease pressure in 2018. Aerial VIs were associated with the physiological
and agronomical characteristics for all botanical varieties, but the strength of the associ-
ation depended on year (less in 2018 than in 2017) and the trait (crop stand, height, and
branching > yield > disease and post-harvest sprouting). Broad sense heritability (H2)
varied depending on the trait and the growth stage when data were collected. Certain VIs,
such as the normalized difference CIE-Lab (NDLab) and CIE-Luv (NDLuv), were signif-
icantly correlated with physiologic and agronomic characteristics in both years; NDLab
and NDLuv were significantly correlated with pod yield. While H2 for pod yield was low,
H2 for NDLab and NDLuv was higher than 0.5 when these VIs were assessed during the
pod development stage. These results indicate that UAV-based sensors have potential for
measuring physiologic and agronomic characteristics for peanut breeding and precision
agriculture applications.
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