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Abstract: The recognition accuracy of traditional image recognition methods is heavily dependent
on the design of complicated and tedious hand-crafted features. In view of the problems of poor
accuracy and complicated feature extraction, this study presents a methodology for the estimation
of the severity of wheat Fusarium head blight (FHB) with a small sample dataset based on transfer
learning technology and convolutional neural networks (CNNs). Firstly, we utilized the potent
feature learning and feature expression capabilities of CNNs to realize the automatic learning of FHB
characteristics. Using transfer learning technology, VGG16, ResNet50, and MobileNetV1 models
were pre-trained on the ImageNet. The knowledge was transferred to the estimation of FHB severity,
and the fully connected (FC) layer of the models was modified. Secondly, acquiring the wheat images
at the peak of the outbreak of FHB as the research object, after preprocessing for size filling on
the wheat images, the image dataset was expanded with operations such as mirror flip, rotation
transformation, and superimposed noise to improve the performance of the model and reduce the
overfitting of models. Finally, under the Tensorflow deep learning framework, the VGG16, ResNet50,
and MobileNetV1 models were subjected to transfer learning. The results showed that in the case of
transfer learning and data augmentation, the ResNet50 model in Accuracy, Precision, Recall, and F1
score was better than the other two models, giving the highest accuracy of 98.42% and F1 score of
97.86%. The ResNet50 model had the highest recognition accuracy, providing technical support and
reference for the accurate recognition of FHB.

Keywords: fusarium head blight; convolutional neural network; deep learning; diseases; transfer
learning; ResNet50 model

1. Introduction

Wheat is one of the three most important food crops. In China, wheat is the second-
largest food crop after rice [1]. It has evolved into the primary crop for human consumption
and cattle feed because of its great yield potential, rich nutritional value, and excellent
adaptability [2]. There is an economically devastating disease of wheat known as fusarium
head blight (FHB), also known as scab, which is mainly caused by Fusarium asiatica and
Fusarium graminearum [3]. White, shriveled wheat ears and a great reduction in wheat
yield will result from the infestation of FHB [4]. In addition, wheat infected with FHB has
poor quality, and its production is impacted. Moreover, FHB-infected crops have terrible
grain quality, with dry, discolored grain, leading to significant losses and price drops [5].
What is worse, infected wheat will produce many mycotoxins, especially deoxynivalenol
(DON) and zearalenone (ZEA), which are harmful to humans and animals. In addition to
acute poisoning symptoms, this can also lead to impaired immunity and even death [6].

As a result of FHB, food security, high quality, and high yield as well as efficient and
sustainable development are compromised. There is an urgent need to address the safety
problems caused by FHB. In order to maintain agricultural production and prevent disease
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spread, the severity of FHB must be accurately identified and pesticides must be applied
rationally [7–9]. At present, the identification of FHB mainly relies on farmers’ experience in
many countries and areas, often by observing changes in infected areas on wheat ears [10].
It is challenging to quantitatively analyze and evaluate the occurrence of FHB in association
with the actual condition of wheat due to the impact of human subjective factors. It is easy
to overlook diseases and disasters since the diagnostic criteria are not standardized, there
are issues with low efficiency, laboriousness, and strong subjectivity, and the authenticity
and quality of the survey data cannot be guaranteed. Therefore, the fast, highly automated,
and accurate diagnosis and identification of FHB is the foundation for precise pesticide
application according to the severity of FHB and the affected wheat area, which helps to
save pesticides, improves efficiency, lowers the cost, decreases dependence on laborers,
and cuts down the pollution of pesticides to the agroecological environment, and plays an
essential role in ensuring the high yield and high quality of wheat grain crops.

Machine learning technology has been created to boost efficiency. As computer pro-
cessing power has expanded substantially, there has been significant development of
machine learning technology coupled with image processing in the identification of crop
diseases, with promising results being achieved [11,12]. The role of machine learning
technology coupled with image processing in the diagnosis of crop diseases has received
increased attention across several disciplines in recent years. There have been many efforts
made by researchers to automate the identification of crop diseases such as those of rice,
corn, soybeans, grapes, citrus, etc. using machine learning, image processing, and other
technologies [13–21]. By manually extracting the color, shape, texture, and other features
of the disease and using Fuzzy Logic (FL) classification [20], Artificial Neural Network
(ANN) [14–17], AdaBoost [21], Decision Tree (DT) [21], Naive Bay (NB) [18], and Random
Forest (RF) [19,21] crop disease classification was achieved. Although machine learning
technology has made many achievements in plant disease identification, these studies all
extract disease features through artificial design. When using classical machine learning
methods for plant disease identification, it is necessary to extract plant disease features that
have a great impact on the identification accuracy. Despite this, the use of classical machine
learning techniques to determine the severity of crop disease is limited due to slight differ-
ences in color and texture of crops infected by different diseases. With classical machine
learning methods, crop diseases cannot be accurately identified, and feature extraction and
portability are problematic. Popularizing and utilizing it on a large scale is challenging.

In recent years, in addition to the above methods and models, researchers have
shown an increased interest in deep learning. Deep learning methods, as a breakthrough
in the field of computer vision, are also extensively utilized in image recognition and
classification. Following the great success of the AlexNet [22] model in the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) competition in 2012, many convolutional
neural network (CNN) models have been successively adopted because of their excellent
performance promoted during the development of CNNs. It is proposed that general
models include GoogleNet [23], VGGNet [24], ResNet [25], etc., and are used in the task
of disease identification and classification of different crops. Agarwal et al. [26] proposed
a simple CNN model method constructed by eight hidden layers for the identification of
tomato disease, and the model achieved an identification accuracy of 98.7%. Liu et al. [27]
constructed a Kiwi-ConvNet model for the identification of kiwifruit leaf disease and
improved the feature extraction ability with the help of the idea of multi-dimensional
feature fusion. The results of this study showed that the identification accuracy of this
model could reach 98.54%. Fang et al. [28] used an adaptive adjustment algorithm to
process images and optimized and improved the ResNet50 model to classify and identify
the leaf disease levels of ten diseases in eight crops, and the recognition accuracy reached
95.61%. By using deep learning, we can circumvent the tedious task of manual feature
extraction, and high accuracy can be achieved when there are enough training samples. At
present, in the field of intelligent agriculture, deep learning methods have been widely used
in the identification of diseases and insect pests or fine-grained crop disease identification.
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Although CNN is effective in the identification and classification of crop diseases, its
biggest restriction is that enough supervised learning samples are required in the model
training stage to improve the capacity of image feature extraction [29]. However, in most
practical situations, we can only obtain a limited number of training samples of the objects
that need to be recognized [30–32]. In the case of a small number of learning training
samples, the performance of the general CNN models is very poor. This is because of the
lack of sufficient training samples, the network will have the problem of underfitting in
the process of training and learning [33]. In addition, deep learning methods require a
powerful graphics processing unit (GPU) to accelerate the training and learning process
of the models, and complex CNN models often require more time to adjust parameters.
Therefore, training a large CCN model or collecting a large amount of image data is an
extremely time-consuming process. In this situation, a technique called transfer learning
is widely used [34], which alleviates the problem of a large number of training samples
needed for deep learning models. It is also widely used in the field of image identification.
By using large datasets to train CNNs, transfer learning enables them to extract features
more effectively. Pre-training networks have been trained using standard datasets, such as
PlantVillage [35] and ImageNet [36], which can effectively reduce the number of samples
required for network model training, and the model performance is also very excellent.
Using the MobileNet backbone network and transfer learning, Chen et al. [37] implemented
the identification and detection of rice diseases. It had been shown in many comparative
studies that this method performed well, reaching an accuracy of approximately 98.48%.
Shah et al. [34] used a pre-trained VGG16 model and performed a barley classification
task based on transfer learning techniques, with a model accuracy rate of 94%. Aravind
et al. [38] used six pre-trained CNN models based on transfer learning techniques to achieve
the efficient classification of ten different diseases in four main crops.

It is generally believed that the above studies focus on identifying common leaf
diseases and insect pests. So far, however, there has been little discussion about estimating
the panicle diseases and the severity of the diseases. At present, only the categories of wheat
diseases have been identified, which makes it challenging to apply pesticides precisely
where they are needed. In addition, training a large CNN model is time-consuming and
requires high hardware equipment. The interference of a complex environment will also
affect the accuracy of the models. In response to the above problems, a measure has been
taken to retain a single black background by placing a black baffle directly behind the wheat
ears and to collect five severity images of FHB without the interference of the complex
background in the field. After the preprocessing based on size filling, the dataset has
been expanded through data augmentation operations such as image flipping, rotation
transformation, superimposed noise, brightness transformation, etc. Finally, based on
VGG16, ResNet50, and MobileNetV1, by modifying the last FC layer of the three models to
adapt to the estimation of the severity of FHB and then using the transfer learning method
to explore, a model with higher recognition accuracy is trained with smaller training
samples in order to achieve accurate estimation of the severity of FHB.

2. Materials and Methods
2.1. Study Area and Experimental Design

The study area was located on an experimental farm, owned by the Xuchang Campus
of Henan Agricultural University in Xuchang City, Henan Province, China, at approxi-
mately 34◦8′ N, 113◦47′ E. The terrain in this area was flat, and irrigation and drainage
were also quite convenient. The soil type of the experimental farm was loamy, the previ-
ous crop was corn, and the fertility level was relatively high. The tested varieties were
“Sumai 3”, “Yangmai 158”, “Ningmai 9”, and “Zhoumai 18”. Among them, ‘Sumai 3’ is a
highly resistant variety, ‘Yangmai 158’ is a moderately susceptible variety, ‘Ningmai 9’ is a
moderately resistant variety, and ‘Zhoumai 18’ is a highly susceptible variety.

From 2019 to 2020, the test varieties of wheat were used for autumn sowing. A total of
60 experimental plots were set up in the FHB inoculation experiment and were planted
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in 3 rows, with 20 experimental plots in each row. Each plot was approximately 1 m by
1.5 m, and 6 rows of the same variety of wheat were sown in each experimental plot;
the row spacing was 20 cm. The test varieties of wheat in the 3-row experimental plot
were randomly planted, and management measures such as fertilization, weeding, and
irrigation in the entire experimental plot were carried out. All were the same. In April 2021,
during the flowering period of wheat, a single flower inoculation was used to inoculate the
pathogen. The pathogen was the Fusarium graminearum strain. A total of 100 wheat ears
were randomly selected from each plot as the target of inoculation. At the early stage of
wheat flowering (10% of wheat ear blossoming in the middle), 20 µL of spore suspension
was injected into a small flower in the middle and upper part of the wheat ear with a
micropipette, and then the wheat ear was moistened by bagging for 1–7d. Then, the wheat
ear was marked via awn shearing.

2.2. Severity of FHB

FHB is classified according to the proportion of the diseased spikelets with ear rot
symptoms (or white ear symptoms caused by stalk rot) to all the spikelets. The specific
grading standard in this study refers to the rules for monitoring and forecast of the wheat
head blight (Fusarium graminearum Schw./Gibberella zeae (Schw.) Petch) (GB/T15796-
2011). The grading standard of wheat FHB-diseased spikelets is divided into 5 levels
according to the proportion of diseased spikelets to all spikelets: level 0, no disease; level 1,
the number of diseased spikelets accounted for Less than 1/4 of all spikelets; level 2,
diseased spikelets accounted for 1/4 to 1/2 of all spikelets; level 3, diseased spikelets
accounted for 1/2 to 3/4 of all spikelets; level 4, the number of diseased spikelets accounted
for more than 3/4 of all spikelets. Figure 1 lists the characteristics of the incidence of FHB
of each severity.
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Figure 1. Comparison of various severity levels of FHB. (a) The typical image of FHB with a severity
level of 0. (b) The typical image of wheat FHB with a severity level of 1. (c) The typical image of
FHB with a severity level of 2. (d) The typical image of FHB with a severity level of 3. (e) The typical
image of wheat FHB with a severity level of 4.

2.3. Data Acquisition and Enhancement

The single-ear sample data of FHB with five severity levels were captured at the
experimental farm of the Xuchang Campus of Henan Agricultural University Xuchang
Campus. In our experiment, black baffles were used to avoid the interference of the
complicated background. May is the peak period of the outbreak of FHB. During the
wheat filling period, image data of FHB were acquired on 7 May 2021, 13 May 2021, and
20 May 2021. Each time the image data acquisition was obtained in sunny weather, each
shot was conducted on a vivo iQOO Neo3 mobile phone. A vivo iQOO Neo3 mobile phone
has 48 million pixels in the rear cameras, and the aperture lens is f/1.8. Before shooting, a
single wheat ear was placed in front of the blackboard, and the lens was approximately
20–30 cm away from the wheat ear. The resolution of the collected pictures varied in size,
and a total of 238 pictures were taken.
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In our work, in order to further augment the number of samples, lower the risk of
overfitting to a certain extent, and improve the generalization capability of the models, we
intended to elaborate on the collected wheat images by superimposing Gaussian noise,
salt and pepper noise, mirror flip, rotation (90◦, 180◦, 270◦), and brightness transformation
operations to expand the image dataset. The expanded image dataset was 4760, of which
there were 400 images of healthy wheat (FHB severity level 0) and 1840, 540, 540, and
1440 images of FHB severity level 1, FHB severity level 2, FHB severity level 3, and FHB
severity level 4, respectively. The data enhancement and division are shown in Table 1.

Table 1. Distribution of original data, enhanced data, and divided data.

Category Number of
Original Samples

Number of Samples after
Data Enhancement

Number of Samples in
the Training Set

Number of Samples in
the Test Set

0 20 400 320 80
1 92 1840 1472 368
2 27 540 432 108
3 27 540 432 108
4 72 1440 1152 288

2.4. Transfer Learning

Transfer learning [39] is based on pre-training models. Transfer learning is a machine
learning method that utilizes existing knowledge to solve related research fields but differ-
ent research tasks. Its goal is to complete the transfer of knowledge between similar fields.
For CNNs, transfer learning is to successfully apply the knowledge obtained from training
on specific data sets to new research fields to be solved. Transfer learning reduces the
training data and computing power required for the construction of deep learning models,
can solve the fact that small sample data sets tend to overfit in the complicated network
structures [40], and effectively shortens the training time of models. The process of transfer
learning is shown in Figure 2.
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2.5. Model Construction

The CNN is a specialized feed-forward neural network with pipeline and multi-layer
processing [41], and its network structure includes multiple convolutional layers, pooling
layers, and FC layers. In CNN, the convolutional layer is the main component, which
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extracts the features of the input images using different convolutional kernels. Use the
following formula to calculate the convolution layer:

xl
j= f (∑i∈Mj

xl−1
i kl

ij+bl
j)

(1)

where xl
j represents the output of the jth neuron at layer l, xl−1

i represents the output of
the ith neuron at layer l − 1, Mj represents the input feature mapping set, l represents the
serial number of layers, kl

ij represents the convolution kernel, bl
j represents the bias, and f(·)

represents the nonlinear activation function.
The nonlinear activation function often adopts the rectified linear unit (ReLu) function,

and the expression of the ReLu function is:

f (x) = {0 (x<0)
x (x≥0) (2)

The convolutional layer is usually followed by a pooling layer. The pooling layer
utilizes a pooling function to compress and reduce the dimension of the feature image and
has translation invariance to the input, which can not only improve the model’s ability
to transform images such as displacement and rotation. It can also reduce the calculation
amount and the number of parameters of the model. Commonly used pooling functions
include average pooling, max pooling, and stochastic pooling. The process of pooling can
be expressed by Equation (3):

xl
j = fdown

(
xl−1

i

)
(3)

where fdown(·) is the down sampling function.
The FC layer is located after the alternation of multiple convolutional layers and

pooling layers, and the extracted images are further reduced in dimension. Finally, the
features are input into the softmax classifier for classification.

2.5.1. VGG16 Model

The VGG16 network [24] is one of the general CNN architectures proposed by the
Visual Geometry Group of Oxford University, and is extensively used in image classification
and object detection tasks. The VGG16 model achieved excellent outcomes in the 2014
ImageNet Image Classification and Localization Challenge, where it ranked second in the
classification task and first in the localization task.

It consists of 13 convolution layers, 5 max-pooling layers, 3 FC layers, and 1 softmax
layer. In this structure, all convolutional layers use the same 3 × 3 convolution kernels,
and all convolutional layers and FC layers have ReLU nonlinear activation functions. The
VGG16 network uses 3 × 3 convolution kernels, which reduces the number of parameters
in the network and increases the nonlinear units in the network, which enhances the ability
of the network to learn feature information and solve the problem of parameter explosion
caused by large convolution kernels. The input image is passed through successively
stacked convolutional layers and pooling layers to obtain the main feature information
in the image and compress it. Finally, the learned image information is integrated and
classified through the FC layer and the output layer. Its network structure is shown in
Figure 3.

2.5.2. ResNet50 Model

The Residual Network proposed by He et al. [25] can alleviate the problems of van-
ishing gradient, exploding gradient, and network degradation to a certain extent due
to the addition of residual units. The residual network adds skip connections between
convolutional layers, so information can be spread across multiple hidden layers, which
effectively alleviates the vanishing gradient and network degradation problems of CNNs
so that the network depth can reach dozens or even hundreds of layers.
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The residual unit is the vital structure of the residual network. The residual unit
contains an identity map, which allows the input feature map to be transferred directly to
the output without convolution. Even if the network depth is increased, the error remains
constant. Figure 4 depicts the residual unit structure. When x is input into the network
structure, there will be two lines. The middle one is obtained by the residual mapping
of the weight layer and the ReLU function to obtain F(x), and the other one does not go
through the operation of the weight layer; the identity mapping obtains x. The residual
network learning feature obtained by adding the two lines is F(x) + x.
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2.5.3. MobileNetV1 Model

MobileNetV1 model is the first version of Mobilenet series networks, a network model
proposed by Howard and colleagues [42]. MobileNetV1 model is a streamlined architecture
from top to bottom, as shown in Figure 5. The MobileNetV1 model consists of a standard
convolution layer (Conv Std), 13 depthwise convolution layers (Conv dw), 13 pointwise
convolution layers (Conv pw), an average pool layer (Avg Pool), and an FC layer. The basic
concept is depthwise separable convolution. It substitutes the common pool operation in
convolutional neural networks by the depthwise convolution with a stride of 2, and only
keeps the global average pool layer at the end of the network. In addition, there is a batch
normalization layer (BN) and a ReLU after each convolution layer.
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2.6. Model Optimization

CNNs usually minimize the loss function to achieve the training goal. In this study, the
stochastic gradient descent method (SGD) is used to optimize the model and cross-entropy
is used as the loss function. The calculation formula is:

L =
1
N ∑

i
Li =

1
N ∑

i
−

M

∑
c=1

yiclog(pic) (4)

here, M is the total number of categories; yic is the indicating variable; if the true category of
sample l is c, take 1, otherwise, take 0; and pic is the prediction probability that the observed
sample i belongs to category c.

In the process of training the models, the learning rate is also one of the significant
parameters of deep learning. Choosing an appropriate learning rate can accelerate the
convergence of the model and avoid the situation where the model oscillates near the
minimum value. In this study, the cosine annealing [43] algorithm was adopted to update
the learning rate in the process of training the models. The cosine annealing algorithm
utilizes a cosine function and adopts the learning rate adjustment method that first slowly
decreases, then accelerates, and finally decreases slowly. After the learning rate decays to
0 each time, it quickly returns to the initial value, and the learning rate is increased by a
periodic restart. Accelerate the convergence speed of the model, reduce the learning rate,
and slow down the convergence speed to jump out of the local minimum. Finally, find the
path of the global minimum and approach the global optimal solution. In this study, the
minimum value of the learning rate is set to 0.0001, and the calculation formula for the
change of the learning rate with the number of epochs is shown in Equation (5):

ηt = ηi
min +

1
2

(
ηi

max − ηi
min

)(
1 + cos(

Tcur

Ti
π)

)
(5)

where i represents the current ith restart, ηi
max and ηi

min indicates the range of learning rate,
Tcur represents the number of epochs currently executed, and Ti represents the total number
of epochs in the ith run.
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2.7. Performance Measure Metrics

In our work, Accuracy, Precision, Recall, and F1 scores were used as performance mea-
sure metrics of the CNN models. The performance metrics are calculated in Formulas (6)–(9):

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2∗Precision ∗ Recall
Precision + Recall

(9)

where true positive (TP) represents the number of correctly classified positive samples,
true negative (TN) represents the number of correctly classified negative samples, false
positive (FP) represents the number of misclassified positive samples, and false-negative
(FN) represents the number of misclassified negative sample.

2.8. Model Training
2.8.1. Training Environment of Model

In our work, the operating system of the test platform is windows 10, 64-bit, and the
training and testing of the models are conducted on Anaconda-Python 3.8 (Austin, TX,
USA) and Tensorflow-GPU 2.2.0. The loading environment includes CUDA v10.1 and
CUDNN v7.6. The CPU adopts AMD Ryzen 7, 4800H with Radeon Graphics with 8 CPU
cores and 16 GB memory, and the CPU Clock Speed is 2.90 GHz. the GPU adopts NVIDIA
GeForce RTX 2060 with 6 GB video memory (Shanghai, China).

2.8.2. Hyperparameter Design

In this study, we converted the input images of the three models with the fixed size
of 224 × 224, and the three models pre-trained on the ImageNet dataset were utilized to
modify the last FC layer of the three models. To adapt to the FHB dataset, the output was
transformed into five different categories of outputs. Finally, the improved models were
applied to the FHB severity dataset to train them. GPU was being used to accelerate the
models’ training and testing. Taking into account the performance of hardware equipment
and the training time of models, in the process of model training and testing, the number of
samples (Batch Size) of each epoch was set to 16, the initial learning rate was 0.01, and all
three models executed for 70 epochs. The SGD optimization algorithm was used in model
training to realize the optimization process of the model. The learning rate optimization
strategy adopted the cosine annealing decay algorithm, the momentum was set to 0.9, the
parameter settings of the three models were the same, and the training set and the test set
were divided according to the ratio of 8:2, in which the training set included 3808 images
and the test set included 952 images.

3. Results
3.1. Comparative Analysis of Results

In this work, we used the test set to conduct a comparative experiment of the classi-
fication performance of VGG16, ResNet50, and MobileNetV1 models for the assessment
of the severity of FHB in order to evaluate and analyze the benefits and drawbacks of the
three models. The results of the three models are shown in Figure 6 below. As can be seen
from Figure 6, with the increase of epochs, the accuracy rates of the three models showed a
gradually increasing trend and the losses of the three models showed a gradual decrease
trend. Finally, the three models were all in 70 epochs and tended to converge. Among them,
the ResNet50 model had the best performance, with an accuracy of 98.42%, and the model
was converging fast, tending to converge around the 40th epoch, while the VGG16 model
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had the slowest convergence, tending to converge around the 60th epoch. With certain
fluctuations, the final accuracy reached 97.16%, which was slightly lower than the ResNet50
model, and its loss was slightly larger than that of the ResNet50 model. The MobileNetV1
model had the worst effect, with a classification accuracy of 92.75% and the largest loss.
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Table 2 illustrates the three models’ Accuracy, Precision, Recall, and F1 scores. The
accuracy of each model was better than 92%, as seen in Table 2, further demonstrating the
significance of using CNN models to estimate the severity of FHB. Among these models,
the ResNet50 model gave the best performance, with an accuracy of 98.42% in the test set
and an F1 score of 96.03%, which was the most appropriate for estimating the severity
of FHB.



Agronomy 2022, 12, 1876 11 of 16

Table 2. Performance Measure Metrics of the models.

Models Accuracy/% Precision/% Recall/% F1/%

VGG16 97.16 96.37 95.69 96.03
ResNet50 98.42 98.38 97.35 97.86

MobileNetV1 92.75 91.30 87.57 89.40

3.2. Confusion Matrix

Figure 7 shows the confusion matrix of VGG16, ResNet50, and MobileNetV1 models.
From the confusion matrix of the three models, it can be seen that the images of healthy
wheat (severity level 0) and images of wheat that were almost completely infected with
FHB (severity level 4) were rarely misclassified. This was especially true for VGG16 and
ResNet50, two models with better performance, which were only slightly misclassified in
the MobileNetV1 model. In addition, the misclassified samples of the three models were
mainly concentrated on wheat images with severity level 2 and severity level 3, while the
ResNet50 model had a better performance for severity level 2 and severity level 3. In the
case of several samples being misclassified, the recognition effect of the VGG16 model was
slightly inferior to that of the ResNet50 model, while the MobileNetV1 model could not
distinguish FHB images of various severity well, and the misclassification phenomenon
was more serious. In general, the ResNet50 model had the best effect, with the fewest
misclassified samples.

Agronomy 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Confusion matrix of VGG16 (a), ResNet50 (b), and MobileNetV1 (c) models. (a) 
Confusion matrix of VGG16 model. (b) Confusion matrix of ResNet50 model. (c) Confusion 
matrix of MobileNetV1 model. 

Figure 7. Cont.



Agronomy 2022, 12, 1876 12 of 16

Agronomy 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Confusion matrix of VGG16 (a), ResNet50 (b), and MobileNetV1 (c) models. (a) 
Confusion matrix of VGG16 model. (b) Confusion matrix of ResNet50 model. (c) Confusion 
matrix of MobileNetV1 model. 

Figure 7. Confusion matrix of VGG16 (a), ResNet50 (b), and MobileNetV1 (c) models. (a) Confu-
sion matrix of VGG16 model. (b) Confusion matrix of ResNet50 model. (c) Confusion matrix of
MobileNetV1 model.

4. Discussion

Several reports have shown that traditional machine learning methods have been
extensively used in crop disease identification, and the amount of work generally focuses
on extracting color features, texture features, and shape features of the crop diseases to
be studied. Because disease images obtained in natural environments are susceptible
to natural illumination and occlusion, in order to lower the influence of brightness on
disease feature detection, the RGB color space is often converted to color spaces such as
HSV [17], HIS, Lab [17], and YCbCr [16], and the color features usually include color Mean,
Entropy, Variance, Kurtosis, Skewness, etc. The most commonly used texture features are
Contrast, Correlation, Energy, and other features based on Gray-level co-occurrence matrix
(GLCM) [13]. The shape features mainly include Rectangularity, Eccentricity, Density, etc. In
addition, in order to effectively segment crop disease spots, some segmentation algorithms,
such as K-means [17], Roberts [44] Sobel [45], Graph Cut [46], etc., are also used.

With the development of CNN, many researchers have also used deep learning tech-
nology to realize plant identification [47], disease detection [48,49], weed detection [50]
pest recognition [31,51], etc., and achieved better performance than traditional machine
learning. Literature [26] proposed a CNN model for tomato disease identification and the
accuracy was 98.7%, which was better than traditional machine models such as KNN, DT,
and SVM. In apple disease identification research, Liu et al. [52] identified four apple dis-
eases, including Mosaic, Rust, Brown spot, and Alternaria leaf spot, based on the improved
AlexNet, with an accuracy of 97.62%, which was higher than the traditional BPNN and
SVM model. However, training a powerful CNN often takes a lot of time and requires
relatively powerful computing and memory resources. Deep learning models usually need
to be completed on GPU devices, and deep learning models also require the use of a lot of
training samples to prevent the model from underfitting. In addition, due to the excessive
number of layers and the large number of parameters, the model may also be overfitted.
The use of transfer learning technology can solve the problem of overfitting on complex
models to a certain extent, and research the basis of learning in similar research fields,
which relatively saves time.

Based on the powerful feature extraction function of CNN, for this research, we used
the VGG16, ResNet50, and MobileNetV1 models pre-trained on the ImageNet large data
set. We estimated FHB severity by modifying the FC layer structure to adapt to the image
data set and integrating transfer learning techniques. The parameter settings of the three
models were all the same. From the estimation results of the three models, they all reached
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the convergence state before 70 epochs. Finally, the accuracy rates of the three models were
all above 92%, which indicated that the CNN model based on transfer learning effectively
realized the task of estimating the severity of FHB. Although the ResNet50 model had a
deep network structure, it had the best performance for the task of estimating the severity
of FHB, with an accuracy of 98.42%. Compared with the VGG16 model, the complexity of
the ResNet50 model and the number of parameters required had decreased, and because
of the addition of residual units, the network layers were deeper; however, the gradient
did not disappear. Therefore, the overall performance was better. The effect of the VGG16
model was slightly inferior to the ResNet50 model, and its loss and accuracy had certain
volatility during the training process, which indicated that the model converged slowly
during the training process and was inferior to the ResNet50 model and the MobileNetV1
model in the stability of model training. The result of MobileNetV1 only reached 92.75%.
The reason for this unsatisfactory outcome may be that the model is lightweight, and the
reduction in the number of parameters makes it difficult for the model to explore abundant
information for the estimation of FHB severity, which does not achieve the desired result.

From the confusion matrix of the three models, it can be seen that the misclassified
samples of models were mainly concentrated in the samples with severity level 2 and
severity level 3. The possible reason was that the number of samples of these two severities
was relatively small. The incidence areas between the two severities in the collected samples
were relatively similar, and the difference may not have been obvious enough, resulting in
a relatively large number of misclassified samples. The results of the VGG16, ResNet50,
and MobileNetV1 models showed that it was feasible to use transfer learning to realize the
severity estimation task of FHB, and could achieve good results, which could provide a
reference for the disease severity diagnosis and precise drug application of FHB.

In addition to the methods used above, in this study, we also used traditional methods
to realize the severity estimation of FHB. Because the color of FHB will be yellow and dry
compared with the normal ears after the infection of FHB, we can make full use of color
features to realize the severity estimation of FHB. In order to compare and analyze with
the method using CNN, the image of the test set was used to carry out the research, and
the size of the image was also redefined as 224 × 224. This study used the Otsu threshold
segmentation method to segment the affected area of FHB. Firstly, in order to reduce the
impact of natural light, the obtained RGB image was converted to HSV color space and
Lab color space. Secondly, three components of RGB color space, three components of HSV
color space, and three components of Lab color space were extracted. Through comparison,
it was found that the component of Lab color space could clearly identify the infected
area. The comparison of Otsu segmentation results of different components in three color
spaces can be clearly seen in Figure 8. Therefore, the subsequent experiments were carried
out using a component combined with threshold segmentation. Finally, the recognition
accuracy was 64.18%, and the accuracy did not reach satisfactory results. After analysis,
it was found that the reason may be that the image acquisition was carried out when the
light was good, the brightness of some images was high, and the threshold segmentation
of the image was affected to a certain extent, resulting in the background part being unable
to be well-separated from the wheat ear part. Another reason may be that the classification
task of this study was divided according to the proportion of the area infected with FHB
in the total area of wheat ears. Subtle differences in the segmentation process may lead to
large differences in the classification results of the image. From the results, it can be seen
that compared with the traditional methods, the CNN used in this study has unparalleled
advantages and can provide very accurate information on the severity of FHB. Therefore,
it is very meaningful to use CNN and transfer learning methods to realize the severity
estimation of FHB.

In future work, we will expand the dataset by adding more varieties of wheat images
and further enrich the data with data augmentation algorithms to improve the generaliza-
tion ability of the model. Improving the imbalance of samples in different categories of
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data is also one of the future research works. In addition, in terms of the algorithm used,
the improvement of the estimation accuracy of the model is the top priority of future work.
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5. Conclusions

FHB is one of the main diseases affecting the yield and quality of wheat. Therefore,
timely identification and diagnosis of the severity of FHB is the premise of accurate appli-
cation. In view of the problem that traditional machine learning methods need to manually
extract features, this study used CNN models to estimate the severity of FHB. In addition,
considering the training time and hardware equipment of the models, based on the VGG16,
Resnet50, and MobileNetV1 model structures, this study modified the FC layer structure to
estimate the five severities of FHB. Firstly, the pre-training models obtained in ImageNet
were used for transfer learning, and then the data set was expanded by combining the im-
age enhancement strategy. The test set accuracy of the ResNet50 model was 98.42%, which
was better than the other VGG16 model and MobileNetV1 model. The results showed that
the ResNet50 model was more suitable for estimating the severity of FHB.
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