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Abstract: Soil salinization is one of the main threats to soils worldwide, which has serious impacts
on soil functions. Our objective was to map and assess salt-affectedness on arable land (0.85 km2)
in Hungary, with high spatial resolution, using a combination of ensemble machine learning and
multivariate geostatistics on three salt-affected soil indicators (i.e., alkalinity, electrical conductivity,
and sodium adsorption ratio (n = 85 soil samples)). Ensemble modelling with five base learners (i.e.,
random forest, extreme gradient boosting, support vector machine, neural network, and generalized
linear model) was carried out and the results showed that ensemble modelling outperformed the
base learners for alkalinity and sodium adsorption ratio with R2 values of 0.43 and 0.96, respectively,
while only the random forest prediction was acceptable for electrical conductivity. Multivariate
geostatistics was conducted on the stochastic residuals derived from machine learning modelling, as
we could reasonably assume that there is spatial interdependence between the selected salt-affected
soil indicators. We used 10-fold cross-validation to check the performance of the spatial predictions
and uncertainty quantifications, which provided acceptable results for each selected salt-affected soil
indicator (for pH value, electrical conductivity, and sodium adsorption ratio, the root mean square
error values were 0.11, 0.86, and 0.22, respectively). Our results showed that the methodology applied
in this study is efficient in mapping and assessing salt-affectedness on arable lands with high spatial
resolution. A probability map for sodium adsorption ratio represents sodic soils exceeding a threshold
value of 13, where they are more likely to have soil structure deterioration and water infiltration
problems. This map can help the land user to select the appropriate agrotechnical operation for
improving soil quality and yield.

Keywords: salt-affected soils; digital soil mapping; ensemble modelling; geostatistics; uncertainty
assessment; satellite remote sensing; unpiloted aerial vehicle

1. Introduction

Among the major challenges that humanity faces, food security is the most important,
and due to several unfavorable tendencies, such as climate change, population pressure,
and belligerence, long-term agricultural sustainability is very much threatened in our times.
Soil, as the basis of agronomy, provides several services and most ‘soil ecosystem services’
are also threatened by those tendencies; therefore, efficiency of agricultural operations,
such as tillage, fertilizing, and irrigation, must be improved to meet the new challenges.

Soil salinization is considered as one of the main threats to soils, not just in Europe
but around the world as well [1,2]. It is well known that surplus salt in soils has serious
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impacts on ecosystem services provided by soils, which leads to a series of consequences,
such as a decrease in agricultural productivity [3], reduced soil fertility [4], accelerating
soil erosion [5], degradation of soil structure [6], decreasing ability to act as a buffer, and
filter against pollutants [7], just to mention a few. In the conditions of the Hungarian Plain,
soil salinization/sodification/alkalinization are widespread degradation processes from
an agricultural point of view. However, we should note that areas with salt-affected soils
(SAS) can also serve as unique and “ex lege” protected habitats (e.g., grasslands, hayfields,
marshes, reed-lands, lakes) for animals (mainly birds) and plants.

In 2019, the Global Soil Partnership of the Food and Agricultural Organization
launched the Global Map of Salt-affected Soils (GSAS map) international initiative, which
was aimed at updating the global and country-level information on salt-affected soils
and lay the ground for future monitoring [8]. This GSAS map was released in October
2021, with contributions from over 118 countries, including Hungary [9], and shows that
more than 4,240,000 km2 of topsoil (0–30 cm) and 8,330,000 km2 of subsoil (30–100 cm) are
salt-affected worldwide. Although the Global Map of Salt-affected Soils is an important
product, which can be used for identifying salt-affected soils or launching monitoring
programs, with a resolution of 1 km, it can give little or rough information at the country
level, especially when spatial planning is targeted.

The production of large-scale maps is justified due to the high variability and site
diversity in natural saline areas. Microtopography plays an important role in the diversity
of soil properties in these areas, which is also indirectly reflected in the formation of
vegetation pattern. Among soil-forming factors [10], elevation was found to be the main
influential factor, closely correlated with biomass value (10-year average), its range, and
salinity [11]. In local depressions, increased infiltration and capillary action (from shallow
salty groundwater) can be seen, along with increased salinity and, therefore, reduced
productivity. Due to the regularly occurring waterlogging during wet springs with shallow
groundwater table, biomass and normalized difference vegetation index (NDVI) were
generally low and spatially heterogeneous, while in the case of a dryer spring, biomass was
larger and more homogeneous due to no waterlogging being observed and the groundwater
table was found at a greater depth. Productivity proxy values were more stable and higher
at higher elevation, avoiding being affected by yearly fluctuations in shallow groundwater
table, waterlogging, and changes in the amount of precipitation. On the other hand, several
former saline areas are used for agricultural purposes as a result of soil amelioration, but
for these soils, productivity-sustaining management is essential. Precision farming can
be a suitable method for this management, which requires knowledge of soil chemical
parameters within the plot. This information can exclusively be ensured with large-scale
maps. Furthermore, there is a need to map soil salinity/sodicity/alkalinity status in detail
(100 × 100 m resolution) and collect new information on these for ensuring the subsidies
linked to agricultural areas, with natural constraints from the European Union (EU) [12],
due to the low limit for sodium that cannot be determined nor estimated on the basis of the
formerly prepared maps. As a result, large areas may be excluded from statutory support.

In Hungary, there is a long tradition and history of studying salt-affected soils that
is demonstrated by a huge number of monographs (e.g., [13–17]). Most of the areas with
SAS can be found in the Great Hungarian Plain, an alluvial plain filled up with thick
alluvial sediments on an ancient seabed. Later loess formation also took place here and
the influence of shallow fluctuating saline-sodic groundwater, as well as permanent or
temporary waterlogging created the conditions for SAS formation. Sodium ions, being
considered as the most important factor, are either dissolved from Tertiary Era deposits
into groundwater [18] or concentrated during consecutive drying and wetting of infiltrated
water [19]. Systematic mapping of salt-affected soils has a history of more than a cen-
tury in Hungary and, since then, a number of maps has been compiled at various scales
(e.g., [14,20–22]).

Digital soil mapping (DSM) aims at providing spatial or spatio-temporal information
on the soil for a wide range of disciplines [23,24], such as agronomy, rural development,



Agronomy 2022, 12, 1858 3 of 19

hydrology, and environmental sciences, just to name a few. Nowadays, advanced geo-
statistical and machine learning techniques, as well as their combinations, are in use for
predicting and mapping the spatial or spatio-temporal distribution of various soil proper-
ties, functions, and services [25–31], which is frequently complemented by proper accuracy
assessment [32] and spatial uncertainty prediction [33,34]. Very recently, ensemble ma-
chine learning, which shares a joint optimal predictive model obtained from a combination
of two or more individual learners, is increasingly used in DSM to improve prediction
performance (e.g., [35–38]). Ensemble modelling is able to provide robust and accurate
predictions while reducing variance [39,40]; furthermore, ensembles successfully solve the
issues that machine learning algorithms are dealing with, such as handling missing values,
improving confidence estimation by weighing various variables, and considering the most
important ones [41,42]. The amount of potentially available environmental covariates
used in DSM is continuously increasing, mainly thanks to optical remote and proximal
sensing [43]. Although digital elevation models and geomorphometric parameters (e.g.,
slope, topographic wetness index) derived from them are informative covariates in DSM,
remote and proximal sensing can provide a huge amount of information on land surface,
with a continuously increasing spatial, temporal, and spectral resolution [43–45]. Addition-
ally, a combination of certain bands of multi- or hyperspectral images, such as thematic
indices (e.g., normalized difference vegetation index, salinity index), can be obtained, which
provides specific information for the given problem [9,46,47].

The objectives of this study were twofold. First, jointly modelling and mapping
of selected SAS indicators, namely alkalinity, electrical conductivity (EC), and sodium
adsorption ratio (SAR), with high spatial resolution, was targeted at an area of arable
land, situated in Hungary, using ensemble machine learning and multivariate geostatistical
techniques. We used multivariate geostatistics combined with ensemble machine learning,
as our hypothesis was that the selected SAS indicators show spatial interdependency (i.e.,
they are cross-correlated in space) and, therefore, it is better to jointly model and map their
spatial distribution. Second, based on the resulting maps, the assessment of alkalinity,
salinity, and sodicity was targeted at the field scale, which could be used for spatial decision
support, e.g., in precision agricultural operations.

2. Materials and Methods
2.1. Study Site

The study plot was selected by overlapping the maps of EU-supported arable lands
and salt-affected soils in Hungary. The one having the largest contiguous area (0.85 km2)
was selected for examination of all overlapping plots. This formerly saline/sodic, currently
agriculturally used, plot is represented in Figure 1A. It is located in the former floodplain of
the River Danube, outskirts of Dunavecse, Central Hungary. The plot has a ‘quasi’ rectan-
gular shape with corner coordinates of 46◦55′16′′ N, 19◦01′37′′ E, 46◦ 55′17′′ N, 19◦02′12′′ E,
46◦55′55′′ N, 19◦01′41′′ E, 46◦55′49′′ N, 19◦02′12′′ E and belongs to the microregion “Solti-
sík” according to Dövényi [48]. In this microregion, the annual precipitation average ranges
from 530 to 550 mm with high temporal and spatial variability. Rainfall events alternate
with longer dry periods, especially in spring and summer favoring the movement of salts.
Total annual solar radiation is between 2000 and 2020 h, whereas long-term mean annual
temperature is 10.4–10.5 ◦C [48]. The area has a negative water balance. Investigated plot
is currently plowed, fertilized, and crop rotated (i.e., maize, sunflower, and barley) with
relatively good yields (e.g., 10 tons per hectare of maize, county average: 7.27 tons per
hectare). This plot was best suited for our study, as it has been managed consistently over
the past 50 years, thereby facilitating the collection of data regarding the management and
remote sensing data.
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Figure 1. (A). Photo of the sampling plot (B). Photo of the field marking of the borehole (C). Photo of
soil sampling with motorized hand drill (D). Photo of the undisturbed soil column lying in 10 cm
diameter soil tube (E). Location of the study site in Central Hungary and its high-resolution digital
elevation model coming from remote sensing (unpiloted aerial vehicle survey). Sampling points
(n = 85).

2.2. Field Survey and Laboratory Analysis

In total, 85 soil tubes (10 cm in diameter plastic tubes, containing 1 m length undis-
turbed soil column, Figure 1D) from surface to 1 m depth were deepened inside the 0.85 km2

studied area with motorized hand drill (Figure 1C). Sampling scheme followed a regular
grid with sampling soil tubes from every 100 m (Figure 1E). Further, 10 locations out of the
85 grid points were deepened down to the groundwater table. Collected soil tubes were cut
vertically at their centers and dissected (Figure 1D). Soil profiles were described according
to IUSS Working Group, World Reference Base for Soil Resources [49]. Samples were taken
from each genetic horizon for further analysis.

The study site was surveyed by an unpiloted aerial vehicle (UAV) carrying a visible-
range Fujifilm camera (main features: APS-C sensor, 24Mp, focal length of 14mm f/2.8,
AUTO ISO, automated exposure) to generate digital elevation model (DEM) with structure
from motion technique at 10 cm spatial resolution. We performed the aerial surveys
in a fully automatic flight mode above the study area with image over- and sidelap of
75%. Altitude of 140 m was found to be the most suitable for flight time and resolution.
Temporary ground control targets were placed and their 3D coordinates were surveyed
to make possible the orthorectification of raw images during image processing in Agisoft
Metashape (http://www.agisoft.com/downloads/installer/, accessed on 1 June 2022).
The final DEM was exported in 2 m resolution (Figure 1E) to be uniform with the other
environmental covariates.

The selected SAS indicators, namely alkalinity, electrical conductivity (EC), and
sodium adsorption ratio (SAR) were measured in the laboratory on the collected soil
samples. Soil EC and alkalinity were measured as 1:2.5 soil:distilled water suspension with
WTW Multi 350i combined electrode. Na concentration (cNa) for SAR calculation was
determined from pNa measurement with Radelkis OP 113 type pX ion-selective electrode,
according to cNa = 10−pNa. Sodium Adsorption Ratio (SAR) is equal to cNa/SQRT((cCa +

http://www.agisoft.com/downloads/installer/
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cMg)/2), where ionic concentrations (c) are expressed in milliequivalents per liter measured
in the water saturation extract of the soil. Assuming that there is negligible concentration
of potassium, we can approximate cCa + cMg as total cation concentration—cNa. As
Richards [50] writes, electrical conductivity (expressed as dS m−1) of saturation extract
multiplied by 10 is approximately equal to the total cation concentration expressed in
milliequivalents per liter. EC [dS m−1] *10-cNa ~ cCa + cMg. With this approximation
the SAR equation can be calculated. We should note that data on alkalinity, EC and SAR
referring to the topsoil (0–30 cm) were used in further spatial modelling and assessment.

2.3. Environmental Covariates

The DEM derived from the UAV survey and a number of its derivatives (e.g., topo-
graphic position index, topographic wetness index, roughness) were used as environmental
covariates in modelling the spatial distribution in the selected SAS indicators. The DEM
derivatives listed in Table 1 were generated in SAGA GIS [51] with a spatial resolution of
2 m. Satellite-based spectral data and indices were generated as well using a custom script
in Google Earth Engine to complete the UAV-derived DEM. Sentinel-2 images from the
European Space Agency were filtered for the study site and time of field survey at first;
additionally cloud masking was also applied to minimize cloud cover effect on the mean
of six images meeting the mentioned filters. Covariate spectral indices (Table 1) were also
calculated based on the Sentinel-2 bands: B2—blue, B3—green, B4—red, B8—near-infrared,
B11—short-wavelength infrared 1, and B12—short-wavelength infrared 2. The final mean
satellite image containing mentioned spectral bands and indices was exported in 2 m
spatial resolution.

The reason for using the environmental covariates presented in Table 1 is partially
explained in the introduction. Tóth et al. [11] showed that topography is one of the
main influential factors determining the spatial variability in salt-affected soils and their
indicators in the area of interest. Shrestha [52] used multiple regression analysis to examine
the relationships between EC and spectral/soil properties and generated several models.
They found that mid-infrared band (Landsat® band 7) and near-infrared (band 4) were
found to be most correlated with the observed EC values in the surface soil layer. Nierd
et al. [53], mapping natric soil areas, used the normalized difference ratio in Bands 5 and 4
with a threshold >0.19. Most of the sites predicted to be natric were determined in the field
to be natric (82%), but only half of the field-observed natric areas were correctly predicted.
Dehni and Lounis [54] exploited the multi-spectral optical data from the LANDSAT ETM
+ (Enhanced Thematic Mapper) to map surface states, including indices of salinity and
sodicity as: BI: Brightness Index, NDSI: Normalized Difference Salinity Index, SI: Salinity
Index, ASI: Aster Salinity Index (Agriculture), Index of Salinity (using GIS Geographic
Information System and remote sensing), and finally the SSSI “Soil Salinity and Sodicity
Index”. Furthermore, satellite images and derived spectral indices were used as they are
proved to be highly informative covariates in predicting the small-scale variability in the
SAS indicators [9].

Table 1. Summary of environmental covariates used for spatial modelling.

Factors of Soil Formation [10] Environmental Covariates Source

Soil surface

Brightness index

Sentinel-2

Normalized difference salinity index
Salinity index 1-5

Salinity ratio
Visible infrared salinity index

Green band
Red band

Near-infrared band
Short-wave infrared-1
Short-wave infrared-2



Agronomy 2022, 12, 1858 6 of 19

Table 1. Cont.

Factors of Soil Formation [10] Environmental Covariates Source

Topography

Elevation

DEM

Slope
Aspect

Topographic position index
Terrain ruggedness index

Roughness
Flow direction

Catchment area
Modified catchment area

Diurnal anisotropic heating
LS factor (slope length factor)

Mass balance index
MRRTF
MRVBF

Topographic wetness index

Organisms
Normalized difference vegetation index

Sentinel-2Soil adjusted vegetation index
Vegetation soil salinity index

Legend: Abbreviations: DEM: digital elevation model, MRRTF: multiresolution index of ridge top flatness, and
MRVBF: multiresolution index of valley bottom flatness.

2.4. Spatial Modelling and Predictive Mapping

A combination of machine learning algorithms and multivariate geostatistics, namely
regression cokriging [9,55,56], was used for simultaneously predicting the spatial distribu-
tion in the selected SAS indicators. The reason for jointly modelling the spatial distribution
of the indicators with multivariate geostatistics is that they can be spatially interdependent
(or spatial cross-correlated) and, therefore, it is better to jointly model their spatial distribu-
tion. Taking the abovementioned into consideration, we adopted the following model to
describe the spatial variations in the SAS indicators, which is frequently applied not just in
digital soil mapping [57] but also in multivariate geostatistical modelling [58–60]:

Z(u) = m(u) + ε(u)ZpH(u)
ZEC(u)
ZSAR(u)

 =

mpH(u)
mEC(u)
mSAR(u)

+

εpH(u)
εEC(u)
εSAR(u)

 (1)

where Z(u) is the vector of the SAS indicators (i.e., alkalinity, EC, and SAR), m(u) is the
vector of the deterministic component describing the spatial variations in the SAS indicators
that can be explained from the environmental covariates, ε(u) is the vector of the stochastic
residuals that can be not just spatially correlated but spatially cross-correlated as well, and u
is the vector of the geographical coordinates. Note that most kriging algorithms are optimal
only if the variables are normally distributed [61]. Therefore, normal score transformation,
which is a type of quantile transformation based on Gaussian anamorphosis [59,62], was
performed on those SAS indicators whose distribution was found to be non-normal.

2.4.1. Ensemble Modelling for the Deterministic Component

The ensemble method we used consists of five independent learners, i.e., Random
Forest (RF), eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Neural
Network (NN), and Generalized Linear Models with Lasso or Elastic Net Regularization
(GLM), to model the deterministic component in Equation (1) for each SAS indicator. We
used the R package ranger, which is a fast implementation of RF [63]. RF generates a large
number of randomized and independent decision trees to predict and finally use all these
predictions from each tree and aggregate them into one [64]. XGBoost is a method for tree
boosting framework, which is highly applicable and widely employed in ML and works
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based on the prediction error of the previous trees and creates a robust prediction [65].
SVM is another popular ML technique that assigns labels to each observation based on a
new hyperplane and it can be used in both classification and regression problems [66,67].
NN utilizes multilayer feed-forward neural networks inspired by the human brain nervous
system. This model includes sequentially connected multiple nodes in different layers
and weights acquired by the network’s knowledge [68]. Finally, the GLM technique is
a generalized version of the linear regression model, the simplest and easiest predictive
approach. The only assumption in this model is the existence of linear relations between
observations and covariates, which is not the case in the real world. Here, this assumption
is relaxed by computing the regularization path for the lasso or elastic-net penalty at a grid
of values that can effectively manage the multicollinearity of covariates [69].

In this study, ensemble modeling was implemented by train.splearner function in
the Landmap package [70] in R [71], which uses the SuperLearner method to stack all
single learners. This package automates the spatial prediction mapping procedure by
applying ensemble machine learning (using an extension of the mlr package [72]). This
environment offers to run each model in parallel and combines all the individuals into
one additional model (stacking). In this way, it takes the benefits of every single model,
which increases the accuracy of mapping by combining the power of multiple models and
reducing the variance and bias (bagging and boosting). Stacking, bagging, and boosting
are the three main principles in applying ensembles [39]. In addition, Landmap package
provides automation of several steps, such as deriving principal components, overlaying
the observations and covariates, model fitting, hyper-parameter fine-tuning, and feature
selection [73].

2.4.2. Multivariate Geostatistical Modelling of the Stochastic Residuals

Since our goal was to jointly model the spatial distribution of the SAS indicators (i.e., ex-
plicitly take their spatial interdependency into account), we used regression cokriging [9,55,56],
where ensemble ML predictions for alkalinity, EC, and SAR were taken to be mpH(u),
mEC(u), and mSAR(u) in Equation (1), respectively. For carrying out multivariate geostatis-
tical modelling of ε(u) in Equation (1), we first derived the residuals, which means that we
subtracted the ensemble ML predictions from the observed values for each SAS indicator at
each sampling location. Next we computed the variograms and cross-variograms from the
residuals and fitted a linear model of coregionalization (LMC) to ensure that a statistically
valid model is applied [59].

We quantified the prediction uncertainty for each SAS indicator, where the uncertainty
was identified by the kriging standard deviation with the assumption of normality and
homoscedasticity [34]. For each SAS indicator, we compiled the 90% prediction interval
map, which can be readily derived by subtracting and adding 1.64-times the kriging
standard deviation to the prediction given by regression cokriging [74]. We should note
that the quantified prediction uncertainty also allows for the compilation of probability
maps (e.g., what is the probability that a given SAS indicator is not greater than a given
threshold value), which is of great interest in practice.

As joint spatial modelling was performed on a normal scale, we had to transform the
results back to the original scale for those SAS indicators where normal score transformation
had been performed previously.

2.5. Validation

The performance of the spatial predictions for each SAS indicator was evaluated by
10-fold cross-validation in which the dataset was randomly partitioned into 10 equal-sized
parts, then one of these parts was retained for validating the spatial predictions, which
were obtained by using the remaining nine parts. This step was repeated until each of
the 10 parts became a validation set exactly once. Four validation metrics were applied:
(1) mean error (ME), which is also known as bias, (2) root mean square error (RMSE),
which is the spread of the error distribution, (3) Lin’s concordance correlation coefficient
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(CCC; [75]), and (4) Nash–Sutcliffe model efficiency coefficient (NSE; [76]). These metrics
can be computed as follows:

ME =
1
n

n

∑
i=1

(Pi −Oi) (2)

RMSE =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (3)

CCC =
2 ∑n

i=1
(
Oi −O

)(
Pi − P

)
∑n

i=1
(
Oi −O

)2
+ ∑n

i=1
(

Pi − P
)2

+ n
(
O− P

)2 (4)

NSE = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −O

)2 (5)

where Oi and Pi are the observed and predicted SAS indicator value for the observation
location i, respectively, and O and P are the mean of the predictions and observations.

The performance of uncertainty quantifications was evaluated by accuracy plots and
G statistics. The theory behind an accuracy plot (also known as prediction interval coverage
probability plot) is that if an uncertainty quantification reports, for example, a prediction
interval with a 90% width, then we expect that 90% of the observations from the validation
dataset fall within this prediction interval. This can be extended to symmetric prediction
intervals with any width. Thus, an accuracy plot graphically presents what fraction of the
observations from the validation dataset fall within symmetric prediction intervals with
varying width. An accuracy plot ideally follows the y = x line and the G statistics measures
the overall closeness of the accuracy plot to this line:

G = 1−
1∫

0

|ξ(p)− p|dp (6)

where ξ(p) and p are the fraction of the observations and the width of the prediction
interval, respectively. Ideally, the value of G statistics is equal to 1.

3. Results
3.1. Soil Survey

Soils of the plot are not, or are slightly, saline (EC 0.14–0.43 dS m−1; mean = 0.21 dS m−1;
Table 2) and alkaline (pH 7.9–8.8; mean = 8.2; Table 2) in the mapped topsoil. Sandy-silty
texture is characteristic, the proportion of which depends on the location within the plot.
Soil of formerly densely vegetated local depressions can be characterized by a higher silt
fraction, organic matter, and salt content and, in addition, lower carbonate concentrations.
Most of the measured soil properties show correlation with elevation (94.6–96.2 m AMSL).
On the investigated plot, seven reference soil groups could be separated according to
IUSS Working Group, World Reference Base for Soil Resources [49]: Chernozem (63.53%),
Phaeozem (15.29%), Kastanozem (7.06%), Calcisol (5.88%), Gleysols (4.71%), Cambisols
(2.35%), and Regosols (1.18%) [11]. There are no saline-sodic major soil groups among the
soil profiles, as a result of agricultural use and management. Soil profiles have qualifiers
(e.g., amphiprotosalic, endoprotosalic, katoprotosalic, protosodic), indicating that there are
preserved signs of former salt and sodium accumulation. Salt maximums can be found in
the C horizon in most cases according to ex situ measurements of the soil columns. Soil
qualifiers support this observation. The horizon has high EC values (ECe ≥ 4 dS m−1) e.g.,
appears mainly between 50 and 100 cm depth (endoprotosalic). Horizons, having more
than 6% Na+ on the exchange complex, can be found, starting≤100 cm from the soil surface
(protosodic). Presence of the abovementioned soil groups represents the variation in SOC
and thickness of the humus layer and alterations in the carbonate content and distribution
and, furthermore, slight variation in water management (due to a channel near the plot and
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periodically stagnant water in some parts of the study area). Mean of the calculated SAR
values is 15.8 (Table 2), which refers to Na+ dominancy in soil. If the SAR value is above the
threshold of 13, soil is considered to be sodic, having high levels of exchangeable sodium.
It can cause soil structure deterioration due to soil particle dispersion, water infiltration
problems, alkalinity, nutrient deficiencies, and plant toxicity (vines, beans, potatoes). The
severity of problems due to soil sodicity depends on the texture, soil type, and drainage
conditions. The abovementioned high SAR values appeared only in the northern part of
the area, as shown in Figure 2.
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Table 2. Summary statistics of the indicators of salt-affected soils computed from the point observa-
tions (n = 85).

SAS
Indicators Unit Min Max Mean SD

EC µS cm−1 136.4 428.0 214.0 59.94
pH - 7.90 8.79 8.201 0.15

SAR - 0.13 181.0 15.79 37.32
Legend: Abbreviations: SAS: salt-affected soils, EC: electrical conductivity, SAR: sodium adsorption ratio, and SD:
standard deviation.

The groundwater table is shallow (160 to 301 cm depth with a mean of 200 cm).
Groundwater is slightly alkaline–alkaline (pH 7.4–8.6 with a mean of 8.1) and saline (EC
2.4-6.1 dS m−1 with a mean of 4.18 dS m−1), with Na+ dominancy (SAR 12.9–50.7 with a
mean of 29.6), indicating saline-sodic alkaline conditions.

3.2. Spatial Modelling of SAS Indicators

The histogram of pH values showed normal distribution, which was also confirmed by
Kolmogorov–Smirnov testing. The other two indicators (i.e., EC and SAR) did not follow
the expected distribution (Figure 3). Thus, we had to apply normal score transformation
for EC and SAR (Figure 3).
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The results of machine learning are presented in Table 3. Having the highest accuracy
(R2) and least error (RMSE) in the SuperLearner model in predicting pH values and SAR is
clear compared to the performance of each model individually. Regardless of the results
of the SuperLearner, assessing the performance of each base learner indicated that RF
was the best model related to the prediction of pH values and SAR, while the poorest
performance for pH values was XGBoost and for SAR, was NN (Table 3). At the same
time, spatial predictions of EC by SuperLearner and each of the sub-predictions by the
mentioned models were not acceptable, except for RF. By plotting the spatial predictions
of EC, the SuperLearner displayed artifacts and even spatial prediction of NN, and GLM
showed irrational values, which is probably caused by some troubling covariates. To fix this
problem in the case of EC, we only used RF, which showed favorable results and acceptable
spatial prediction in the area. Therefore, in Table 3, we only reported the results for the RF
model for EC. Additionally, when modelling the spatial variation in EC (Equation (1)) as
one of the SAS indicators, RF prediction was taken to be mEC(u) in Equation (1). In the
other cases, the SuperLearner prediction for pH values and SAR was taken to be mpH(u)
and mSAR(u), respectively.

Table 3. Evaluation metrics summary for ensemble modelling.

ML
Algorithms

R2 RMSE MAE

pH EC SAR pH EC SAR pH EC SAR

RF 0.36 0.39 0.96 0.12 0.97 0.21 0.10 0.79 0.09
XGBoost 0.09 - 0.91 5.42 - 0.83 5.42 - 0.65

NN 0.09 - 0.10 0.15 - 1.00 0.11 - 0.81
SVM 0.22 - 0.90 0.13 - 0.33 0.10 - 0.21
GLM 0.12 - 0.95 0.14 - 0.27 0.11 - 0.14

SuperLearner 0.43 - 0.96 0.11 - 0.20 0.09 - 0.11

Legend: Abbreviations: ML: machine learning, RMSE: root mean square error, MAE: mean absolute error, EC:
electrical conductivity, SAR: sodium adsorption ratio, XGBoost: extreme gradient boosting, NN: neural network,
SVM: support vector machine, and GLM: generalized linear model.

Direct and cross-variograms computed for the residuals of the ensemble models are
presented in Figure 4 (open circles). For pH values and SAR, the residuals were derived
by subtracting the SuperLearner predictions from the observed values of pH and SAR,
while for EC, the residuals were computed by subtracting the RF predictions from the
observed EC data. There is a clear spatial dependency and interdependency between the
residuals, which confirms that it is reasonable to jointly model their spatial variability with
multivariate geostatistics. To ensure that a statistically valid model is used in multivariate
geostatistical modelling, we fitted a linear model of coregionalization [59], with a spherical
model type and range value of 350 m (Figure 4, solid line).

The spatial prediction of SAS indicators with the prediction uncertainty (i.e., 90%
prediction interval) is illustrated in Figure 2. As can be observed, soils with high values of
pH and SAR were dominant in the northern parts of the study area, following the same
pattern as our observations, proving these areas are affected by sodification/alkalinization.
The map of alkalinity and SAR in other parts of the area showed minimal variations, with
similar spatial patterns due to small changes in the topography of the area. Considering the
uncertainty maps (Figure 2, right and left column), it is clear that the prediction uncertainty
is higher in those parts where predictions have the highest values.

As mentioned in Section 2.4, an uncertainty model allows us to compile so-called
probability maps, which are of great interest in practice. On the example of SAR, we
compiled a map (Figure 5), which presents the probability that SAR is greater than the
threshold value of 13. Taking this threshold value, the map actually shows the probability of
finding sodic soils across the study site of interest. Based on the map, the northernmost part
of the study site can be characterized by soils with relatively high sodium content, which
is in line with our observations. This probability map can help stakeholders to calculate
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the proportion of the plot area, which is entitled to receive statutory support. According
to the threshold of the EU, based on a probability value of, e.g., 0.9, approximately 16.9%
(0.16 km2) of the plot would meet the criterion for being subsidized.
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3.3. Performance of Spatial Predictions and Uncertainty Quantifications

As mentioned, we performed 10-fold cross-validation to validate the results of spatial
prediction presented in Figure 2 (middle column). Therefore, the computed values of ME,
RMSE, CCC, and NSE are reported in Table 4. The best unbiased results can be diagnosed
from the smallest possible ME and RMSE while having the highest accuracy. Based on
our results, our spatial predictions were acceptable in this case. CCC values varied from
0.39 to 0.97. In addition, NSE, which is one of the model efficiency measurements, can be
equivalent to the value of R square in the application of regression procedures if its value is
greater than zero. Here, the NSE values varied from the highest predictive skill for SAR
(NSE = 0.97) to the lowest for EC (NSE = 0.24).

Table 4. The performance of spatial predictions by 10-fold cross-validation.

SAS Indicators ME RMSE CCC NSE

pH 0.001 0.11 0.59 0.41
EC 0.001 0.86 0.39 0.24

SAR 0.007 0.22 0.97 0.95
Legend: Abbreviations: SAS: salt-affected soils, EC: electrical conductivity, SAR: sodium adsorption ratio, ME:
mean error, RMSE: root mean square error, CCC: Lin’s concordance correlation coefficient, and NSE: Nash-Sutcliffe
model efficiency coefficient.

In Figure 6, the compiled accuracy plot with the computed G statistic for each SAS in-
dicator is presented. The accuracy plots follow the y = x line, meaning that the uncertainty
quantifications are accurate for each indicator. This is also confirmed by the computed G
statistics, which is close to its expected value (i.e., 1) in each case.
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4. Discussion
4.1. Ensemble Machine Learning

We found that the SuperLearner outperformed each base learner (i.e., RF, XGBoost,
SVM, NN, and GLM) in predicting pH values and SAR (Table 3), which can be explained
by the fact that ensemble modelling integrates the individual models and can reduce
noise and variance in prediction while avoiding overfitting, which, altogether, leads to
higher and more robust performance than any other single model. This finding is in
line with the international literature. Several studies have demonstrated the effectiveness
of ensemble modelling over single modelling [60–62]. Additionally, Mishra et al. [30]
applied different machine learning approaches with regression kriging on the example of
soil organic carbon. They found that an ensemble prediction approach is better than any
individual model while providing greater spatial details and higher accuracy for predicting
the spatial variation in the soil property of interest. However, we should note that RF
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was the best-performing model among the five base learners, showing highly comparable
results and almost identical to the SuperLearner. This could be attributed to the capability
of RF to handle the non-linearity of data and outliers [30].

Although the result of this study confirmed a better performance of the SuperLearner
for pH values and SAR, in the case of EC, RF outperformed the SuperLearner and, therefore,
RF was used to model the determinstic component for EC (i.e., mEC(u) in Equation (1))
instead of the SuperLearner. The outstanding performance of RF, in this case, can be
attributed to several reasons, e.g., the nature of EC itself, which is usually a soil property
that changes quickly over space and time at the field scale [77,78], the presence of artifacts
in covariates, insufficient covariates to explain the EC spatial variation in the study area,
and the number of observations that might be few for ensemble modelling [79].

In general, when applying any spatial prediction model, we have to consider that
the ability to predict will depend on multiple reasons, e.g., the relation between the soil
attribute and environmental covariates [80,81], sampling accuracy of field observations,
type of environmental covariates, and their resolution [60]. Accordingly, each model for
each property has a different capability to predict in every region. Therefore, no most-
favorable model could be applied to all situations. Multiple single models and ensembles
of these models should be assessed since the ensemble will use the capability of each model
and, in general, can boost their prediction and accuracy.

4.2. Multivariate Geostatistics

The computed direct and cross-variograms presented in Figure 4 confirmed our
hypothesis, i.e., the SAS indicators across the area of interest are spatially interdependent
(i.e., spatially cross-correlated) and, therefore, it is better to jointly model their spatial
distribution using multivariate geostatistics. The application of multivariate geostatistics in
digital soil mapping is well established [82–84] and, recently, Szatmári et al. [9] produced a
detailed discussion on its pros and cons in SAS mapping. In this study, its most important
added value is that not just the spatial predictions of the SAS indicators but also their
prediction uncertainty is connected by the spatial cross-correlation existing between the
indicators, which has a lot of merits, especially if a complex assessment of the indicators is
targeted, for instance, in precision agriculture or farm-scale planning.

We should note that some of the computed variograms showed relatively large nugget
variance (i.e., discontinuity at the origin; see Figure 4), which is not rare in digital soil
mapping (e.g., [85]). Concerning our study, the large nugget variance can be mainly
attributed to the sampling strategy we applied. Although systematic grid sampling is
quasi optimal for soil-mapping purposes [86–89], it is not suitable for exploring small-scale
variability [90–92]; to be more precise, spatial variability here is shorter than the distance
between two neighboring sampling locations.

4.3. Mapping and Assessment of Salt-Affected Soils

One of the most characteristic features of the Hungarian lowlands is salt accumulation
and the related processes of sodification and alkalinization [93]. Nowadays, as have to
produce more and more food due to the growing population, even less suitable areas, such
as SAS, are brought under agricultural production. From an agricultural cultivation point
of view, it is essential to create maps in an appropriately high resolution in meliorated
saline areas, in order not only to support precision agricultural production for better yields,
but to highly represent SAS indicators—as limiting factors for cultivation. For this, it is
necessary to create additional maps that inform about the probability of the appearance
of the given limiting factor (SAR value in this case). This is important not only for the
planning of the agrotechnical operation to be selected, but it also informs about the amount
of support that can be requested for the given agricultural land and the size of the area
to be supported. There are several mechanisms that provide incentives for farmers that
crop salt-affected soils; one is provided by the EU [94]. The EU links subsidies to threshold
values of salinity (ECe > 4 dS·m−1) and sodicity (ESP > 6; SAR > 13). According to these
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thresholds, based on a probability value of 0.9, approximately 16.9% (0.16 km2) of the
plot would meet the criterion for being subsidized. Soil sodicity was not fully delineated
because of a lack of suitable data at lower salt levels, which are still limiting for cultivation.
When salinity is large, its mapping is rather straightforward and our approach shows the
case of slight salinization, a borderline case when mapping is more complicated.

Salinization is important not only on hayfields and grazelands, but it is the most
abundant form of chemical degradation for arable lands [95]. For now, salinity values
decreased to a medium or low category in the topsoil (ploughed horizon) of the sampling
plot, as a result of agrotechnical operations. Salt maximums can be found mainly in the
C horizon. The spatial distribution of topsoil EC is varied, following the topography
(Figure 2), as salinity shows correlation with elevation. Nabiollahi et al. [96] also assessed
SAS indicators using digital mapping and hybridized random forests and found that the
most important covariates to predict pH, EC, and SAR were groundwater table, categorical
maps, salinity index, and multi-resolution ridge top flatness (MRRTF). This supports that,
in addition to topography and elevation, groundwater table is crucial for appropriate
assessment of SAS indicators. Groundwater table from ten locations in our sampling area
ranged from 160 to 301 cm depth, with 2.4–6.1 dS·m−1 salt content, which is about the
critical groundwater level (according to Kovda [97]), carrying the risk of salt accumulation
in the fluctuation zone at the groundwater level. For the sake of the small number of
sample points, information on groundwater table was not available spatially exhaustively
in our sampling site; therefore, we could not take it into consideration in the course of
spatial prediction. However, as irrigation is not applied and the number and length of dry
periods are increasing [98], negative water balance (enhanced soil evaporation and upward
movement of soil moisture) might also cause further and repeated salinity problems in the
ploughed horizon in the future. Soil salinity is a fast-changing parameter; furthermore,
depending on the weather conditions, there is a risk of secondary salt accumulation.
Detailed and recurring mapping of soil salinity is necessary on previously saline, meliorated
agricultural areas.

More alkaline soils (pH > 8.5) can be found in the northern part of the study site
(Figure 2.), as well as higher SAR values. Sparks [99] notes that, in soils with high electrolyte
concentrations, pH value is usually < 8.5 and the soil is flocculated. However, if the
soluble salts are leached out, usually Na+ becomes an even greater problem and the soil
pH rises to > 8.5 and the soil can become dispersed [50]. This phenomenon can cause
waterlogging in the topsoil and impede plowing and agrotechnical operations involving
soil loosening. Furthermore, alkalinity inhibits a number of essential plant nutrients’ uptake
for crops, influencing both the availability of soil nutrients and affecting losses of certain
nutrients from the soil system, reducing the expected yield. After delimiting these alkaline
parts of the area on a high-resolution digital map, the stakeholder will be able to plan
cost-effective interventions.

5. Conclusions

The aim of this study was to map and assess the salt-affectedness on an area of arable
land in Hungary, with high spatial resolution, using a combination of ensemble machine
learning and multivariate geostatistics on three SAS indicators (i.e., alkalinity, EC, and
SAR). In ensemble modelling, five base learners were used, namely Ranger, XGBoost, SVM,
NN, and GLM. Our results illustrated that ensemble machine learning combined with
multivariate geostatistics could be a promising method not just for jointly modelling and
mapping the spatial distribution of different indicators of salt-affected soils at high spatial
resolution but also in assessing salt-affectedness on arable lands at the field scale. However,
the results also showed that ensemble machine learning does not necessarily perform
better than the base learners separately. In such a case, it is better not to use ensemble
modelling and instead use the best base learner alone. In Hungary, there were several
mapping campaigns of salt-affected soils; however, the salinity/sodicity/alkalinity of soils
are continuously present in the landscape, showing specific depth distribution and intensity
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in accordance with geomorphology and hydraulic conditions. These SAS indicators need
to be mapped more precisely to help in the accurate execution of new precision agricultural
operations. High-spatial-resolution mapping is important for stakeholders:

1. For farmers to indicate:

- The part of the plot where reclamation/drainage works must be carried out and
- Site-specific cultivation can be managed;

2. For decision-makers to help them decide:

- the allocation of subsidies.
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