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Abstract: The aim of this study was to determine the effect of temperature and CO2 on seed emergence,
seedling quality, and phenological stage of Capsicum chinense and Capsicum annum cultivated in four
controlled growth chambers (C1: 30 ◦C and 400 µmol CO2 mol−1; C2: 40 ◦C and 1200 µmol CO2 mol−1;
C3: 30 ◦C and 1200 µmol CO2 mol−1; C4: 40 ◦C and 400 µmol CO2 mol−1). Neither temperature nor
elevated CO2 influenced seed emergence, although differences were observed in seedling mortality,
with high temperature affecting seedling survival in both species; the mortality rate at 40 ◦C was 20
and 53% in C. annuum and 45 and 58% in C. chinense at 400 and 1200 µmol CO2 mol−1, respectively.
Differences were also observed in growth parameters, where positive effects were observed on leaf
area, which reached 45.9 cm2 in C. annuum and 23.9 cm2 in C. chinense with elevated CO2 at 30 ◦C,
but negative effects were observed with high temperature. CO2 enrichment increased flower and
fruit production per plant. However, high temperature delayed flower phenology, increased flower
abortion and inhibited fruit set. Elevated CO2 counteracted the detrimental effects of high temperature
on growth parameters and flower number, but this was not sufficient to prevent flower abortion and
the detrimental morphological characteristics of fruit caused by a temperature of 40 ◦C.

Keywords: Capsicum spp.; climate change; CO2 enrichment; elevated temperature; emergence;
plant growth

1. Introduction

In recent decades, global warming caused by the increase in the concentration of
greenhouse gases (CO2, carbon dioxide; CH4, methane; N2O, nitrous oxide; HFCs, hy-
drofluorocarbons; PFCs, perfluorocarbons; and SF6, sulfur hexafluoride), mainly attributed
to anthropogenic activities, has led to a change in climate conditions, altering precipitation
patterns and intensifying desertification in many regions of the planet [1,2]. Climate change
represents an important threat to agricultural production in the tropics, where the major
factors limiting crop productivity are high temperatures and drought [3], given that they
cause the loss of over 49% of world food production, subjecting the agricultural sector to
the negative effects of climate change [4,5].
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The increase in global temperatures could have a considerable effect on the phenology,
anatomy, morphology and physiology of plants and have negative effects on CO2 assimila-
tion, respiration, growth and reproductive processes [6–8], causing crop damage related to
temperature stress and endangering food security [3,9].

As temperature regulates plants’ physiological processes, acting as a determining
factor for germination, seed formation, flowering and fruiting, it is important to consider
the adverse effects of climate change [10], especially in widely consumed tropical crops
with economic and agricultural significance such as vegetable species, due to their high
nutritional value and important contribution to everyday diets [11].

Changes in temperature and atmospheric CO2 concentration (Ca) produce important
modifications to seasonal rainfall patterns, climate, and the frequency and duration of
raised temperatures [12]. There has been a clear increase in Ca, with levels of the gas
currently fluctuating around 416 µmol mol−1 [13], and this trend will continue for many
years [14]. Nevertheless, it has been demonstrated that CO2 has a beneficial effect on
plants, especially in CO2-enriched environments, by improving photosynthetic efficiency,
reducing transpiration losses, stimulating general growth [15], and turning on adaptive
mechanisms in plants such as biomass generation and physiological and morphological
changes, thus strengthening plants’ thermotolerance to achieve better adaptation to climate
conditions [16–19].

Cultivable plants will be the most affected by the adverse effects of climate change be-
cause a decrease in net production yield is expected in many agricultural zones of the planet.
Moreover, ecophysiological research has focused on evaluating individual climate variables
with a limited approach to the interaction between them [20], meaning that understanding
how the interaction of these variables (temperature and Ca) influences phenological, physio-
logical and growth characteristics is considered of significant importance. In this regard, the
genus Capsicum, one of the most widely cultivated crops in the world due to the economic
and nutritional value of its species, is expected to be affected by temperature [21] and
benefited by the increase in Ca [22], so understanding how these variables interact would
permit a more accurate prediction of how Capsicum spp. will respond to climate change. In
this sense, we hypothesized that the high temperature will affect phenology and growth in
pepper plants, but elevated CO2 concentration will mitigate the negative impact caused by
high temperature. Therefore, the aim of this study was to determine the phenological and
physiological responses (seed emergence, seedling quality, phenological stage: growth and
flowering, seed set and fruit production) of Capsicum annuum and Capsicum chinense under
the effect of high temperature and CO2 enrichment, cultivated in four growth chambers
controlling temperature (30 and 40 ◦C) and CO2 (400 and 1200 µmol CO2 mol−1).

2. Materials and Methods
2.1. Location, Plant Material, Crop Management

The present research was conducted in the experimental area of Tecnológico Nacional de
Mexico, Campus Conkal, Yucatan, Mexico. As plant material, two of the most commercialized
species of the genus Capsicum in the region were used, a sweet pepper (D40 variety, Capsicum
annuum) and a hot pepper (habanero pepper, Jaguar variety, Capsicum chinense). To evaluate
seed emergence and seedling growth during the nursery stage, 400 seeds of each species
were sown in polystyrene trays using peat moss as substrate (Sunshine, Proveedora Agrícola,
Guadalajara, Mexico). Once the seeds emerged, seedlings were kept at field capacity by daily
watering, and once the plants reached the first pair of true leaves, they were fertilized with
Steiner nutrient solution (50%) twice a week until 45 days after sowing (das). The seeds and
seedlings were cultivated in growth chambers and subjected to different temperatures (30 and
40 ◦C) and CO2 concentrations (400 and 1200 µmol CO2 mol−1) during the experiment (some
seedlings evaluated during the nursery stage died as a consequence of high temperatures
applied in the evaluated treatments).

To evaluate reproductive phenology, seedlings at 40 das were transplanted into
polystyrene black bags with a capacity of 10 L using a mix of dark soil with peat moss
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as substrate (3/1: v/v) disinfected with formaldehyde (10%). Plants were rotated once a
week to avoid border effects. Plant nutrition throughout the experiment was provided with
Steiner nutrient solution (50, 75, 100%) according to the phenological development stage
and plant nutritional requirements (from seedling to fruiting). Insecticides, acaricides and
fungicides were applied preemptively.

2.2. Growth Chambers and Treatments

Four growth chambers were used for the experiment, placed under a white green-
house plastic roof structure permitting the passage of a photon flux density of up to
1100 µmol m−2 s−1. Natural light was used throughout the experiment, with an approx-
imate photoperiod of 12/12 (light/dark), the first photons were recorded at 6:30 h, with
a gradual increase until reaching 1100 µmol m−2 s−1 at noon, which was maintained
between 12:00 and 15:00 h; later, the photon flux density gradually decreased until dark
(around 18:30 h). Each chamber was completely enclosed, structured with transparent glass,
measuring 3 m long by 2.5 m wide and 2.2 m high. To control temperature, each chamber
had a 12,000 BTU air conditioner (Split Mirage, model X2, Merida, Mexico) modified with
an external thermostat. The thermostat sensor was located above the plant canopy. Ca was
regulated with a Telair sensor (T6713) connected to an Arduino microprocessor (Telaire
7001, St. Marys, PA, USA) activating a solenoid valve connected to the hose of the CO2
cylinder. Relative humidity was controlled with a 25 L capacity dehumidifier (Hisense,
DH50K1W, Mexico City, Mexico), and a 12-inch rotating fan homogenized the air inside
the chambers. Climate conditions were monitored inside each chamber with dataloggers
(HOBO H08-004-02, Onset Computer Corp., Bourne, MA, USA). The conditions of the
chambers were set as follows: Chamber 1, 30 ◦C and 400 µmol CO2 mol−1 (Control);
Chamber 2, 40 ◦C and 1200 µmol CO2 mol−1; Chamber 3, 30 ◦C and 1200 µmol CO2 mol−1;
Chamber 4, 40 ◦C and 400 µmol CO2 mol−1. At night, all chamber conditions were kept
the same for all treatments (average temperature = 26 ◦C, RH = 70%). Chamber 1 was the
control, because 30 ◦C and 400 µmol CO2 mol−1 are similar to diurnal average temperature
and atmospheric CO2 concentration in Yucatan. In all treatments, both temperature and
atmospheric CO2 had an error range of ±2 ◦C and ±50 µmol CO2 mol−1, respectively.

2.3. Seedling Emergence and Seedling Growth Parameters

Seedling emergence was evaluated according to Hernández-Pinto et al. [23] with daily
counting for 7 days from sowing, where the emergence percentage (%E) equaled the total
number of germinated seeds at the end of the experiment (n) divided by the total number
of sown seeds (N) multiplied by 100. Seed emergence was evaluated for 15 days from
sowing. From day 16, the mortality percentage was counted from the total emerged seeds.

Evaluations of the seedling growth parameters were carried out at 35 das according to
Garruña-Hernández et al. [21]. The height was measured with a measuring tape from the
base of the stem to the apex, the stem diameter was measured with a digital caliper at the
stem base, leaf area was measured with an area meter (LI-3100, LI-COR, Inc. Lincoln, NE,
USA), root volume was determined by displacement using a graduated cylinder, and to
obtain the organs’ biomass, the tissue was dried in a convection oven at 70 ◦C for 72 h.

2.4. Flowering and Fruiting Parameters

The presence of flower and fruit buds was recorded daily to evaluate flowering and
fruiting until the plants reached 100% of flowering and fruiting, respectively. The number
of flower abortions was estimated as the number of flowers minus the number of fruits,
according to Garruña-Hernández et al. [24].

To evaluate the weight, diameter, and length of fruits, 100 fruits per treatment collected
in the first two harvests were used. A digital balance (Ohaus Adventurer-420, Mexico City,
Mexico) and a caliper were used to measure them. It was not possible to carry out the
measurements in chamber 4 (C4 = 40 ◦C with 400 µmol CO2 mol−1) due to a lack of fruits.
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2.5. Experimental Design and Statistical Analyses

The experimental design was completely random with a bi-factorial arrangement,
using air temperature (30 and 40 ◦C) and atmospheric concentration of CO2 (400 and
1200 µmol CO2 mol−1). In the evaluation of seed emergence and seedling growth,
100 seeds per species were used as an experimental unit, using five repetitions per treat-
ment. To evaluate reproductive phenology, 20 plants were used as the experimental unit.
Percentage data were transformed with the arcsine of the square root. A two-way analysis
of variance (two-way ANOVA, p ≤ 0.05) was performed for all data. Where significant dif-
ferences were found, a means comparison test (Tukey, α = 0.05) was conducted. Statistical
analyses were conducted with Infostat (2019) and plotted with SigmaPlot 11.0.

3. Results and Discussion
3.1. Seedling Emergence

The emergence of C. annuum was faster during the initial days in the treatments at
40 ◦C (C2 and C4) regardless of the CO2 concentration, with statistically significant dif-
ferences present at 6 das. However, from day 7, there were no statistically significant
differences in emergence among any treatments of this species (Figure 1A). This was re-
flected in the cumulative emergence, where all treatments reached at least 95% emergence
at 11 das (C1 = 95, C2 = 98, C3 = 96 and C4 = 98%). There were no significant differences
observed in the emergence of C. chinense (Figure 1B). Cumulative emergence was between
81 and 89% (C1 = 89, C2 = 86, C3 = 81 and C4 = 89%).
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Figure 1. Emergence and mortality of seedlings of C. annum (A,C) and C. chinense (B,D) cultivated
under different temperatures and CO2-enriched atmospheres. C1 = 30 ◦C and 400 µmol CO2 mol−1,
C2 = 40 ◦C and 1200 µmol CO2 mol−1, C3 = 30 ◦C and 1200 µmol CO2 mol−1, C4 = 40 ◦C and
400 µmol CO2 mol−1. Data are means ± SE; * = statistically significant differences (2-way ANOVA
p ≤ 0.05, n = 100).

Therefore, the interaction between temperature and CO2 did not have a significant
effect on the final emergence of either species of Capsicum evaluated. In contrast, a signifi-
cant increase in the percentage of emergence was observed in Bouteloua gracilis with the
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combination of seven temperatures with alternating 12/12 h periods (10/0, 12.5/2.5, 15/5,
20/10, 25/15, 30/20, 35/25 ◦C) and CO2 (385 and 600 µmol CO2 mol−1) [18]. Moreover, [25]
mention that CO2 concentration did not have a significant effect on Arabidopsis thaliana seed
emergence, with seeds subjected to high temperatures exhibiting the fastest germination
rate. In the present work, temperature was essential in the regulation of seed emergence;
when the temperature increased, so did the emergence rate, due to temperature acting as
a determining factor for enzyme activation or deactivation processes [26,27]. The physi-
ological response of seeds to this factor is crucial for emergence and plant development,
and once the optimum temperature point is reached, the emergence process diminishes.
Therefore, temperatures under or over the maximum optimum can inhibit emergence,
risking the life and survival of seedlings [18,27,28].

Mortality of some plants started from 18 das, which coincided with the appearance
of the second pair of true leaves. In C. annuum, only 3 and 2% of seedling mortality was
observed at 400 (C1) and 1200 µmol CO2 mol−1 (C3), respectively (Figure 1C). However, at
40 ◦C, seedling mortality was 20 and 53% at 1200 (C2) and at 400 µmol CO2 mol−1 (C4),
respectively (Figure 1C). A similar trend to C. annuum was observed in C. chinense, where
mortality reached 3% in C1 and C3. At 40 ◦C, mortality of plants reached 45 and 58% in
C2 and C4, respectively. The results show that in these species, high temperature and CO2
enrichment do not have any effect on the emergence or the first days of life of seedlings
(when they are still dependent on the cotyledon). Nevertheless, when the first pair of
photosynthetic leaves appeared, we could observe damage (delayed growth, color changes,
flaccid tissue) due to the effect of high temperatures. The appearance and development
of the second pair of photosynthetic leaves coincided with the onset of seedling mortality
regardless of the CO2 concentration.

The appearance of functional leaves, capable of performing gas exchange with the
environment, probably favored the negative effects of high temperature on seedlings, due
to the fact that an increase in leaf area raised transpiration capacity, and also due to the
warm environment, causing the onset of heat stress problems caused by temperature in
the seedlings. In Capsicum, it has been observed that, in high-temperature atmospheres,
plants increase their transpiration rate in order to reduce leaf area temperature and be
able to maintain an optimum temperature range in order to protect their photosynthetic
mechanism [21]. It is likely that two-to-three-week old seedlings do not yet possess suitable
characteristics to survive this kind of stress. Furthermore, CO2 enrichment did not prevent
seedling mortality due to the effect of high temperature. Similar cases have been observed
in other species. Some authors [29] mention that the emergence in Asteraceae genus species
occurred in a wide range of temperatures, but was inhibited from 35 ◦C, presenting only
25% emergence. The Capsicum species studied here probably show thermotolerance, such
as a preference for high temperatures, allowing them to adapt better. However, it is likely
that other species present a higher sensitivity to high temperatures, causing an inhibition
of germination.

3.2. Seedling Growth

Statistically significant differences were found in both species in all parameters evalu-
ated to determine seedling growth and quality. The leaf area of C. annuum seedlings in the
chamber at 30 ◦C and 1200 µmol CO2 mol−1 (C3) was greater than in the other treatments,
and a temperature at 40 ◦C decreased the seedlings’ leaf area at both 400 (18.4 cm2) and
1200 µmol CO2 mol−1 (22 cm2) (Figure 2A). In C. chinense, seedling leaf area in C3 (23.9 cm2)
was also statistically greater than in other treatments, although there were no significant
differences in this species between the chamber at 30 ◦C and 400 µmol CO2 mol−1 and
those at 40 ◦C (19 and 16.2 cm2 at 400 and 1200 µmol CO2 mol−1, respectively) (Figure 2B).
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Figure 2. Leaf area, height and root volume of C. annum (A,C,E) and C. chinense (B,D,F)
seedlings cultivated under different temperatures and CO2-enriched atmospheres. C1 = 30 ◦C and
400 µmol CO2 mol−1, C2 = 40 ◦C and 1200 µmol CO2 mol−1, C3 = 30 ◦C and 1200 µmol CO2 mol−1,
C4 = 40 ◦C and 400 µmol CO2 mol−1. Data are means ± SE. Different letters indicate statistically
significant differences among treatments (Tukey, p ≤ 0.05, n = 20).

In both species, the positive effect of elevated CO2 was observed at a comfortable temper-
ature (30 ◦C). However, in C. annuum, the negative effect of high temperature was observed
compared to seedlings in the control chamber (C1 = 30 ◦C and 400 µmol CO2 mol−1). This was
not found in C. chinense, probably because these seedlings are less leafy and have a slightly
lower growth rate than C. annum. Thus, Wullshleger et al. [30] suggest that plants exposed to
CO2-enriched environments are subjected to important trade-offs, either to increase leaf size
or to reduce stomatal conductance, which could explain the differences in the leaf area of the
two species. On the other hand, in both species, it was found that seedling root volume of
plants cultivated in CO2-enriched chambers (C2 and C3) statistically exceeded that of plants
cultivated at 400 µmol CO2 mol−1 (Figure 2E,F). As opposed to what occurred with aerial
growth variables (leaf area and height), root volume at 40 ◦C and 1200 µmol CO2 mol−1 was
statistically similar at 30 ◦C and 1200 µmol CO2 mol−1. In this case, the substrate watered
at field capacity was probably acting as a temperature buffer, with the plant had a major
concentration of atmospheric CO2 available to be used to send photoassimilates to the root
zones. CO2 enrichment allows the plant to better distribute photoassimilates [19]. Furthermore,
the two evaluated species (C. annuum and C. chinense) are tropical species that are well adapted
to the regional climate conditions, meaning that they have a wider optimum temperature
range than species adapted to mild climates and likely possess tolerance mechanisms for these
climate conditions [31]. Additionally, Rahman et al. [32] indicated that high temperatures can
modify the composition and structure of cell membranes, pointing out that the ability of species
to adapt to temperature stress requires a physiological adaptation to such stress.
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In both species, seedling dry biomass in C3 (0.36 and 0.24 g) was statistically greater
than in the other treatments. Nevertheless, for this variable, the increased CO2 concentration
in C2 (40 ◦C and 1200 µmol CO2 mol−1) (0.16 and 0.19 g for C. annuum and C. chinense,
respectively) counteracted the negative effects of C4 (40 ◦C and 400 µmol CO2 mol−1)
(0.12 g in both species), and was even higher than that of seedlings of C. chinense in C1
(0.15 g) (Figure 3). This was likely due to the increase in root biomass in the chambers
with elevated CO2. In a study conducted on Eucalyptus spp., major growth was found
in environments with high temperature and CO2 enrichment, highlighting that biomass
allocation differs among species and also among the organs of the plants [33]. In contrast,
Marcos-Barbero et al. [19] suggest that temperature and CO2 are two factors that must be
evaluated simultaneously, adding that selection of genetic varieties is a strategy that can be
used to select crops well adapted to future climate change conditions, given that species
exist that are better adapted to extreme climate conditions and in which temperature can
even accelerate seed emergence and increase leaf area and biomass allocation, as well as
other phenological and physiological traits of plants [34].
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3.3. Flowering and Fruiting

In C. annuum plants, the presence of flower buds started at 59 das (19 days with
high temperature and CO2-enrichment treatment). Two days later (61 das), 90% of plants
had flower buds, and no statistically significant differences were found among treatments
(Figure 4A). On the other hand, C. chinense plants did exhibit statistically significant dif-
ferences among treatments, with plants at 30 ◦C (C1 and C3) presenting the first flower
buds at 58 das (18 das with high temperature and CO2-enrichment treatment), whereas the
plants of C2 (40 ◦C and 1200 µmol CO2 mol−1) and C4 (40 ◦C and 400 µmol CO2 mol−1)
showed the presence of flower buds at 65 and 63 das, respectively. In C1 and C3, 90%
of plants presented flower buds at 64 and 66 das, respectively, while those in C2 and C4
reached a similar value at 72 and 80 das, respectively (Figure 4B).
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Figure 4. Plants with flower buds, plants with flowers and plants with fruits of C. annuum (A,C,E) and
C. chinense (B,D,F) cultivated under different temperatures and CO2-enriched atmospheres. C1 = 30 ◦C
and 400 µmol CO2 mol−1, C2 = 40 ◦C and 1200 µmol CO2 mol−1, C3 = 30 ◦C and 1200 µmol CO2 mol−1,
C4 = 40 ◦C and 400 µmol CO2 mol−1. Data are means ± SE. * = statistically significant differences
(two-way ANOVA p ≤ 0.05, n = 120).

C. annuum plants showed 100% flowering at 78, 86, 73 and 86 das in C1, C2, C3
and C4, respectively (Figure 4C). Whilst statistically significant differences were found in
C. chinense throughout the experiment, the negative effect of high temperature on this
species was more pronounced, since a delay of 5 and 15 days, respectively, was found in
flower phenology compared to the chambers at 30 ◦C (Figure 4D).

Fruit appearance in C. annuum started at 75 das in C1 and C3 and at 119 das in C2, but
there was no formation of fruits in C4. At 112, 122 and 88 das, 60, 15 and 95% of plants
had a presence of fruits in C1, C2 and C3, respectively (Figure 4E). In C. chinense, fruits
appeared from 78 (C1 and C2) and 75 (C3) das. As in C. annuum, there was no presence
of fruits in C4. Fruiting at 100% was only shown in C3, while C1 and C2 showed only 80
and 20%, respectively (Figure 4F). In this regard, Kim et al. [35] mention that Phalaenopsis
plants exposed to over 800 µmol CO2 mol−1 before flower spike induction had higher
biomass production. However, they also mention flower production and the number of
flower buds could be reduced in plants subjected to long CO2 exposure. Additionally,
Chaturvedi et al. [36] point out that in rice cultivars, the use of species with high temperature
tolerance could reduce the negative impact of heat stress during flowering.

Generally, C. annuum plants had fewer flowers and fruits than C. chinense due to the
size difference between the two genotypes. In C. annuum, elevated CO2 increased flower
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production (C2 = 12 flowers; C3 = 12.88 flowers) (Figure 5A). Nevertheless, plants in C2
(40 ◦C and 1200 µmol CO2 mol−1) had just two fruits per plant, whilst plants in C3 (30 ◦C
and 1200 µmol CO2 mol−1) had nine fruits per plant (Figure 5C). A similar trend was found
in C. chinense, where C3 was statistically superior to all treatments with 42 flowers and
24 fruits per plant (Figure 5B,D). In both species, flower production in C4 was statistically
lower than the other treatments, and the presence of fruits was not observed (Figure 5C,D),
indicating that 100% of plants aborted at 40 ◦C. Plants in C3 had the fewest aborted fruits
(C. annuum = 42 aborted flowers and C. chinense = 30 aborted flowers) (Figure 5E,F). These
results agree with those reported by [24], who mention that CO2 has a positive effect on
flowering, and, therefore, on the number of fruits, which implies a yield improvement.
In addition, Xu et al. [37] indicated that treatments with CO2-enriched environments
promoted flowering in Gerbera jamesonii. Likewise, Meneses-Lazo et al. [38] mentioned that
habanero pepper has a good rate of carboxylation, promoting flower and fruit production.
In this regard, Marcelis et al. [39] remark on the importance of evaluating the phenological
state and the developmental stage of plants, and that fruit abortion could be linked to the
sink-source balance of the plant. Furthermore, Garruña et al. [24] point out that temperature
affects the reproductive cycle of plants, causing precocity or delays, including the inhibition
of flowers and fruits, but they also mention that elevated CO2 availability decreases the
number of aborted flowers.
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the first harvest of fruits. Different letters indicate statistically significant differences among treatments
(Tukey, p ≤ 0.05, n = 32).
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In Capsicum annuum, fruit weight was 21.5 and 22 g in C1 and C3, respectively, whilst
a lower weight was found in C2 (6.66 g) (Figure 6A). Stem diameter was 4.2 and 4.4 cm in
C1 and C3, respectively, while in C2 it was 2.8 cm (Figure 6C). Fruit length in C1 and C3
was 4.5 and 4.7 cm, respectively (Figure 6D), whilst fruits in C2 reached a length shorter
than 2 cm (1.8 cm).
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Figure 6. Fruit weight, diameter and length in C. annum (A,C,E) and C. chinense (B,D,F) cultivated
under different temperatures and CO2-enriched atmospheres. C1 = 30 ◦C and 400 µmol CO2 mol−1,
C2 = 40 ◦C and 1200 µmol CO2 mol−1, C3 = 30 ◦C and 1200 µmol CO2 mol−1, C4 = 40 ◦C and
400 µmol CO2 mol−1. Data are means ± SE calculated at the first harvest of fruits. Different letters
indicate statistically significant differences among treatments (Tukey, p ≤ 0.05, n = 100).

In C. chinense, fruit weight was 11.83 and 12 g in C1 and C3, respectively, whereas the
lowest value was found in C2 (0.74 g) (Figure 6B). Stem diameter was similar in C1 and
C3 (3.6 and 3.10 cm, respectively), while in C2, it did not reach 1 cm (0.97 cm) (Figure 6D).
Fruit length reached levels similar to C. annuum in C1 and C3 (4.8 and 4.5 cm) and C2
(1.1 cm) (Figure 6E). The negative effect of high temperature (40 ◦C) was evident, especially
in C4, where the increase in temperature led to inhibited fruit growth. Furthermore, an
increase in fruit weight, stem diameter and fruit length was found in seedlings established
in a comfortable environment at 30 ◦C (C1 and C3). The trend observed for both species
in C1 and C3 could indicate that the plants presented a better response at a comfortable
temperature (30 ◦C) in spite of CO2 enrichment, given that although these kinds of crops
are adapted to tropical climate conditions, an optimum temperature is able to provide the
plants with a better capacity to adapt and develop. The results obtained are similar to those
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in [40] in Solanum lycopersicum Mill, who obtained the highest number of fruits per plant and
the highest fruit weight in environments with supplemented light and CO2-enrichment.

4. Conclusions

Evidently, modifying the atmospheres led to changes in the phenological rhythm of
the plants. Although neither temperature nor CO2 influenced seed emergence, differences
in seedling mortality were found, with high temperature affecting seedling survival, as
well as in growth parameters, where positive effects were found in the presence of
atmospheric CO2 enrichment (30 ◦C and 1200 µmol CO2 mol−1) and negative effects were
associated with high temperature (C2 = 40 ◦C and 1200 µmol CO2 mol−1; C4 = 40 ◦C and
400 µmol CO2 mol−1). CO2 enrichment increased flower and fruit production per plant.
However, high temperature delayed flower phenology, increased flower abortion and
inhibited fruiting. Elevated CO2 counteracted the harmful effects of high temperature,
but not to an extent sufficient to avoid flower abortion and detrimental morphological
features of fruit caused by a temperature of 40 ◦C. Due to the vulnerability faced in
response to climate change, it is essential to further investigate plant responses to future
climate change scenarios in order to understand plasticity and requirements, especially
in crops cultivated in tropical regions where greater damage is expected for these kinds
of crops.
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