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Abstract: With the growing availability of environmental covariates, feature selection (FS) is becoming
an essential task for applying machine learning (ML) in digital soil mapping (DSM). In this study,
the effectiveness of six types of FS methods from four categories (filter, wrapper, embedded, and
hybrid) were compared. These FS algorithms chose relevant covariates from an exhaustive set of
1049 environmental covariates for predicting five soil fertility properties in ten fields, in combination
with ten different ML algorithms. Resulting model performance was compared by three different
metrics (R2 of 10-fold cross validation (CV), robustness ratio (RR; developed in this study), and
independent validation with Lin’s concordance correlation coefficient (IV-CCC)). FS improved CV,
RR, and IV-CCC compared to the models built without FS for most fields and soil properties. Wrapper
(BorutaShap) and embedded (Lasso-FS, Random forest-FS) methods usually led to the optimal models.
The filter-based ANOVA-FS method mostly led to overfit models, especially for fields with smaller
sample quantities. Decision-tree based models were usually part of the optimal combination of FS
and ML. Considering RR helped identify optimal combinations of FS and ML that can improve the
performance of DSM compared to models produced from full covariate stacks.
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1. Introduction

Digital soil mapping (DSM) has been widely used to map various soil properties and
classes for the last few decades [1]. A strategy for DSM is the process of using predictive
statistical models (e.g., machine learning (ML)) that utilize the relationships between
georeferenced soil lab data and environmental predictors (aka covariates) [2]. Performance
of ML relies heavily on the covariates used to represent true soil-landscape relationships.
Therefore, covariate (aka feature) selection is an important aspect for this approach to
DSM [3,4].

Growing availability of environmental covariates due to advancements in remote
sensing (RS) technologies has made it challenging to select and focus on the most impor-
tant covariates. Using only relevant covariates in modelling is crucial where the ‘curse
of dimensionality’ can negatively impact the bias-variance tradeoff in modelling with
small datasets, for example, the datasets commonly used in field-scale soil mapping [5,6],
plant-breeding studies [7], classification of microshoots and somatic embryos for in vitro
culture [8], and stress phenotyping [9]. The ‘curse of dimensionality’ refers to the modelling
problem that the growth in dimensions—each covariate is a dimension—in the feature
space requires an exponentially increasing number of training samples for a ML algorithm
to avoid over-fitting and build reliable models [10]. However, gathering all available
potential environmental covariates is beneficial for not missing any spatial information
that could be useful for predictions. In this context, feature selection (FS) algorithms help
reduce dimensionality stemming from a large covariate stack by identifying covariates that
are most likely to be relevant.
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Objectives of FS, as a data pre-processing strategy, include building more comprehen-
sible and simpler models, reducing computational requirements, reducing the effect of the
curse-of-dimensionality, and improving prediction performance [11,12]. FS strategies can
be grouped as filter, wrapper, embedded, and hybrid [13]. The most popular FS methods
in the DSM studies are filter and wrapper strategies [14]. Filter strategies perform FS based
on characteristics of data to evaluate the usefulness of covariates [15]. For example, a filter
FS strategy based on correlation between covariates eliminates redundant covariates by
reducing highly correlated covariates. For the most part, these methods are computation-
ally efficient [12]. However, because there is no learning algorithm guiding the selection
process, the selected covariates may not be the optimal selection for specific ML algorithms.

Wrapper strategies use a ML algorithm as a learning object and iteratively add or
remove covariates from a covariate pool to find the optimal combination of covariates
for maximizing model performance [16]. The most commonly used wrapper strategy in
DSM studies is recursive feature elimination (RFE) [14]. Wrapper strategies are often called
‘greedy’ search algorithms due to the extensive search space during the selection. Thus,
they typically require longer computation times relative to the other FS strategies [17].
Despite that, wrapper strategies can be advantageous in identifying non-linear complex
relationships between the target soil property and covariates.

In addition to popular wrappers, new wrapper algorithms have been emerging. How-
ever, these newer wrapper algorithms have not been tested in the context of DSM. For
example, BorutaShap-FS [18] has been found useful in many applications such as COVID-
19 severity prediction [19] and predicting the height of buildings from Sentinel-1 and -2
data [20]. BorutaShap-FS combines the Boruta algorithm [21] with SHAP (SHapley Ad-
ditive exPlanations) [22], which is a game theoretic approach to explain the output of a
ML model. The Boruta algorithm first generates five shadow covariates whose values are
obtained by shuffling values of the original covariate to remove their correlations with
the target variable (soil properties). Then, Shapley values [23] are computed to determine
the importance of covariates and their shadow covariates. SHAP calculates covariate
importance based on calculating how much each covariate contributes to the model. In
BorutaShap-FS, covariates whose SHAP importance score is higher than the shadow co-
variates are selected. Like in other wrapper FS strategies, BorutaShap-FS requires a ML
object to evaluate covariate performance. In this case, SHAP serves at the ML object.

Embedded and hybrid strategies for FS may also be useful in DSM applications. Em-
bedded strategies provide a trade-off solution between filter and wrapper strategies by
embedding FS into the model building process [11]. This approach reduces the computa-
tion time required for the selection process while including the interactions with the ML
algorithm [12]. Popular embedded strategies include regularization strategies such as Lasso
(Least Absolute Shrinkage and Selection Operator), and decision-tree based strategies such
as random forest (RF) FS [24,25]. Hybrid strategies combine two or more FS methods in
the selection of covariates [13,17]. The main goal of hybrid strategies is to perform a more
rigorous FS by aggregating multiple FS strategies. Hybrid strategies are gaining popularity
because they combine the advantages of different FS strategies.

In recent DSM studies, FS strategies have shown promise for improving modelling
results. Chen et al. [26] compared FS strategies from all four categories of FS strategies to
generate an optimal covariate subset for mapping soil organic matter (SOM). They reported
FS strategies leading to better SOM prediction accuracy compared to models built from all
available covariates. However, modelling performance among FS approaches has varied.
Xiong et al. [3] compared four wrapper strategies to select covariates for predicting soil
organic carbon (SOC) in the state of Florida. Greedy-backward wrapper, probabilistic, and
genetic FS methods reduced model complexity with little to no reduction in prediction
accuracy compared to the full models.

Most of the studies on FS in DSM have tended to focus on soil classes [27,28] and
soil properties like SOC [6,29,30], SOM [31], soil depth [32,33], particle size fractions [6,33],
and pH [34]. Except for pH, these previous studies have focused on less dynamic and
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less heavily managed soil properties compared to soil fertility properties (e.g., soil nitrate-
nitrogen, phosphorus, and potassium). Given the economic and environmental promise of
precision agriculture, combined with the increasingly finer temporal resolution of remote
sensing, there is an opportunity to apply these methods to provide farmers with better soil
fertility maps.

The aims of this study were to (1) evaluate the response of model performance to FS
under different ML algorithms, and (2) investigate the effect of sample quantity within
each of these spatial modelling strategies. Within this context, each of the trials were
examined with a new metric of robustness that attempts to measure the dependency of
model performance on the samples selected for training as an indicator of over-fitting.

2. Materials and Methods
2.1. Study Fields and Soil Sampling

This research was conducted on ten agricultural fields located within a research farm
near Ames, Iowa, USA, centered at approximately 93◦45′28′′ W 42◦1′38′′ N (Figure 1).
Dominant soil series in these fields were Clarion (fine-loamy, mixed, superactive, mesic
Aquic Hapludolls), Nicollet (fine-loamy, mixed, superactive, mesic Aquic Hapludolls),
and Webster (fine- loamy, mixed, superactive, mesic Typic Endoaquolls). These soil series
consist of very deep, well drained to very poorly drained soils formed on loamy till and
trapped alluvium. Slope gradients ranged from 0 to 5%. Mean annual precipitation (MAP)
was 700 mm. Mean air annual temperature (MAT) was 9 ◦C. A total of 992 soil samples,
collected from a depth of 0–15 cm between 2018 and 2020 were used in this study. All
samples from each of the individual fields (A-J) were collected on a single date. Sampling
dates were 8 June 2018 (field B), 25 June 2018 (fields H and I), 16 July 2019 (field D),
8 June 2019 (fields F and J), 12 July 2019 (field C), 29 June 2020 (fields A, E, and G). Samples
were analyzed for NO3

−, P2O5 (Bray-1), K2O (Neutral Ammonium Acetate method), BpH
(buffer pH), SOM (soil organic matter by loss on ignition). Descriptive statistics of these
samples per field and combined for all fields are provided in Table 1.
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Figure 1. Map of the study fields (A–J). Size of the fields ranged from 0.4 ha to 13.1 ha. Soil samples 
were collected from these fields with a grid-sampling design. Fields (A,B,F) had 25 by 25 m grids. 
Field (C) used 20 by 20 m grids. Fields (D,E,G) used 15 m grids. Field (H) had a 37.5 m grid. Field 
(I) used a 10 by 28 m grid. Field (J) used a 5 m grid. 

Figure 1. Map of the study fields (A–J). Size of the fields ranged from 0.4 ha to 13.1 ha. Soil samples
were collected from these fields with a grid-sampling design. Fields (A,B,F) had 25 by 25 m grids.
Field (C) used 20 by 20 m grids. Fields (D,E,G) used 15 m grids. Field (H) had a 37.5 m grid. Field (I)
used a 10 by 28 m grid. Field (J) used a 5 m grid.
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Table 1. Descriptive statistics for NO3
−, P2O5, K2O, BpH, and SOM by study field and all fields

combined.

Soil Property Field n Min Median Mean Max SD CoV Skewness Kurtosis

NO3
− (ppm)

A 135 2 5 5.1 13 1.94 0.38 1.05 4.51
B 45 4 6 6.53 14 2.03 0.31 1.25 5.53
C 42 3 6 5.83 13 1.78 0.31 1.7 7.94
D 160 2 12 15.53 55 11.6 0.75 1.18 3.92
E 92 2 4 3.84 7 1.34 0.35 0.41 2.39
F 177 3 6 6.03 12 1.72 0.29 0.62 3.23
G 44 2 5 4.93 9 1.87 0.38 0.14 2.07
H 94 3 6 10.21 41 8.48 0.83 1.77 5.37
I 140 3 20 21.76 54 8.62 0.4 0.89 3.73
J 63 8 12 12.6 21 2.55 0.2 0.83 3.84

all fields 992 2 7 10.23 55 8.82 0.86 1.95 6.93

P2O5 (ppm)

A 135 1 12 13.3 38 7.51 0.56 1.1 3.87
B 45 11 25 29.02 69 15.21 0.52 1.28 3.96
C 42 8 25.5 26.21 46 10.18 0.39 0.2 2.16
D 160 10 41 41.95 89 18.51 0.44 0.52 2.88
E 92 9 23.5 25.4 76 10.61 0.42 1.55 7.47
F 177 4 19 21.21 54 10.34 0.49 0.82 3.12
G 44 6 13.5 16.34 51 9.48 0.58 1.6 5.78
H 94 1 15 17.34 62 11.11 0.64 1.73 7.42
I 140 3 14 16.45 55 9.87 0.6 1.4 5.3
J 63 1 2 3.71 12 2.81 0.76 1.42 4.15

all fields 992 1 18 22.07 89 15.62 0.71 1.38 5.3

K2O (ppm)

A 135 104 174 179.47 296 34.76 0.19 0.67 3.72
B 45 105 161 166.91 298 34.41 0.21 1.26 6.13
C 42 108 143 147.88 219 22.64 0.15 0.76 3.73
D 160 83 151 164.68 438 59.26 0.36 1.68 7.32
E 92 109 174 180.6 302 31.4 0.17 0.67 4.46
F 177 89 164 162.72 241 31.16 0.19 0.14 2.56
G 44 108 150.5 155.32 257 26.22 0.17 1.64 7.44
H 94 96 138 143.48 266 34.26 0.24 1.01 3.98
I 140 99 172 172.41 256 36.72 0.21 0.31 2.61
J 63 133 167 171.63 232 23.21 0.14 0.94 3.25

all fields 992 83 163 166.32 438 39.34 0.24 1.19 7.57

BpH

A 135 6.2 6.7 6.77 7.1 0.22 0.03 0.44 2.23
B 45 5.9 6.4 6.42 7.1 0.26 0.04 0.32 3.35
C 42 6.6 7.1 6.94 7.1 0.18 0.03 −0.43 1.51
D 160 5.9 6.6 6.55 7.1 0.24 0.04 0.06 3.32
E 92 6.5 6.6 6.66 7.1 0.17 0.02 1.89 5.54
F 177 6 6.7 6.74 7.1 0.26 0.04 0.13 2.39
G 44 6.5 6.7 6.78 7.1 0.19 0.03 0.89 2.21
H 94 0 6.4 5.08 6.8 2.66 0.52 −1.38 2.95
I 140 6.4 6.75 6.8 7.1 0.18 0.03 0.51 2.35
J 63 7.1 7.1 7.1 7.1 0 0 0 0

all fields 992 0 6.7 6.58 7.1 0.98 0.15 −6.06 40.92

SOM %

A 135 1.5 3.6 3.76 6.7 1.16 0.31 0.45 2.71
B 45 2.1 3.7 3.55 4.7 0.67 0.19 −0.55 2.42
C 42 2.1 2.85 2.91 4.2 0.53 0.18 0.61 2.77
D 160 1.9 3 3.06 5.5 0.7 0.23 0.57 3.1
E 92 2 3.7 3.63 5.1 0.76 0.21 −0.05 2.08
F 177 2.1 4.1 4.16 6.8 1.06 0.25 0.46 2.61
G 44 2.5 3.75 3.8 4.9 0.49 0.13 −0.2 3.13
H 94 1.2 3.5 3.85 7.8 1.45 0.38 0.6 2.54
I 140 2 3.1 3.18 6 0.7 0.22 1.13 5.06
J 63 4.4 5.4 5.37 6.3 0.47 0.09 −0.38 2.56

all fields 992 1.2 3.5 3.69 7.8 1.09 0.29 0.67 3

Abbreviations: SD, standard deviation; CoV, coefficient of variation.
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2.2. Environmental Covariates

The covariate stack encompassed 1049 spatial variables that include digital terrain
analysis (DTA) (land-surface derivatives and hydrologic indicators) and RS (aerial and
satellite imagery) (Table 2). All covariates were resampled to a spatial resolution of 3 m and
spatially aligned. Environmental covariate values were then paired with soil lab data at
the sampling locations in a GIS and transferred to a csv format for FS processing. Selected
covariates were then used in respective ML algorithms to create predictive soil models.

The DTA covariates were calculated from a LiDAR-based digital elevation model
(DEM) [35], using ArcGIS Pro 2.7.2 (available online: www.esri.com/software/arcgis,
accessed on 27 June 2022), SAGA 2.3.2 (System for Automated Geoscientific Analysis,
available online: http://www.saga-gis.org, accessed on 1 July 2022), and GRASS 7.6.1 (Ge-
ographic Resources Analysis Support System, available online: grass.osgeo.org, accessed
on 3 July 2022). The LiDAR-based DEM was recorded in 2009. The r.param.scale function
in GRASS was used to calculate terrain derivatives on a series of analysis scales from 9 m
to 1010 m at 6 m intervals. For scale dependent analysis from SAGA GIS, the analysis scale
was 9 m for a 3 m DEM and 30 m for a 10 m DEM.

Table 2. Environmental variables included in the covariate stacks used in this study. DTA was
performed on a LiDAR-based DEM. Imagery products were from the United States Department of
Agriculture, Farm Service Agency’s (USDA-FSA) National Agriculture Imagery Program (NAIP)
and the European Space Agency’s (ESA) Sentinel-2 satellites. NAIP was collected annually during
the growing season by airplane. NAIP imagery from 2019 had a spatial resolution of 0.59 m, but
was resampled to 3 m to match the resolution of other covariates. Sentinel-2 images were level-2A
product, which provides orthorectified Bottom-Of-Atmosphere (BOA) reflectance with sub-pixel
multispectral registration.

Environmental Covariates N Software
Spatial

Resolution
(m)

Analysis Scale Spectral Bands Date

DTA

Aspect 65 GRASS &
SAGA 3, 10 9–123 m

130–1010 m 2009

Cross Sectional Curvature 51 GRASS 3, 10 9–123 m
130–1010 m 2009

Longitudinal Curvature 51 GRASS 3, 10 9–123 m
130–1010 m 2009

Plan Curvature 51 GRASS 3, 10 9–123 m
130–1010 m 2009

Profile Curvature 51 GRASS 3, 10 9–123 m
130–1010 m 2009

Relative Elevation 65 ArcGIS 3, 10 9–123 m
130–1010 m 2009

Slope 65 GRASS &
SAGA 3, 10 9–123 m

130–1010 m 2009

Eastness 51 GRASS 3, 10 9–123 m
130–1010 m 2009

Northness 51 GRASS 3, 10 9–123 m
130–1010 m 2009

Vertical Curvature 10 SAGA 3, 10 2009
Vertical Distance to Channel 1 SAGA 3 2009

Saga Wetness Index 2 SAGA 3, 10 2009
Horizontal Curvature 10 SAGA 3, 10 2009

Curvature 10 SAGA 3, 10 2009
Hillshade 2 SAGA 3, 10 2009

RS

www.esri.com/software/arcgis
http://www.saga-gis.org
grass.osgeo.org
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Table 2. Cont.

Environmental Covariates N Software
Spatial

Resolution
(m)

Analysis Scale Spectral Bands Date

NAIP (spectral bands) 43 1 R,G,B
R,G,B,N

2005–2019
2010–2019

Sentinel-2 (spectral bands) 312 10 R,G,B,N 2017–2020

NDVI 7,
25

NAIP,
Sentinel-2 1, 10 2010–2019

2017–2020

SAVI 7,
25

NAIP,
Sentinel-2 1,10 2010–2019

2017–2020
RVI 7 NAIP 1 2010–2019
DVI 7 NAIP 1 2010–2019

VDVI 5 NAIP 1 2005–2009
MSAVI 25 Sentinel-2 10 2017–2020

CI 25 Sentinel-2 10 2017–2020
GDVI 25 Sentinel-2 10 2017–2020

N is the count of environmental covariates. RGBN, initials of Red, Green, Blue, and Near-infrared spectral bands.
NDVI, Normalized Difference Vegetation Index, (NIR − R) / (NIR + R), [36]; SAVI, Soil Adjusted Vegetation
Index, (NIR − R) × (1 + L) / (NIR + R + L), where soil brightness correction factor (L) was chosen as 0.5, [37];
RVI, Ratio Vegetation Index, calculated as (NIR/R); DVI, Difference Vegetation Index, (NIR-R), [38]; VDVI,
Visible-Band Difference Vegetation Index, (2G − R − B)/(2G + R + B), [39]; MSAVI, Modified Soil-Adjusted
Vegetation Index, (1/2)× [2× (NIR +1)−

√
((2 × NIR + 1) × 2− 8 × (NIR − R)) ], [40]; CI, Chlorophyll Index,

(NIR/G) − 1, [41]; GDVI, Green Difference Vegetation Index, calculated as (NIR-G), [42]. Vegetation indices were
calculated using raster functions of the GDAL package implemented in Python. Images were manually inspected
for vegetation cover on the study fields and only images that showed vegetation cover on the fields were used
to calculate the indices. For aspect calculation, GRASS GIS used direction of maximum gradient (steepest slope
direction = flow direction) with varying window sizes on 3 and 10 m DEMs to achieving varying analysis scales.
SAGA GIS provides eight different calculation methods for aspect (maximum slope [43], maximum triangle
slope [44], least squares fitted plane [45], second order polynomial with six parameters [46–48], second order
polynomial with nine parameters [49], third order polynomial with ten parameters [50]). The same approach was
followed for slope gradient from SAGA GIS. With GRASS, magnitude of maximum gradient was taken as the
calculation basis. With SAGA GIS, the analysis window size was not variable.

RS covariates were spectral bands from the airborne, National Agriculture Imagery
Program (NAIP), and Sentinel-2 Level-2A satellite imagery along with vegetation indices
derived from the combinations of their spectral bands (e.g., NDVI, SAVI). All the images
were downloaded from Google Earth Engine (GEE) and vegetation indices were then
calculated using raster calculator functions in the GDAL package with Python. The NAIP
imagery was annually recorded during the growing season. NAIP imagery was not
available in 2012, 2016, and 2018 on GEE. The NAIP imagery included only red, green, and
blue bands until 2009, but additionally included a near-infrared band after 2010. Only red,
green, blue, and near-infrared bands with 10 m spatial resolution from Sentinel-2 were
used because the other bands had coarser resolution.

The quantity of covariates used for different study fields varied. Although all DTAs
were used for each field and all fields combined, the quantity of Sentinel-2 and NAIP
images used in the analysis differed due to soil sampling dates. Only images from before
the sampling date were used for the respective fields to set a realistic situation where soil
properties are predicted for their state at time of sampling without the availability of future
imagery. The presence of clouds in Sentinel-2 imagery also reduced the final quantity of
images used in varying degrees for each field. As a result, fields A, E, D, and G used all
1049 covariates while the fields C, F, and J used 921, 911, and 917 covariates, respectively.
Fields B, H, and I used a total of 741 covariates. For an experimental treatment considering
all fields combined, 741 covariates were used to match the limitations of the fields with the
earliest sampling dates.
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2.3. Feature Selection

Six different FS methods were applied to identify relevant covariates: (1) Combined-
filter-FS, (2) ANOVA-FS, (3) BorutaShap-FS, (4) Random Forest FS (RF-FS), (5) Lasso-FS,
and (6) Hybrid-FS. The Combined-filter-FS method was the combination of four filter
algorithms. First, a variance threshold of 0.0001 was used to remove all low-variance
covariates. This threshold was set low due to the highly decimal values of DTA covariates.
Second, covariates with almost identical values were removed. Third, only one from a
set of highly correlated covariates (Pearson’s correlation coefficient (r) > 0.8) were kept to
avoid multicollinearity in modelling. Finally, covariates with zero for 50% or more of their
values were removed to eliminate the risk of homoscedasticity in the ML models.

ANOVA-FS and BorutaShap-FS represented the filter and wrapper FS strategies,
respectively. ANOVA-FS computed F-test score and p-value using an ANOVA (analysis of
variance) between each covariate and the target soil property. Covariates were then ranked
according to the highest F-test score and lowest p-value to select a preset quantity (K) of
covariates. K values were set as 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 150, 200, 250, 300, 350, 400,
450, and 500 to have a good range of values for capturing the optimal selection and quantity
of covariates for different ML models. These covariate subsets yielded 18 models. The
model with the highest predictive performance according to the concordance correlation
coefficient (CCC) [51] was selected for further model evaluations based on independent
validation (IV; 20% of samples). BorutaShap-FS was selected as the only wrapper strategy
because of high computational requirements. For BorutaShap-FS, the learning object was
RF regressor with default hyperparameters. The process of running the BorutaShap-FS
algorithm was automatic for returning the selected covariates.

RF-FS and Lasso-FS represented embedded FS strategies in our study. For RF-FS,
feature importance was measured by mean squared error (MSE) on out-of-bag samples.
The covariates whose importance was larger than the mean for all covariates were selected.
SelectFromModel [52], a meta-transformer for selecting features according to importance
weights, was used to return the selection of covariates from the RF regressor with default
hyperparameters in Python. To implement Lasso-FS, a two-step procedure was used. First,
all covariates were standardized because least squares regression fits a regression line
based on Euclidean distance, thus the range of covariate values have a significant impact
on the fitting process. Second, the λ (lambda) hyperparameter of the lasso regressor was
tuned using GridSearchCV (10-fold). The lambda controls the L1 regularization penalty. A
lambda of 0 is equivalent to ordinary least squares (OLS) regression while lambda of 1 is
the full penalty. The final selection of covariates was based on the optimal lambda value
according to GridSearchCV hyperparameter tuning.

The Hybrid-FS method was the sequential combination of a correlation filter with
a threshold of r of 0.8 and the cross-validated recursive feature elimination (RFECV)
algorithm, which is a wrapper FS strategy. The correlation filter helped eliminate correlated
covariates before RFECV was run. This also helped reduce computation time of RFECV as
wrapper strategies can be computationally costly. For RFECV, the learning object was Extra
Trees Regressor (ETR). The optimal selection of covariates in RFECV was automatically
identified based on the MSE of cross-validation.

Some configuration of parameters for the FS methods was necessary. In setting those
parameters, the goal was to make the comparison between the FS methods as fair as possible
while maintaining a single iteration for each FS method. Filter and some embedded (i.e.,
Lasso) FS strategies required their parameters to be set prior to use. Therefore, some prior
exploration of parameters was necessary for these methods. For Lasso-FS and filter-based
ANOVA-FS methods, heuristic search methods were used to find the optimal parameter
values. However, applying similar search methods on Combined-filter-FS method was
computationally costly because Combined-filter-FS method was the combination of four
individual algorithms. Therefore, the setting of parameters for Combined-filter-FS method
was more trial and error for estimating optimized parameters. On the other hand, wrapper-
based methods (i.e., BorutaShap and RFECV used in the Hybrid-FS method) only required
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defining a ML algorithm to evaluate the covariate subsets during the selection process.
As learning objects, decision-tree-based ML algorithms were preferred since they can run
relatively quickly and tend to perform well without tuning of parameters [21]. Lastly,
embedded RF-FS methods required the least amount of parameter configuration because
the RF regressor method (used by RF-FS) does not require any tuning of parameters to
perform well.

2.4. Machine Learning

Ten different ML algorithms were used to build models for predicting soil prop-
erties and compare FS methods by their interaction with ML algorithms. Lasso regres-
sor [24,52,53], support vector regressor (SVR) with polynomial kernel [54], and multi-layer
perceptron regressor (MLP) [55] were selected to represent classic ML algorithms. Lasso
regressor is a parametric model built upon OLS with L1 regularization. SVR with polyno-
mial kernel function discovers a flexible tube in a n-dimensional space (n depends on the
number of covariates) that best fits the data with a polynomial line [56]. MLP is one of the
most popular back-propagation algorithms used in artificial neural networks [57].

Six ML algorithms based on decision trees (DT) were included in the tests: RF regres-
sor [58], extra trees regressor (ETR) [59], CatBoost [60], AdaBoost [61], LightGBM [62], and
gradient boosting (GB) [63]. RF is a bagging algorithm where subsamples of the training set
are randomly used to construct multiple DTs and the DTs are then combined according to
the mean of their predictions. In contrast to RF, ETR builds DTs based on the whole training
set and nodes are random splits. CatBoost, AdaBoost, LightGBM, and GB represented
the boosting family of machine learning algorithms, where DTs are sequentially created
and reweighted to improve prediction performance [64]. A key difference among these
boosting algorithms is their training speed and data splitting methods at DT nodes.

As a hybrid approach to model building with ML, a voting regressor was also included
in the test with the different FS methods. A voting regressor is an ensemble meta-estimator
algorithm that fits several base regressors and takes the mean of individual predictions
from the base learners to form the final predictions. The base regressors in this study
were the nine ML algorithms above, which were then ranked according to R2 score on the
validation set (20%). Validation ranking was used to weight respective model predictions
in the final prediction.

2.5. Model Evaluation

Our experimental design began with applying six FS methods to the covariate stack
for each target soil property and sample set, which were the individual fields plus all fields
combined. The covariate stack without FS was the control treatment. Models were then
built from ten ML algorithms for each of those treatments. Thus, 70 ML models were
created per sample set and soil property, resulting in 3780 maps. For field J, maps were not
created for BpH because all lab measurements were 7.1 (Table 1).

To simplify the evaluation process and interpretation of results, three stages of evalua-
tion metrics were applied to identify the highest performing models and focus attention
on them in subsequent stages (Figure 2). First, the models were evaluated by the R2 of
10-fold cross-validation (CV). The ten models with the highest CV-R2 score were selected
for subsequent analysis based on a new metric introduced in this study to measure the
robustness of the model. Here, model robustness is defined as the likelihood the model is
not overfit to the training data, which was objectively evaluated by comparing the R2 for
goodness-of-fit with the R2 for CV. The five models exhibiting a likelihood to be robust were
subsequently evaluated for prediction performance. The model with the highest CCC [51]
based on independent validation (IV; 20% of samples) was determined to be the optimal
model for the respective field and soil property.
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Figure 2. Evaluation process for selecting optimal models from the combinations of FS and ML
algorithms tested. This process was applied to each sample set, which included five soil properties
for ten individual fields and all fields combined.

These evaluations were conducted separately for each sample set and soil property.
The effect of FS method on results was evaluated by comparing the difference between the
performance of the selected models produced with FS and the models produced without
FS. Each field in this study contained different quantities of samples for supporting the
modelling process due to varying field sizes and sample densities. These field characteristics
were considered for potential correspondence with patterns observed in the performance
of methods evaluated.

2.5.1. Cross-Validation

CV is a resampling method that provides a structure for creating several training and
validation splits within the same dataset. In a 10-fold CV, ten models are fitted, with each
fit being performed on a training set composed of 90% of the whole training set, with the
remainder 10% used as a hold-out set for validation. The result of the CV is summarized as
the mean performance metric across the 10 folds, which in this case was R2. As different
sets of samples are used in each fitting, CV enables a comparison of stability for covariates
selected as well as the generalization power of different ML algorithms [64–66].

High variability of performance for ML models trained with different folds in the CV
process would indicate that the covariate selection is unstable or the models are being over
fit [67]. A properly fitted model should be consistent in prediction performance regardless
of how the data is split between training and validation sets [68]. Although the mean of
the folds is commonly used to assess performance from CV [69], the mean of the folds
does not describe the variability of results. Instead, there may be value in examining the
standard deviation of CV results. While this evaluation would measure model stability
from the perspective of changing training data, it would not necessarily differentiate issues
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of overfitting. If the models in all folds are consistently over fit, there is a potential for both
the mean R2 to be large and the standard deviation of the R2 results to be small.

2.5.2. Robustness Ratio

One of the clearest indicators for overfitting is the decline in R2 from the original
goodness-of-fit to the R2 from CV. The multiple folds in CV help protect against a result
being a one-time anomaly. If the R2 results from the CV are generally much lower than
the R2 from the goodness-of-fit for the original model, this would indicate that the R2 for
the original model was overly optimistic for generalization due to the model being overly
fit to the training data. Neither the R2 from the goodness-of-fit nor CV alone determine
overfitting. A model could perform well or poorly without being overfit. Therefore, to
evaluate the likelihood that a model is overfit—which is to say the likelihood that prediction
performance will be robust regardless of the data used for training—a metric is needed that
compares goodness-of-fit with CV. For this purpose, a robustness ratio (RR) is proposed
(Equation (1)), whereby the ratio between a 10-fold CV’s R2 score and the goodness-of-fit
(training R2 score) is used to quantify the dependence of model performance on the training
set used to construct the model (i.e., overfitting).

RR =
mean R2 o f CV

R2 o f goodness− o f − f it
(1)

2.5.3. Independent Validation

To test for prediction performance, the respective models are evaluated by IV using
CCC instead of R2. The major difference between CV and IV is that CV does not directly
evaluate the performance of the model used to make predictions because a different model
is created with every fold of CV. CCC is used for IV instead of R2 because in the final
assessment of prediction performance, the relationship of interest is that between the
observed and the predicted. The relationship between observed and predicted should be
evaluated against a 1:1 line, not a new model fit to the relationship between observed and
predicted [70].

3. Results
3.1. Quantity of Covariates Selected

All FS strategies accomplished a decrease in the quantity of covariates to be used in
modelling relative to the covariate stacks without FS (Figure 3). Full covariate stacks had a
range of 741 to 1049 covariates among different sample sets, depending on the availability
of imagery covering the sample set area. Overall, FS methods consistently reduced the
covariate stack to less than half of the original quantity. The largest reduction in covariate
stack size was typically made by BorutaShap-FS. An exception to this was for BpH, where
the median quantity of covariates for Lasso-FS was five, while this value was nine for
BorutaShap-FS.

Lasso-FS and Hybrid-FS followed BorutaShap-FS in terms of yielding the largest
reduction in covariate stack size. These two methods output similar quantities of covariates
among soil properties except for K and NO3

−. The Lasso-FS method resulted in a much
smaller median quantity of covariates selected (20) compared to Hybrid-FS (128) for NO3

−.
For K, Lasso-FS and Hybrid-FS had medians of 58 and 37 covariates selected, respectively.
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Figure 3. Quantities of covariates that each FS method selected per soil property. The variability
shown was from differences in the quantity of covariates selected for different sample sets, including
the sample set of all fields combined.

ANOVA-FS, Combined-filter-FS, and RF-FS resulted in less reduced covariate stacks.
For Combined-filter-FS, the median quantity of covariates was around 153 for all soil
properties, while the quantity of covariates selected varied by soil property with RF-FS
and ANOVA-FS. The median quantity of covariates ranged from 95 (SOM) to 169 (NO3

−)
for RF-FS. The highest variability in quantity of covariates selected among different soil
properties was with ANOVA-FS as the median covariate quantities ranged from 40 (NO3

−)
to 200 (K). The quantity of covariates selected was also highly variable with ANOVA-FS
across the different sample sets.

3.2. Cross-Validation

Models built from covariate stacks reduced by FS methods mostly performed better
in cross-validation than those built without FS (Figure 4a) for all soil properties. No-FS
had a value of zero for the median CV-R2 for all soil properties except for SOM, which
was 0.31. However, models built from covariate stacks selected by Combined-filter-FS
were generally even worse than No-FS for CV-R2. NO3

− was particularly challenging
for producing predictive models, where the median CV-R2 for No-FS and all FS methods
was zero.

Figure 5a shows the frequency of models from different FS methods that advanced
through the first step of the evaluation. Differences between No-FS and FS methods were
highlighted because models with No-FS in this step were less frequently chosen by the
criteria of being in the top ten of CV-R2 for the respective sample sets and soil properties.
RF-FS, Lasso-FS, and BorutaShap-FS produced the most frequently chosen models for SOM.
However, ANOVA-FS produced the most frequently selected models for most other soil
properties. P was unique in that Lasso-FS produced the most top performing models in
terms of CV-R2, with ANOVA-FS producing the second most top performing models.
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Figure 4. Comparisons of performance for models produced from the different FS treatments, evalu-
ated by (a) CV-R2 and (b) RR. Except for Combined-filter-FS, FS methods consistently outperformed
the No-FS treatment. For the most part, evaluation of models by RR followed similar patterns to
those of CV-R2, which suggests the higher CV-R2 may also tend to have smaller differences between
the goodness of fit R2 and CV-R2.
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Figure 5. Frequency of the models from the respective FS methods, including No-FS, that advanced
through (a) the first step (highest CV-R2) and (b) second step (highest RR among the models from
the first step) of the evaluation. The shifts in distribution of models advancing through the model
evaluation process indicates which FS methods tended to produce models with high goodness-
of-fit scores but were determined by RR to be more over-fit than models produced by other FS
methods. For example, ANOVA-FS tended to have many models selected in the first step that were
disproportionately removed in the second step.

3.3. Robustness

Patterns between CV (Figure 4a) and RR (Figure 4b) were similar, which suggests
stronger CV performance could be connected to RR performance (Figure 6). The correlation
between these metrics was evaluated (r = 0.9) and CV performance appeared to indicate
a minimum RR value. However, several models had higher RR scores than the CV-R2

score might predict. Those models with higher RR scores were those that had less of a
decrease in R2 from the original model training compared to the CV, which would indicate
less overfitting.
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Figure 6. Relationship between CV-R2 and RR for the entire sample set. The red dashed line
indicates the 1:1 line between these two metrics. RR and CV-R2 were positively correlated and CV-R2

performance appeared to indicate a minimum RR value. Models that appear above the 1:1 line in this
graph are those whose R2 score decreased less than would be expected given the dominant trend of
RR usually being equal to CV-R2. For example, a model with a CV-R2 of 0.5 and an RR of 0.75 indicates
that the R2 only declined by 25% from training goodness-of-fit to CV, which suggests less overfitting
than most models with a CV-R2 of 0.5 that usually had a decline from training goodness-of-fit of 50%.

In the second step of the evaluation, models from some FS methods remained com-
petitive, while others were more often cut due to lower performance in terms of RR. The
difference between Lasso-FS and other FS methods became larger for SOM and BpH in
this second round of criteria, suggesting that Lasso-FS methods were producing models
that were less overfit. Although ANOVA-FS had the highest frequencies in the first step
for K, BpH and NO3

−, the difference between ANOVA-FS and other FS methods became
smaller. While models produced from ANOVA-FS-based covariate stacks were still the
most frequently chosen for those soil properties, this pattern also indicates that some of the
ANOVA-FS-based models with high CV-R2 were not as robust as models coming from other
FS methods. All remaining models from Combined-filter-FS were eliminated in this second
step of the evaluation process. However, some of the few models produced from No-FS
covariate stacks that passed the first step, also passed this second step for K and BpH.

3.4. Independent Validation

Models produced from covariate stacks reduced by FS methods outperformed models
built from covariate stacks without FS in most cases (Figures 7 and 8). IV-CCC scores for the
final models were higher than No-FS models for nine (SOM), eight (K), six (P), five (BpH),
and all (NO3

−) sample sets. For SOM, Lasso-FS and Hybrid-FS were the most common
optimal FS methods among the sample sets. There was no single optimal FS method
among the sample sets for K. However, BorutaShap-FS, ANOVA-FS, RF-FS, Lasso-FS were
commonly optimal FS methods among the sample sets.
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Figure 7. Comparisons of No-FS models and the models with optimal combinations of FS and ML for
SOM, K, and NO3

−. There are six bars per sample set for each soil property. Sample sets are labeled
and ordered by the quantity of samples in the set. The first three bars represent the evaluation metrics
for No-FS models, while the latter three bars are for the optimal FS-ML combination. The models
from both categories are obtained by applying the evaluation procedure (Figure 2). Annotations in
plain and bold text for each corresponding sample set are the No-FS models (plain) and the optimal
FS-ML combination models (bold). Out of eleven sample sets tested, IV-CCC scores for models
that utilized FS were higher than the No-FS models for nine (SOM), eight (K), and eleven (NO3

−)
sample sets.
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Figure 8. Same comparisons as Figure 7 are shown here for P and BpH. Optimal combinations of FS
and ML outperformed No-FS for six (P) and five (BpH) sample sets, out of the eleven sample sets
tested. These results for improvement of model performance with FS were lower compared to SOM,
K, and NO3

−.

Lasso-FS and ANOVA-FS were the most frequently chosen FS methods among the
sample sets for P and NO3

−. Although ANOVA-FS was the chosen FS method for eight
of the sample sets for NO3

−, the models built from ANOVA-FS usually showed signs
of overfitting because these models had CV-R2 and RR of zero. Similar situations were
observed for the other soil properties and sample sets where a model built from an ANOVA-
FS-based covariate stack was identified as the best performing model. These sample sets
typically had relatively smaller quantities of samples. With ANOVA-FS, sample sets
with larger sample quantities (e.g., field D for K, all fields for P and NO3

−) usually had
relatively higher performance for CV-R2 and RR compared to the sample sets with smaller
sample sizes.

ML algorithms that use decision tree approaches (i.e., ETR, boosting algorithms, and
RF), paired with the FS methods in this study, generally built the top performing models
for all soil properties except NO3

−. In the case of NO3
−, boosting ML and ETR led to

the optimal models in one and two sample sets, respectively, without considering the
sample sets with obvious indication of overfitting (RR = 0). For P, the decision-tree-based
ML algorithms produced the optimal models for one sample set (ETR) and eight sample
sets (boosting). Boosting and ETR were optimal models in seven and three sample sets,
respectively for both K and BpH. Similarly, boosting algorithms yielded optimal models in
seven sample sets for SOM, while RF and ETR were optimal ML models in two and one
fields, respectively.
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3.5. Effect of Sample Quantity

The effect of sample quantity on the covariates selected and model performance was
investigated for the quantities in the original sample sets, which were based on separate
fields and all fields combined. Although a general pattern of more covariates being selected
by FS methods with larger sample sets could be observed, this correlation was stronger
for some FS methods than others. This relationship was strongest for Combined-filter-FS,
Lasso-FS, and BorutaShap-FS, while RF-FS, ANOVA-FS and Hybrid-FS had weaker correla-
tions. For Combined-filter-FS, the quantity of covariates selected tended to increase with
increasing sample quantity (0.51 ≤ r ≤ 0.72 for different soil properties). While the range
of r values was from 0.07 (BpH) to 0.87 (K) for Lasso-FS, BorutaShap-FS had a range from
0.25 (P) to 0.60 (SOM). Intriguingly, RF-FS had a negative relationship between quantity of
samples and covariates selected for SOM (r = −0.56). For the other soil properties, there
was no relationship for RF-FS.

IV-CCC results appeared to be higher with more samples in a sample set, but this
relationship was weakly correlated for each of the FS methods (0.09 ≤ r ≤ 0.14). Examples
of situations that disrupted this potential pattern can be seen in Figures 7 and 8, where
some fields with smaller quantities outperformed fields with larger sample quantities. For
example, field J with 63 samples had the highest IV-CCC for SOM (0.96) among all sample
sets even though that field had one of the smaller quantities of samples. However, the
sample set consisting of samples from all individual fields combined was usually among
the highest for all metrics. Nonetheless, a noteworthy observation about the all fields
sample set was that FS did not substantially affect the scores of evaluation metrics in the
final model compared to its counterpart with No-FS. Besides, small sample quantities
seemed to contribute to low RR and CV for most sample sets for NO3

−. Sample quantities
smaller than 140 was not enough to create models with relatively high CV and RR for
NO3

−, while this situation was less common for the other soil properties.

3.6. Comparison of Spatial Patterns in Maps

Digital soil maps developed with the full covariate stack tended to be smoother than
the maps created by using FS with exceptions in some fields (e.g., SOM map in field D).
Despite differences observed in the evaluation of the models’ prediction performance, all
maps produced from covariate stacks reduced by FS had similar patterns to their No-FS
counterparts. Figure 9 presents some examples comparing maps developed with and
without FS.
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Figure 9. Examples of maps created by the optimal models built from covariate stacks with (a) No-FS
and (b) FS. Applying FS generally led to less smooth maps compared to maps created with full
covariate stacks. However, there were exceptions such as the SOM map shown in these examples.
Maps shown reflect soil fertility levels present on the sampling dates: NO3

− for field F (8 June 2019),
P for field C (12 July 2019), K for field H (25 June 2018), BpH for field A (29 June 2020), and SOM for
field D (16 July 2019).

4. Discussion
4.1. Optimal FS Strategies

Although DSM has become a common practice for creating soil information, its reliance
on predictive models creates skepticism about the accuracy and robustness of digital soil
maps [70]. In this study, use of a three-tiered evaluation approach that incorporates a
novel metric for robustness (RR) beyond the commonly used CV approach for evaluating
model performance. This process helped narrow the pool of possible models for desirable
characteristics of prediction power without being overfit. As determined by the evaluation
procedure, the optimal models outperformed the baseline models with No-FS.

Filter and hybrid strategies rarely produced the optimal models. ANOVA-FS, repre-
senting the filter strategy, frequently produced models with relatively high CV-R2 scores.
However, for many of the ANOVA-FS-based models the RR score indicated those mod-
els were overfit, especially for smaller sample quantities and certain soil properties (e.g.,
NO3

−). Although hybrid FS strategies have been found promising in other studies [14,26],
this was rarely the case in our study. The Hybrid-FS method in our study outperformed
other FS methods for only a few sample sets when predicting BpH and SOM. However,
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other researchers [26] have found promising results for hybrid-based FS methods for map-
ping SOM. Lower performance of the Hybrid-FS method in our study could be due to the
effect of combining correlation filter and RFECV to create the Hybrid-FS method.

Embedded and wrapper strategies were frequently the optimal FS methods. Better
performance of wrapper and embedded FS strategies in our study can be attributed to
their ability to capture non-linear data relationships [71,72], which are frequently found in
complicated soil-landscape relationships [12,73]. Most literature that has compared filter
FS strategies with embedded and wrapper strategies [11,26,27,74] also reached similar
conclusions. Wrapper and embedded FS strategies usually outperformed filter FS strategies
with smaller sample quantities [6,26,28,32,74]. The addition of bootstrapping to embed-
ded and wrapper FS strategies could also be effective in making these FS methods more
powerful relative to filter-based FS methods [75]. In our study, this was the case for the
wrapper-based BorutaShap-FS method where the learning object was the RF regressor,
which uses bootstrap samples in its inner dynamics.

4.2. Optimal FS-ML Combinations

Decision-tree-based algorithms (e.g., ETR, RF, and CatBoost) coupled with Lasso-FS,
RF-FS, and BorutaShap-FS frequently led to the optimal models. Some of the decision-tree-
based ML algorithms used in this study were based on bagging (i.e., RF) and boosting
(i.e., CatBoost, AdaBoost, LightGBM, and GB) techniques. Bagging is an advantageous
technique as it decreases the variance and improves the stability of predictions by com-
bining predictions from different decision trees [76]. Besides, both bagging and boosting
algorithms are less sensitive to sample size [77]. Boosting algorithms have another ad-
vantage that they iteratively attempt to improve prediction accuracy, which give boosting
algorithms the ability to self-analyze the prediction errors and improve the predictions [78].

In the DSM literature, decision-tree-based algorithms have been compared frequently
but with mixed results. Meier et al. [79] compared classification performance of eight
ML algorithms (e.g., SVM with linear kernel, SVM with polynomial kernel, XGboost,
and RF) with a hybrid-based FS method, which was a combination of correlation filter
with a threshold of r = 0.98 and RFE for classifying soil types. They found that XGboost
usually responded better to the hybrid-based FS than the SVM with linear kernel. Similarly,
Chen et al. [26] showed XGBoost ML responded slightly better to different FS categories
(i.e., filter, hybrid, embedded, and wrapper) than RF for modelling SOM. In contrast,
Xiong et al. [3] found that bagging-based ML can perform better than boosting-based ML
as they demonstrated RF performed slightly better than a boosted regression tree ML with
wrapper-based FS methods.

The ML algorithms that rarely led to the optimal models, regardless of the FS method
with which they were paired, were the classical ML algorithms such as SVR, MLP, and
lasso regressor. MLP is known to be vulnerable to poor performance with small quantities
of sample points and needing thousands of samples to produce reliable models [70,80].
Given the relatively small quantity of samples that are common for field-scale soil mapping,
as was the case in this study, poor performance of MLP was expected. Likewise, SVR
can be more prone to overfitting with fewer samples relative to decision-tree-based ML
algorithms [70]. This may have contributed to SVR’s mediocre performance for many of the
sample sets tested. Lasso regressor was never a part of the optimal FS and ML combinations
among sample sets and soil properties. The lower performance of this ML algorithm could
be due to the presence of complex relationships between covariates and target variables
found in our datasets, which could not be explained by a linear model like lasso regression.

5. Conclusions

Six types of FS methods from four categories (filter, wrapper, embedding, and hybrid)
were compared for their effectiveness in selecting relevant covariates from an exhaustive
set of 1049 environmental covariates. These FS methods were tested for building ML-based
models predicting the soil fertility properties SOM, K, P, BpH, and NO3

− in ten crop
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research fields. In this context, a metric of robustness was proposed to assist in model
evaluation. The new robustness ratio (RR) was designed to measure the reliance of model
performance on the samples used for training as an indicator of over-fitting. Using RR in
model evaluation process made it easier to find optimal combinations of FS and ML that
can enhance DSM performance over models built from full covariate stacks.

Models produced from covariate stacks reduced by FS methods were less likely to be
overfit and tended to have better performance in IV-CCC. Although there was no single
optimal FS method among sample sets or soil properties, wrapper and embedded FS strate-
gies produced the optimal model more frequently than the hybrid and filter FS strategies.
The Combined-filter method was the only FS method that had worse performance than
No-FS-based models for most cases. Decision-tree-based ML algorithms (e.g., ETR, GB,
and RF), paired with the FS methods, usually built the top performing models for all soil
properties. However, predicting NO3

− was particularly challenging compared to the other
soil properties regardless of FS method and ML algorithm used.
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