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Abstract: The partial replacement of chemical fertilizer with straw return is considered an effective
method for improving the accumulation of organic matter and soil fertility, but the characteristics of
soil nitrogen fixation and mineralization in a double-cropped rice paddy system are unclear. Based
on a 12-year field experiment, we conducted a waterlogged incubation experiment for 49 days to
determine the effect of long-term straw return combined with reducing chemical fertilizer application
on the dynamic changes of mineralized soil nitrogen (N) content and mineralized N rate under the
treatments, including NPK (chemical fertilizers application with straw removal), SBR (straw burned
return), and SR (straw return). Results showed that, compared with SBR and NPK, SR significantly
increased available nitrogen by 7.4% and 16.5%, respectively, due to the higher ammonium nitrogen
and nitrate nitrogen, as well as the total carbon, available phosphorus, and slowly available potassium,
suggesting that it could stock a sufficient nitrogen source. During the incubation period, the amount
of N mineralization was relatively higher under SR than under SBR and NPK treatments, especially
during the later mineralization time, whereas there was no difference in the N mineralization
rate. In addition, SR significantly increased soil cumulative N mineralization and N mineralization
potential. However, SBR significantly decreased the soil mineralizable N ratio compared with
SR and NPK, which may result in a worsening of the N mineralization potential. The results
indicated that long-term straw return combined with reducing chemical fertilizer application could
significantly improve the N supply capacity of paddy rice field soil to better coordinate the soil N
supply and immobilization.

Keywords: long-term straw return experiment; double-cropped rice paddy system; substitution of
partial chemical fertilizer; nitrogen mineralization

1. Introduction

Nitrogen (N) is the most important nutrient that limits the productivity of agroecosys-
tems, and more than 90% of the nitrogen in soil is in the form of organic nitrogen [1].
Only a small part of water-soluble organic nitrogen in soil can be absorbed and utilized by
plants directly, and most organic nitrogen can be absorbed and utilized by plants only after
mineralization. Soil organic nitrogen mineralization provides available nitrogen for plants,
which determines the soil nitrogen supply capacity to a great extent [2]. Factors such as crop
residue management, fertilizer application system, and fertilizer and soil characteristics
affect the microbial biomass and activity as well as microbial community structure and
functioning [3], which, in turn, affects the process of soil organic nitrogen mineralization
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and its mineralization capacity. In particular, different residue retention practices result in
significant changes in the properties and environmental conditions of paddy soils, which
may affect the mineralization capacity of soil organic nitrogen [4]. Therefore, it is important
to deepen the understanding of soil organic nitrogen mineralization to optimize the soil
nitrogen supply in the paddy rice agroecosystem and prevent environmental nitrogen loss.

In farmland ecosystems, fertilization is a common measure for regulating the nitrogen
supply of farmland soil and the nitrogen nutrition of crops [5]. Increasing nitrogen fertilizer
can enhance the net nitrogen mineralization rate of soil nitrogen, but excessive nitrogen
fertilizer will inhibit the mineralization of soil organic nitrogen [6]. Long-term excessive
fertilization leads to constraints on increased crop yields, soil fertility, and the rate of
nitrogen transformation in paddy fields. It is recognized that the combined application
of nitrogen fertilizer and organic matter (such as crop residue and livestock manure) is
considered one of the most sustainable and economical methods to coordinate the nitrogen
supply and rice production and sustainable agricultural practices to replenish soil nitrogen
stocks [7,8]. Generally, crop residue retention can increase the organic nitrogen content
of the soil by more than 70%, especially dissolved organic nitrogen [9]. Straw returning
promotes the mineralization and decomposition of native soil organic matter to form
soluble organic nitrogen [10]. Meanwhile, straw contains various organic compounds,
some of which can be converted into small molecules of soluble organic nitrogen during
mineralization and decomposition [7]. In addition, the partial replacement of chemical
fertilizer with in situ crop residue retention demonstrates significantly increased content of
soluble organic nitrogen and microbial nitrogen in soil, as well as the unstable nitrogen pool,
and enhances the mineralization process of nitrogen transformation, providing inorganic
nitrogen sources for plant growth [11,12]. However, rice straw burning has always existed in
rice production, especially in multi-season rice rotation areas, such as the double-cropping
system. Thus, it is particularly necessary to compare the advantages and disadvantages
of returning rice straw to the field and rice straw burning to determine the feasibility of
returning rice straw to the field based on the efficient supply of soil nutrients.

Flooded incubation, proposed by Warning et al. [13], was suggested as an extremely
important biological method to study soil nitrogen mineralization. This method can better
simulate the water status of flooded soil, and it does not need to consider aeration and
strict water control in the incubation process, so it is widely used in the study of nitrogen
mineralization in paddy soil [14]. Submergence incubation creates conditions that are
suitable for organic nitrogen mineralization and inhibits the activity of nitrifying bacteria.
The final product of mineralization is ammonium nitrogen, and there is no volatilization
loss under airtight conditions [15]. Short-term incubation (around 2 months) of soil was
suggested as a simpler, faster, and more practical method for N mineralization [16]. More
importantly, the nitrogen released by submerged incubation can not only represent the
nitrogen released from flooded paddy soil but also reflect the nitrogen uptake of crops.

Many studies have reported that the effects of reduced inorganic fertilizer application
with in situ actual crop residue retention on rice yields [17], N fertilizer efficiency [18],
and soil fertility [19] had positive effects. However, little information exists regarding
the effects of long-term straw application on the soil nitrogen mineralization in a double
rice-cropping system in subtropical China. Thus, the aim of the present study was to
improve the understanding of N mineralization in response to different rice straw practices
under equal nutrient application that have been applied to the experimental site for the
past 12 years.

2. Materials and Methods
2.1. Field Site

The long-term straw returned double-cropping rice field experiment was conducted
at the National Soil Fertility Monitoring (NSFM) site, located in Yangxi Village, Wenzhen
Town, Jinxian County, Jiangxi Province, China (28◦20′7.14′′ N, 116◦5′29.73′′ E). The area
has a subtropical monsoon climate. The annual precipitation is 1600–1800 mm. The annual
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frost-free period is 291 d. The average annual sunshine duration is 1900.5 h, and the
average annual temperature is 17.5 ◦C. The paddy soils of the site are Quaternary red
clay developed paddy soils with moderate soil fertility. The soil properties are 5.48 pH,
19.8 g kg−1 total carbon, 2.27 g kg−1 total nitrogen, 126.0 mg kg−1 alkaline hydrolysable-N,
31.4 mg kg−1 available phosphorus, and 97.9 mg kg−1 available potassium contents.

2.2. Experimental Design and Soil Collection

Details of the long-term field experimental design, chemical fertilizer application, and
nutrient content of straw and straw ash have been described in Huang et al. [20] and in
Table 1. In brief, 4 treatments with 3 replications (comprising 12 plots) were established in
2010 as follows in the field experiments. (1) CK, no chemical fertilizers application with
straw removal as control; (2) NPK, chemical fertilizers application with straw removal;
(3) SBR, straw burned return with reducing chemical fertilizers; (4) SR, straw return with
reducing chemical fertilizers. After the early and late rice harvests of each season, rice
straw and straw ash were returned to the field in situ as the base fertilizer for the next
season, respectively. The weight of rice straw (straw ash) input to the farmland per season
was calculated based on a grain to straw ratio of 1:1 and a straw burning factor of 85.72%.
The nutrient content was calculated based on the results of its dry sample measurement
and the final converted straw input to the farmland. The three fertilization treatments had
the equal N, P, and K nutrients input, and any insufficient nutrient content of N, P, and K
from straw and straw ash was supplemented by chemical fertilizers (containing N, P2O5,
and K2O). The total application amount of nitrogen, phosphorus (P2O5), and potassium
(K2O) for early rice were 165, 75, and 150 kg ha−1, and for late rice, they were 195, 87.75,
and 175.5 kg ha−1, respectively. The sources of inorganic N, P, and K fertilizers were urea,
calcium magnesium phosphate, and potassium chloride, respectively.

Table 1. Nutrient input from chemical fertilizers and organic manure (straw or straw ash) in treat-
ments (kg ha−1).

Season Treatment N P2O5 K2O

Fertilizer Organic Manure Fertilizer Organic Manure Fertilizer Organic Manure

Early rice CK 0 0 0 0 0 0
NPK 165.00 0 75.00 0 150.00 0
SBR 163.00 2.00 73.00 2.00 77.00 73.00
SR 116.40 48.60 72.00 3.00 75.00 75.00

Late rice CK 0 0 0 0 0 0
NPK 195.00 0 87.80 0 175.50 0
SBR 193.06 1.94 81.00 6.80 60.00 115.50
SR 143.00 52.00 78.80 9.00 63.00 112.50

CK: no chemical fertilizers application with straw removal; NPK: chemical fertilizers application with straw
removal; SBR: straw burned return with reducing chemical fertilizers; SR: straw return with reducing
chemical fertilizers.

Soil samples were taken to 0.2 m depths from 5 points randomly selected within
each plot after the rice harvests on 25 October 2021. All samples were naturally air-dried
and sieved through a 2 mm screen. The soil parameters, including total carbon, available
nitrogen, ammonium nitrogen, nitrate nitrogen, available phosphorus, available potassium,
and slowly available potassium of samples from each plot, were analyzed by following the
method of Bao [21]. Total nitrogen was determined by the Kjeldahl method.

2.3. Soil Nitrogen Mineralization Determination

Soil N mineralization was carried out by constant temperature micro-incubation in
airtight plastic jars under dark conditions without any added materials. Briefly, 10 g of
soil was placed in 300 mL plastic jars in which 20 mL of distilled water was added and
kept for 7 days under dark conditions to restart microbial activity. Each treatment had



Agronomy 2022, 12, 1767 4 of 10

three replicates. After 7 days of pre-cultivation, the rubber cap was covered tightly and
kept at a constant temperature of 25 ◦C. Samples were collected on the 7th, 14th, 21st,
28th, 35th, 42nd, and 49th d during the incubation period to determine the extractable
ammonium nitrogen (NH4

+−N). In brief, 50 mL 2 M KCl solutions were added to the fresh
soil, then shaken at 200 rpm for 1 h, filtered with filter paper, and the NH4

+−N content was
measured using a Continuous Flow Analyzer (AA3, Bran + Luebbe, Hamburg, Germany).

N mineralization rate was calculated by the following equation [22,23]:

Aamm = C [NH4
+−N]i + j − C [NH4

+−N]i (1)

Ramm = Aamm/∆d (2)

∆d = di + j − di (3)

where Aamm is the amount of NH4
+−N mineralization in a certain incubation time (mg kg−1);

C [NH4
+−N]i and C [NH4

+−N]i + j are the contents of soil NH4
+−N on day i and day i + j

(mg kg−1), respectively; Ramm is ammoniation rate (mg kg−1 d−1); ∆d is the sampling
interval, day (d); di is the initial time of incubation, di + j is the end time of incubation.

The N mineralization potential and mineralization rate constants were calculated by
the first-order reaction kinetic model formula:

Nd = N0 (1 − e−kd) (4)

where Nd is soil mineralization accumulation (mg kg−1), and N0 is N mineralization
potential (mg kg−1); K is the mineralization rate constant (d−1); d is the incubation time
(day). The parameters N0 and k of the first-order reaction kinetic model of different
treatments are obtained by fitting the measured data of ammonium nitrogen accumulation.

2.4. Statistical Analysis

Data were analyzed using SPSS 19.0 (SPSS Inc., Chicago, IL, USA), and the means of
the treatments were examined by the Duncan test at p = 0.05 probability level.

3. Results
3.1. Soil Properties

Long-term straw return with reducing chemical fertilizers had positive effects on
soil properties (Table 2). Compared to the NPK and SBR treatment, SR significantly
increased the available nitrogen by 7.4% and 16.5%, respectively, which was associated
with the highest ammonium nitrogen and nitrate nitrogen, with increases of 26.7~31.2%
and 30.7~38.5%, respectively. The pH and total nitrogen under SR and SBR treatments
were significantly higher than those under NPK and CK treatments. SR also significantly
increased total carbon, available phosphorus, and slowly available potassium; however,
SBR obtained the highest available potassium among the treatments.

Table 2. Soil physico-chemical properties under different long-term straw return treatments in
double-cropping rice fields.

Treatment pH TC
g kg−1

TN
g kg−1

AN
mg kg−1

NH4
+−N

mg kg−1
NO3−−N
mg kg−1

AP
mg kg−1

AK
mg kg−1

SAK
mg kg−1

CK 5.25 b 21.49 c 2.29 c 208.81 d 9.13 c 0.16 b 5.52 c 43.63 d 163.66 c

NPK 5.20 b 24.74 b 2.59 b 233.30 c 16.02 b 0.18 b 16.12 b 96.28 b 201.73 b

SBR 5.43 a 25.00 b 2.91 a 252.90 b 17.06 b 0.16 b 17.92 b 109.01 a 211.82 b

SR 5.45 a 28.60 a 2.99 a 271.70 a 23.28 a 0.26 a 22.22 a 83.02 c 220.04 a

Means followed by different letters for the season are significantly different at p < 0.05 level. CK: no chemical
fertilizers application with straw removal; NPK: chemical fertilizers application with straw removal; SBR: straw
burned return with reducing chemical fertilizers; SR: straw return with reducing chemical fertilizers. TC: total
carbon; TN: total nitrogen; AN: available nitrogen; NH4

+−N: ammonium nitrogen; NO3
−−N: nitrate nitrogen;

AP: available phosphorus; AK: available potassium; SAK: slowly available potassium.
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3.2. Dynamics of Soil Nitrogen Mineralization

The process of soil nitrogen mineralization was essentially the same for all the treat-
ments, and the accumulated mineralized nitrogen increased gradually with the prolon-
gation of incubation time. (Figure 1). During the whole incubation process, the order of
accumulated mineralized nitrogen content of each treatment from high to low is generally
SR, SBR or NPK, and CK. On the 14th, 21st, 42nd, and 49th days of the incubation, the
accumulated mineralized N in SR was higher than the other treatments, with the differences
reaching significant levels.
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Figure 1. Dynamics of N mineralization of different long-term straw return modes. Different lower-
case letters indicate significant differences (p < 0.05) among the treatments. CK: no chemical fertilizers
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burned return with reducing chemical fertilizers; SR: straw return with reducing chemical fertilizers.

The rate of soil nitrogen mineralization in each treatment gradually decreased as
the incubation time increased and leveled off after the 28th day of incubation (Figure 2).
The nitrogen mineralization rate of the three fertilization treatments was significantly
higher than that of CK, but overall there was no significant difference between the three
fertilization treatments. The nitrogen mineralization rate of SR was significantly higher
than that of SBR on the 14th day of incubation.

3.3. Cumulative N Mineralization and N Mineralization Potential

The accumulated mineralized nitrogen content and potentially mineralizable nitrogen
content of the three fertilization treatments on the 49th day were significantly higher than
that of the CK treatment (Figure 3). Among the fertilization treatments, the accumulated
mineralized nitrogen content and potentially mineralizable nitrogen content under SR were
significantly higher than that of SBR and NPK. However, there were no significant differ-
ences in cumulative mineralized nitrogen content and potentially mineralizable nitrogen
content between SBR and NPK, and cumulative mineralized nitrogen was lower under
NPK, though with no difference.
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Figure 3. Cumulative N mineralization and N mineralization potential of different long-term straw
return modes. Different lowercase letters indicate significant differences (p < 0.05) among the
treatments. CK: no chemical fertilizers application with straw removal; NPK: chemical fertilizers
application with straw removal; SBR: straw burned return with reducing chemical fertilizers; SR:
straw return with reducing chemical fertilizers.

3.4. Kinetic Characteristics of Soil Nitrogen Mineralization

A single-order exponential equation was used to fit the process of soil nitrogen miner-
alization, and good results were obtained that R2 was 0.871~0.922 with p < 0.05 (Table 3).
Compared with CK, three fertilization treatments significantly increased the k value. Both
SR and NPK treatment significantly increased the soil mineralizable nitrogen ratio by 0.54
and 0.53 percentage points, respectively, compared with SBR, and the soil mineralizable
nitrogen ratio of SBR was the same as that of CK.
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Table 3. Values of parameters obtained from fitting of the first-order reaction dynamic model in
fitting test at different straw return treatments.

Treatment
Mineralization Rate

Constant k
mg kg−1 d−1

Determination
Coefficients

R2

Mineralizable
Nitrogen Ratio

%

CK 0.09 a 0.871 * 4.99 b

NPK 0.11 a 0.922 * 5.56 a

SBR 0.11 a 0.858 * 5.03 b

SR 0.10 a 0.900 * 5.57 a

Means followed by different letters for the season significantly different at p < 0.05 level. * Denotes significant
correlation at p < 0.05. CK: no chemical fertilizers application with straw removal; NPK: chemical fertilizers
application with straw removal; SBR: straw burned return with reducing chemical fertilizers; SR: straw return
with reducing chemical fertilizers.

4. Discussion
4.1. Effects of Long-Term Straw Return on Soil Fertility Quality

Rice straw contains a large number of rich mineral nutrients, which will inevitably
increase the enrichment of soil surface nutrients after returning straw to the field and plays
an important role in improving soil nitrogen, phosphorus, and potassium nutrients [24,25].
Studies have shown that returning straw to the field can increase soil organic matter, and
improve soil fertility, thereby contributing to sustainable rice production [26]. Our results
showed that, compared with the beginning of the experiment, the soil nutrient content
increased in varying degrees after 12 years of long-term fertilization and straw returning
to the field. SR treatment was beneficial in increasing the content of soil organic carbon,
alkali-hydrolyzable nitrogen, NH4

+−N, NO3
−−N, and available phosphorus, suggesting

that stock soil N supply was sufficient. Lower pH may be the reason for the low content
of available nitrogen in CK and NPK treatments. It showed that returning straw to the
field based on reducing the application of chemical fertilizer was of great significance
to the improvement of soil fertility. The decomposed straw provides rich nutrients such
as carbon, nitrogen, phosphorus, and potassium for the soil, and the increased organic
matter promotes the activity of soil microorganisms and enzymes, which releases a large
number of nutrients and enhances their effectiveness [26–28]. However, the burning
of straw had no significant effect on soil fertility since straw burning wasted a lot of
biomass energy and nutrients, resulting in the loss of major nutrients and emitting a lot of
pollutants [29,30]. During open-burning of rice straw in the field, some N and S may be lost
due to volatilization, and nutrients in organic matter are rapidly converted into inorganic
N, P, K, Ca, and Mg, which can be rapidly lost by leaching and erosion [31]. Repeated
burning in the field results in a permanent reduction in total biological activity, in which
the bacterial population permanently diminishes by more than 50% [32].

Additionally, the content of available soil potassium in SR treatment was significantly
lower than that of SBR and NPK, which may be attributed to the absorption of the above-
ground plant, whereas the content of slowly available potassium was the opposite trend.
The reasons may be due to the fact that organic acids such as oxalic acid, citric acid, tartaric
acid, and malic acid produced by rice straw decomposition can promote the release of
mineral potassium, thus increasing the content of slowly available potassium in soil [33].
In summary, our results suggested that the use of straw returning to replace some chemical
fertilizers promoted the sustainable development of double-cropping rice production.

4.2. Effects of Long-Term Straw Return on Nitrogen Mineralization

In rice production, about 50% and 80% of the nitrogen absorbed by rice comes from
soil [34]. As the main component of soil nitrogen, only some small molecular organic
nitrogen can be directly absorbed and utilized by crops [35,36]. However, most organic
nitrogen must be converted into inorganic nitrogen by mineralization before it can be
directly absorbed and utilized by crops [37]. Therefore, the storage of soil organic nitrogen
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and its mineralization ability plays an important role in rice’s high yield and nitrogen-
efficient utilization. The process of soil nitrogen mineralization is affected by soil organic
matter and total nitrogen content [38]. We found that long-term fertilization, especially
straw replacement of part of chemical fertilizer, significantly increased soil cumulative
mineralized nitrogen and mineralizable nitrogen ratio, which were consistent with the
results of previous studies [18,25]. This was mainly related to the fact that returning straw
to the field replenishes a large amount of organic matter in the soil in the form of organic
fertilizer, indicating that the application of straw can obviously enhance the mineralization
of soil nitrogen and increase the content of soil active organic nitrogen. Long-term straw
returning to the field instead of partial fertilization can simultaneously increase the soil
nitrogen supply capacity and improve the nitrogen quality, while the soil substrate quality
without organic matter decreases, weakening its nitrogen supply capacity to a certain
extent. This explanation is consistent with Govaerts et al. [39], who reported that long-
term burning straw significantly reduced the potentially mineralizable N. The microbial
community and organic matter decreased immediately after burning straw, even hindering
weed growth, further reducing the input of organic matter into the soil.

Nitrogen mineralization potential is the maximum amount of organic nitrogen that can
be mineralized to inorganic nitrogen in soil under certain conditions, which characterizes
the potential of soil nitrogen supply. In this study, we found a high level of N mineralization
potential and mineral N content in the SR field soil (Figure 3), which indicated that continu-
ous straw replacement significantly enhances the nitrogen supply capacity of soil. Crop
residues are the major source of organic nitrogen for decomposers, which, in turn, produce
inorganic nitrogen and control the long-term availability of soil nitrogen [4]. Plant residues
and root exudates provide a continuous source of active nitrogen to maintain microbial
growth and stimulate mineralization [40]. In our study, the long-term application of rice
straw in situ to replace part of chemical fertilizer had the best effect in increasing the supply
capacity of soil mineralization nitrogen and improving the supply characteristics of soil
nitrogen. This should be related to the comprehensive effects of many factors, such as the
application of organic fertilizer directly supplying a large amount of active nitrogen to the
soil compared with straw burning and the single application of chemical fertilizer, which
can better enhance the microbial activity and increase the amount of nitrogen returned
to the field of rice stubble. Furthermore, the temperature is an important environmental
factor affecting soil nitrogen cycling processes, and the environmental temperature patterns
of straw returning to the field of early rice and late rice are quite different. Hence, the
temperature sensitivity of nitrogen mineralization characteristics of double-cropping paddy
soil under different straw returning methods needs to be further studied.

5. Conclusions

After 12 years of soil management, our study found that long-term straw return
management and fertilization had great influences on N sequestration and N mineral-
ization. Long-term partial replacement of chemical fertilizer with in situ crop residues
could significantly improve soil N sequestration and soil TN storage, mainly attributed to
the improvements in TN, AN, NH4

+−N, and NO3
−−N. During the incubation time, the

amount of N mineralization was significantly higher under SR in terms of the highest soil
cumulative N mineralization and its potential, indicating that the soil nitrogen supply of
SR was relatively more rapid and sustained. These results suggested that long-term straw
return with reducing chemical fertilizers not only improved the nutrient stocks and soil
fertility but also enhanced nitrogen supply capacity in double-season rice fields.
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