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Abstract: Autonomous navigation in greenhouses requires agricultural robots to localize and generate
a globally consistent map of surroundings in real-time. However, accurate and robust localization
and mapping are still challenging for agricultural robots due to the unstructured, dynamic and GPS-
denied environmental conditions. In this study, a state-of-the-art real-time localization and mapping
system was presented to achieve precise pose estimation and dense three-dimensional (3D) point
cloud mapping in complex greenhouses by utilizing multi-sensor fusion and Visual–IMU–Wheel
odometry. In this method, measurements from wheel odometry, an inertial measurement unit (IMU)
and a tightly coupled visual–inertial odometry (VIO) are integrated into a loosely coupled framework
based on the Extended Kalman Filter (EKF) to obtain a more accurate state estimation of the robot.
In the multi-sensor fusion algorithm, the pose estimations from the wheel odometry and IMU are
treated as predictions and the localization results from VIO are used as observations to update the
state vector. Simultaneously, the dense 3D map of the greenhouse is reconstructed in real-time by
employing the modified ORB-SLAM2. The performance of the proposed system was evaluated in
modern standard solar greenhouses with harsh environmental conditions. Taking advantage of
measurements from individual sensors, our method is robust enough to cope with various challenges,
as shown by extensive experiments conducted in the greenhouses and outdoor campus environment.
Additionally, the results show that our proposed framework can improve the localization accuracy of
the visual–inertial odometry, demonstrating the satisfactory capability of the proposed approach and
highlighting its promising applications in autonomous navigation of agricultural robots.

Keywords: real-time localization; multi-sensor fusion; dense 3D mapping; greenhouse; autonomous navigation

1. Introduction

Agricultural robots are widely used nowadays to provide people with an alternative
solution to conduct repetitive and high-risk operations in many indoor and outdoor agri-
cultural environments [1–4]. However, the ability of agricultural robots to navigate or
move autonomously has always been a challenge due to the complexity of agricultural
environments, especially the Global Positioning System (GPS)-denied greenhouses [5–9].
Localization, mapping, path planning and obstacle avoidance are the essential capabili-
ties for robots to navigate from the starting point to the destination autonomously and
successfully. Among them, localizing accurately and generating a globally consistent
map of the surroundings in real-time are critical tasks to improve the performance of
agricultural robots [10]. Therefore, it is crucial to propose an efficient and accurate real-
time localization and mapping method to meet the needs of autonomous navigation in
agricultural environments.
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Simultaneous Localization and Mapping (SLAM) is defined as a process for a robot to
localize itself without previous knowledge of the environment while constructing a map
of its surroundings [11]. SLAM is considered a key technology for robots in autonomous
navigation and the basis of augmented and virtual reality (AR and VR) applications [12].
SLAM can be divided into two main categories from the perspective of sensors: Lidar
SLAM and Visual SLAM. Lidar SLAM was widely studied and applied to many robotic
applications such as autonomous navigation over the past three decades [13,14]. However,
single-line Lidar SLAM can only provide two-dimension (2D) information about the envi-
ronments to robots, leading to the inadaptability for subsequent space obstacle avoidance,
and multi-line Lidar SLAM costs too much. Therefore, Visual SLAM has become a hot topic
in the mobile robot community, especially in the robot autonomous navigation research
domain, due to the low cost of the cameras and rich information from the images [15,16]. To
decrease the complication and expense of the autonomous mobile robots, Wang et al. [17]
presented an efficient, yet economic and simple localization and navigation method with
ORB-SLAM, one of the most successful SLAM systems based on Oriented FAST and Ro-
tated BRIEF (ORB) features for robot pose estimation [18] for indoor service robots. The
method achieves reasonable localization and navigation accuracy in indoor environments.
Xu et al. [19] proposed a Visual SLAM-based localization system that is suitable for a wide
range of applications in GPS-denied indoor environments. One of their contributions was
that their system can switch between the SLAM mode and localization mode flexibly as
needed while the robot is exploring the environment. Nevertheless, it is difficult for the
system to run in complex environments including severe illumination variations or highly
repetitive features. To deal with Visual SLAM problems for scenarios with dynamic objects,
Fang et al. [20] integrated semantic segmentation results into the ORB-SLAM2 framework
to remove moving objects, and, hence, reduce the impact of feature points mismatching
and finally improve the accuracy of pose estimation in a healthcare facility.

Traditional Visual SLAM methods only perform well in simple indoor environments
or urban environments with obvious structural features [21]. However, the accuracy
and stability of systems are highly influenced by outdoor environmental conditions such
as varying illumination, less texture, rough roads, etc. Therefore, multi-sensor fusion
approaches are studied extensively to compensate for visual defects and provide robots
with more accurate localization results. To improve the navigation performance in terms
of accuracy and continuity in urban environments, Afia et al. [22] proposed an integrated
low-cost navigation system by fusing information from an Inertial Measurement Unit
(IMU), a Global Navigation Satellite System (GNSS) receiver, a Wheel Speed Sensor and a
vision module based on monocular SLAM. The method decreases the drift when GNSS is
unavailable and improves the navigation solution when GNSS measurements are corrupted.
Alliez et al. [23] developed a multi-sensor wearable SLAM system for indoor and outdoor
localization in highly dynamic environments. They introduced a novel LiDAR–Visual–
Inertial–GPS fusion localization strategy via the Kalman Filter to compensate for the
lack of robustness of each sensor when applied to dynamic sceneries. Lin et al. [24]
proposed a framework with high-rate filter-based odometry and a low-rate factor graph
optimization. The framework takes advantage of measurements from LiDAR, inertial
and camera sensors and fuses them in a tight-coupled way. By tightly fusing different
types of sensors, the algorithm is robust enough to deal with various visual failures and
LiDAR-degenerated scenarios.

The SLAM-related technologies are also increasingly used in agricultural environ-
ments to achieve real-time localization, mapping and navigation in recent years [25]. To
create a fully autonomous mobile robotic platform and provide useful services to farmers,
Post et al. [26] proposed a cost-effective robotic rover platform based on Robot Operating
System (ROS). The results obtained from laboratory and field testing show the current
successes in applying the low-cost rover platform to the task of autonomously navigating
the outdoor farming environment. Focusing on farming outdoor navigation applications,
Galati et al. [27] used a modified version of the Extended Kalman Filter (EKF) to obtain a
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full 3D (6DOF) pose estimation by combining measurements from wheel odometry, IMU
sensor and visual odometry. Moreover, terrain classification is performed to allow the robot
to run safely during the navigation by checking the differences between the 2D occupancy
grid map generated by Lidar SLAM and the 3D point cloud map generated by Visual
SLAM. Experimental results are presented to validate the system and show its effectiveness
in relevant agricultural settings. Astolfi et al. [28] developed a navigation system applied to
vineyard environments by taking advantage of wheel encoders, IMU, GPS, and Lidar-based
SLAM and Adaptive Monte Carlo Localization (AMCL) algorithms. The system has an
accurate and robust pose estimation and the ability to build navigable maps despite a rough
and complex vineyard scenario.

However, unlike traditional agricultural environments, greenhouses are not only
characterized by large-scale unstructured and constantly changing illumination [4], but
also GPS is ineffective because of the shelter of greenhouses, and crops grow faster than
in outdoor agricultural scenes. Therefore, accurate and robust localization, mapping and
navigation for agricultural robots in unstructured, dynamic and GPS-denied greenhouses
remain challenges. In this paper, a state-of-the-art loosely coupled Visual–IMU–Wheel
odometry fusion method was proposed for robots to realize accurate and robust real-time
localization and mapping in greenhouses. The specific objective of this study involves the
following components:

• Estimating the pose of the robot singly using wheel encoders, IMU and Visual SLAM;
• Integrating the estimation result of each sensor into a loosely coupled multi-sensor

fusion framework to achieve accurate localization;
• Generating a dense 3D point cloud map of surroundings on the basis of fused pose

estimation output.

2. Materials and Methods
2.1. ROS-Based Real-Time Localization and Mapping System

The hardware platform of the proposed localization and mapping system mainly in-
cludes three parts: mobile robot platform, sensing system and computing unit. An overview
of the localization and mapping system is shown in Figure 1.

The mobile robot platform used in this study is Turtlebot2, which has an affordable
cost and open-source software. Turtlebot2 is built upon the mobile base called Kobuki,
with wide sharing sensors installed to achieve localization and navigation [29]. With two
driving wheels, two training wheels, and each wheel having a drop sensor, Turtlebot2 is
suitable to drive in both indoor and outdoor environments.

The sensing system consists of a stereo camera, an IMU, wheel encoders, and a depth
camera. The stereo camera is decided as the Intel Realsense T265, composed of two fisheye
lens cameras, an inertial measurement unit and an Intel visual processing unit (VPU). The
field of view (FOV) of the two fisheye lens cameras is close to hemispherical 163 ± 5◦. The
VPU fuses input from the fisheye lens cameras and the inertial measurement unit to provide
a highly accurate real-time position with low power consumption [30]. The IMU and wheel
encoders in the sensing system are directly provided by the Turtlebot2. The IMU includes a
three-axis digital gyroscope with a measurement range of ±250◦/s and the wheel encoders
are accurate enough. The Intel Realsense depth camera D435i is chosen to complete the
mapping task. The depth camera provides RGB and depth images of its surroundings with
a framerate of 30 fps [31]. The practical range of the depth camera can reach up to 16 m [32],
so it is helpful to create a visual 3D map of large-scale greenhouse environments.

The laptop used to run the multi-sensor fusion localization and mapping algorithms
is equipped with an Intel(R) Core (TM) i7-10870H, 2.20GHz CPU and 16GB RAM. The
algorithms are implemented in the Ubuntu 16.04 LTS operating system running ROS Kinetic
and the development language is C++.
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2.2. Wheel Odometry Measurement Model

According to the motion characteristics of the kinematic mobile robot, we construct
the motion model. Figure 2 shows the kinematic model of the two-wheel differential robot
for motion deduction [33,34]. Vl and Vr are the linear velocity of the left and right wheels,
respectively. L is defined as the length between the left and right wheel. Then, the linear
velocity V of the robot can be calculated by Formula (1)

V =
Vl + Vr

2
(1)

The angular velocity ω of the robot can be calculated by Formula (2)

ω =
Vr −Vl

L
(2)

The wheel odometry of the robot refers to the cumulative calculation of the position
and heading of the mobile robot at any time in the world coordinate system from the
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starting point O (0,0). During the time sample ∆t, the distance d the robot moves forward
can be calculated by Formula (3)

d = V ∗ ∆t (3)

Then, the distance the robot moves along the x-axis ∆dx and y-axis ∆dy can be calcu-
lated by Formula (4) and Formula (5), respectively.

∆dx = d ∗ cosθ = V ∗ ∆t ∗ cosθ (4)

∆dy = d ∗ sinθ = V ∗ ∆t ∗ sinθ (5)

θ is the angle between the motion direction of the robot and the positive x-axis. The
change in θ over time ∆t, ∆θ, can be calculated by Formula (6)

∆θ = ω ∗ ∆t (6)

The position (dx, dy) and heading θ of the mobile robot can be obtained through
continuously cumulative updates, as shown in Formulas (7)–(9).

dx = dx + ∆dx = dx + V ∗ ∆t ∗ cosθ (7)

dy = dy + ∆dy = dy + V ∗ ∆t ∗ sinθ (8)

θ = θ + ∆θ = θ + ω ∗ ∆t (9)
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2.3. State Estimation Model of IMU

Micro Electromechanical System (MEMS) is an industrial technology that integrates
microelectronics and mechanical engineering. Given the huge application potential of
MEMS technology in robotic fields, the research on MEMS-IMU has become a research
hotspot in the field of inertial navigation. The IMU is not only low-cost and small in
size, but also has high data output frequency and high short-term accuracy, which can
provide better prediction values for lower-frequency sensors and is suitable for use as a
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robot positioning sensor. MEMS-IMU typically consists of a three-axis accelerometer and
a three-axis gyroscope. The measurements of the accelerometer in the IMU are severely
affected by noises, and the drift of the displacements grows fast, especially when the robot
runs on bumpy ground [35]. Therefore, in this study, we use the three-axis gyroscope
provided by the base of the Turtlebot2 to estimate the rotational motion of the robot. As the
sampling rate of inertial sensors is significantly higher than the frame rate of cameras [36],
gyroscope measurements are pre-integrated between two visual frames as the rotation
predicted value.

Define ωt as the angular velocity provided by the gyroscope. Affected by noise,
gyroscope measurements commonly contain additive white noise nω and time-varying
bias bω , where white noise nω is modeled as Gaussian white noise and bias bω is modeled
as a random walk process [37–40], as shown in Formulas (10) and (11).

nω ∼ N
(

0, σ2
nω

)
(10)

.
bω ∼ N

(
0, σ2

bω

)
(11)

The angular velocity including noise can be calculated by Formula (12)

ω̂t = ωt + nω + bω (12)

Define fk and fk+1 as two consecutive camera frames between time-step tk and tk+1,
then the pre-integration of the gyroscope can be calculated by Formula (13)

R fk
fk+1

=
∫

t∈[tk , tk+1]
R fk

t exp
(
( ω̂t − nω − bω)

ˆ
)

dt (13)

The pre-integration value of the gyroscope is calculated in the inertial coordinate,
so the coordinate transformation is needed after pre-integration to obtain the rotational
estimation in the world coordinate.

2.4. Visual–Inertial Tightly Coupled SLAM

To correct the state estimation of wheel odometry and IMU, the Intel Realsense track-
ing camera T265 is used in the visual–inertial SLAM (VI-SLAM) module to acquire the
6DOF pose estimation of the robot. Realsense T265 is a commercial device that adver-
tises a highly accurate implementation of Visual–Inertial Odometry (VIO) in a single com-
pact and low-power onboard processing unit [41]. In addition to an IMU, the T265 con-
tains calibrated stereo fisheye cameras which provide accurate feature point tracking as
well as scale correction [42]. The Intel Realsense Software Development Kit (SDK) 2.0
(https://github.com/IntelRealSense/librealsense, accessed on 28 June 2022) is installed to
integrate the T265 streaming data into existing codebases and the ROS package realsense-ros
(https://github.com/IntelRealSense/realsense-ros, accessed on 28 June 2022) is used to make
the T265 usable under the ROS environment.

Like other visual–inertial SLAM algorithms, the VI-SLAM provided by T265 is mainly
composed of four parts: vision front-end, IMU front-end, back-end optimization and loop
closing. Feature extraction, feature matching and pose estimation of two consecutive
camera frames are completed in the vision front-end as traditional visual SLAM algorithms.
The pre-integration of IMU is calculated in the IMU front-end to acquire translation from the
double integral of accelerometer and rotation from the integral of gyroscope. A factor graph
containing both camera and IMU constraints is set up to minimize the pose estimation
error in the back-end optimization part. The estimated trajectory is corrected in the loop
closing part by checking whether the robot has revisited the previously visited area.

Unlike other visual–inertial SLAM algorithms, the VI-SLAM provided by T265 con-
tains an Open Visual Inference and Neural Network Optimization (OpenVINO) module.
OpenVINO is the Intel toolkit developed for odometry that employs convolution neural

https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/realsense-ros
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networks and data fusion with an IMU to improve the pose estimation. The OpenVINO
also contains loop closure verification, allowing to correct the current pose estimation using
previously visited locations [43].

Figure 3 shows the pose estimation process of the Intel RealSense tracking camera T265.

Agronomy 2022, 12, x FOR PEER REVIEW 8 of 22 
 

 

Stereo frame

IMU IMU pre-integration

IMU front-end

Vision front-end

Feature 
extraction

Stereo 
matching

Pose estimation or 
re-localization

New keyframe 
decision Stereo and IMU 

measurements

Add 
measurements 
to factor graph

Vision factors

IMU factors

Prior factors

Factor graph

Nonlinear 
optimization

Back-end

Pose 
estimation in 
greenhouses

Loop closing

Loop detectionLoop correctionBundle 
adjustment

OpenVINO in greenhouses

Convolution 
neural networks

Object detection
(trees, crops, etc)

Object
tracking

Object
3D localization

improve
V

 e 
r i

 f 
y

 
Figure 3. The pose estimation schematic diagram of the Intel RealSense tracking camera T265. 

2.5. Visual–IMU–Wheel Odometry Fusion with EKF 
A loosely coupled multi-sensor fusion framework based on EKF is used to fuse the 

pose estimations from wheel odometry, IMU and VIO for improved robustness and accu-
racy. As a treatment for the nonlinearity in the system, the EKF algorithm divides the 
system into a prediction step and an update step. The prediction step and update step are 
realized according to the motion model and observation model of the system. 

The general definition of the motion model is 𝑥 = 𝑓 𝑥 ,𝑢 + 𝑤  (14)

where xk+1 and xk represent the state variables at time k + 1 and k, respectively; uk+1 repre-
sents the control variables at time k + 1; f () represents the functional relation between xk+1 
and xk; wk+1 represents the motion noise at the time k + 1, and the motion noise is assumed 
to be Gaussian white noise with a mean value of 0, as shown in Formulas (15) and (16). 𝑤 ~𝑁(0,𝑄 ) (15)𝑄 = 𝐸 𝑤 𝑤  (16)

The general definition of the observation model is 𝑧 = ℎ(𝑥 ) + 𝑣  (17)

where zk+1 represents the observation variables at time k + 1; h () represents the functional 
relation between xk+1 and zk+1; vk+1 represents the observation noise at the time k + 1, and the 
observation noise is assumed to be Gaussian white noise with a mean value of 0, as shown 
in Formulas (18) and (19). 𝑣 ~𝑁(0,𝑅 ) (18)

Figure 3. The pose estimation schematic diagram of the Intel RealSense tracking camera T265.

2.5. Visual–IMU–Wheel Odometry Fusion with EKF

A loosely coupled multi-sensor fusion framework based on EKF is used to fuse the
pose estimations from wheel odometry, IMU and VIO for improved robustness and accuracy.
As a treatment for the nonlinearity in the system, the EKF algorithm divides the system
into a prediction step and an update step. The prediction step and update step are realized
according to the motion model and observation model of the system.

The general definition of the motion model is

xk+1 = f (xk, uk+1) + wk+1 (14)

where xk+1 and xk represent the state variables at time k + 1 and k, respectively; uk+1 repre-
sents the control variables at time k + 1; f () represents the functional relation between xk+1
and xk; wk+1 represents the motion noise at the time k + 1, and the motion noise is assumed
to be Gaussian white noise with a mean value of 0, as shown in Formulas (15) and (16).

wk+1 ∼ N(0, Qk+1) (15)

Qk+1 = E
[
wk+1wk+1

T
]

(16)
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The general definition of the observation model is

zk+1 = h(xk+1) + vk+1 (17)

where zk+1 represents the observation variables at time k + 1; h () represents the functional
relation between xk+1 and zk+1; vk+1 represents the observation noise at the time k + 1, and
the observation noise is assumed to be Gaussian white noise with a mean value of 0, as
shown in Formulas (18) and (19).

vk+1 ∼ N(0, Rk+1) (18)

Rk+1 = E
[
vk+1vk+1

T
]

(19)

Using the first-order Taylor expansion formula, the motion model is expanded into a
linear equation

xk+1 = f (x̂k, uk+1) +5 fx(xk − x̂k) + wk+1 (20)

where x̂k represents the posterior estimation of the state vector at time k;5fx represents the
Jacobian matrix of the motion model.

Using the first-order Taylor expansion formula, the observation model is expanded
into a linear equation

zk+1 = h
(

x̂−k+1

)
+5hx

(
xk+1 − x̂−k+1

)
+ vk+1 (21)

where x̂−k+1 represents the priori estimation of the state vector at time k + 1;5hx represents
the Jacobian matrix of the observation model.

The working flow of the EKF algorithm is as follows:
Step 1 and Step 2 are the prediction steps and Steps 3 to 5 are the update steps.
Step 1: Predict the priori estimation of the state vector.

x̂−k+1 = f (x̂k, uk+1) (22)

Step 2: Predict the covariance matrix of the priori estimation of the state vector.

P−k+1 = 5 fxPk5 f T
x + Qk+1 (23)

Step 3: Calculate the Kalman gain.

Kk+1 = P−k+15 hT
x

(
5hxP−k+15 hT

x + Rk+1

)−1
(24)

Step 4: Acquire posterior estimation of the state variables by updating the state
variables using the observation values.

x̂k+1 = x̂−k+1 + Kk+1

(
zk+1 − h(x̂−k+1)

)
(25)

Step 5: Update the covariance matrix to the covariance matrix of the posterior estimate
of the state variable.

Pk+1 = (I − Kk+15 hx)P−k+1 (26)

In Formula (26), I represents the identity matrix with the same dimension as the
covariance matrix.

As can be seen from the working flow, the EKF algorithm can weigh the useful infor-
mation in the observation zk+1 − h (x̂−k+1) by the Kalman gain Kk+1 to correct the priori esti-
mation of the state vector. Therefore, in this study, we use the ROS node ekf_localization_node
of the ROS package robot_localization (https://github.com/cra-ros-pkg/robot_localization,
accessed on 28 June 2022) to achieve real-time multi-sensor fusion localization. The state

https://github.com/cra-ros-pkg/robot_localization
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estimations from wheel odometry and IMU are treated as predictions and the localization
results from VI-SLAM are used as observations to update the state vector.

2.6. Dense 3D Point Cloud Mapping of Greenhouses

In the mapping module, we perform the modified ORB-SLAM2 (https://github.com/
gaoxiang12/ORBSLAM2_with_pointcloud_map, accessed on 28 June 2022) algorithm to
acquire the dense 3D point cloud map of the surroundings in real-time utilizing the Intel Re-
alsense depth camera D435i. ORB-SLAM2 is a complete SLAM system for monocular, stereo
and RGB-D cameras, including map reuse, loop closing and re-localization capabilities.
The system works in real-time on standard CPUs in a wide variety of environments [44].
A sparse point cloud map can be generated directly using the algorithm. To acquire the
dense point cloud map, we use the modified ORB-SLAM2 algorithm that adds a point
cloud mapping thread to the framework of ORB-SLAM2. In the point cloud mapping
thread, RGB and depth images obtained by Realsense D435i and pose estimations from the
tracking thread are set as the input, and a dense 3D point cloud map can be generated and
maintained. The dense 3D point cloud map can provide the robot with a more detailed
representation of the surroundings. Therefore, by using the dense 3D point cloud map of
greenhouses and the multi-sensor fusion localization results, the agricultural robots can
realize re-localization when they fail to localize or are moved to another place artificially,
resulting in the failure of localization, and achieving accurate path planning and obstacle
avoidance in autonomous navigation tasks.

2.7. The Overall Localization and Mapping Framework

The proposed system mainly includes two parts: the multi-sensor fusion localization
and the dense 3D point cloud mapping parts. The multi-sensor fusion localization part
integrates the pose estimations from wheel odometry, an inertial measurement unit and a
visual–inertial odometer. The wheel odometry of Turtlebot2 can provide both the position
and heading of the mobile robot by using the dead reckoning method, and the angular
velocity offered by the three-axis gyroscope of the chassis Kobuki can be pre-integrated
to estimate the rotational motion. By combing the estimations from the wheel odometry
and IMU, the 6DOF pose of the robot can be obtained and is set as the motion model of
prediction steps of the EKF. To correct the pose estimations in the prediction process, the
Intel Realsense tracking camera T265 is used as visual–inertial odometry (VIO) to update
the measurements from the prediction steps. The VIO fuses information from multiple
fisheye imagers with sensor readings from an IMU in a tightly coupled way and tracks the
6DoF pose in real-time. The pose estimations of the VIO are set as the observation model of
the EKF to correct the predicted results, and the filtered trajectory is relatively accurate. In
the dense 3D point cloud mapping part, the modified ORB-SLAM2 algorithm is utilized to
generate a dense 3D point cloud map of surroundings on a standard CPU in real-time. The
specific flowchart of the system is shown in Figure 4.

https://github.com/gaoxiang12/ORBSLAM2_with_pointcloud_map
https://github.com/gaoxiang12/ORBSLAM2_with_pointcloud_map
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3. Results and Discussion

The experiments were conducted in Shouguang City, Weifang City, Shandong Province,
China. The greenhouses were modern standard solar greenhouses in the Modern agri-
cultural high and new technology experiment and demonstration base and Shouguang
vegetable high-tech demonstration park, suitable for carrying out localization, mapping
and navigation experiments with agricultural robots. The types of crops in the greenhouses
were varied and all were in a state of vigorous growth. In the experiments, the motion of
the mobile robot was controlled by the commands from the laptop, and the localization and
mapping tasks were completed in real-time while the robot was moving in the greenhouses.

3.1. Evaluation of Localization Accuracy

To demonstrate the effectiveness of the proposed multi-sensor fusion localization
method, we carried out six experimental tests. Four of the tests were conducted in the
greenhouses. Two tests were conducted in an outdoor campus environment to verify
the feasibility of the proposed method in different settings. Each test contained complex
environmental conditions, bringing challenges for the robot to achieve accurate localization.
Figure 5 shows the experimental environments of each test. The localization accuracy
evaluation tool of our proposed method is EVO (https://github.com/MichaelGrupp/evo,
accessed on 28 June 2022) and the evaluation index is the absolute pose error (APE) values
considering both rotation and translation errors (unitless: the unit of translation APE is

https://github.com/MichaelGrupp/evo
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the meter and the rotation APE has no unit, so the full APE is unitless), compared to the
ground truth. The APE is a metric for investigating the global consistency of a SLAM
trajectory. APE is based on the absolute relative pose between two poses Pref,i, Pest,i ∈ SE(3)
at timestamp i

Ei = Pest,i 	 Pre f ,i = P−1
re f ,iPest,i ∈ SE(3) (27)

where 	 is the inverse compositional operator which takes two poses and gives the
relative pose.
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In APE, the translation error is calculated by using the translation part of Ei and the
rotation error is calculated by using the rotation part of Ei.

APEtrans,i = ‖trans(Ei)‖ (28)

APErot,i = ‖rot(Ei)− I3×3‖F (29)

The full error considering both rotation and translation errors is calculated by using
full Ei.

APEi = ‖Ei − I4×4‖F (30)

Since the rotation error uses the F-norm of the matrix, the rotation error is unitless, so
the total error is also unitless. Figure 6 depicts the APE of tests 1 to 4.

In EVO, evo_res is a tool for comparing one or multiple result files from evo_ape, i.e.,
evo_res is an APE comparison tool. Therefore, RES is used for APE value comparisons.
Figure 7 shows RES of tests 1 to 4 between our method and the VIO from the Realsense
T265. The quantitative results comparisons are reported in Table 1.

Table 1. Comparisons of the APE values between our proposed method and the VIO.

Test ID Sensors Std RMSE Min Median Mean Max

Test1
(Greenhouse)

Fusion 0.0781 0.1412 0.0102 0.1029 0.1177 0.2514
VIO 0.1933 0.5897 0.1527 0.5554 0.5571 0.9056

Test2
(Greenhouse)

Fusion 0.0090 0.0227 0.0034 0.0200 0.0209 0.0912
VIO 0.2694 0.5637 0.0866 0.5126 0.4951 0.8857

Test3
(Greenhouse)

Fusion 0.0460 0.1140 0.0390 0.0971 0.1044 0.2140
VIO 0.2996 0.7295 0.1926 0.7063 0.6651 1.3038
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Table 1. Cont.

Test ID Sensors Std RMSE Min Median Mean Max

Test4
(Greenhouse)

Fusion 0.0565 0.1090 0.0230 0.0771 0.0933 0.2210
VIO 0.2077 0.7824 0.2802 0.7278 0.7543 1.1963

Test5
(Outdoor)

Fusion 0.3758 0.6067 0.0567 0.3269 0.4763 1.4204
VIO 0.5362 1.0631 0.2959 0.8540 0.9179 2.5018

Test6
(Outdoor)

Fusion 0.2719 0.5825 0.1907 0.4792 0.5152 1.1824
VIO 2.5838 5.7139 0.7239 5.1807 5.0963 8.9466
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column (d) represents the VIO’s.
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the Realsense T265. Column (a) shows comparisons of the absolute localization error between our
method and VIO in the error maps. Column (b) shows comparisons of the curves of APE over time.
Column (c) shows comparisons of the box plots.
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3.1.1. Traveling a Closed Path inside a Greenhouse

In test 1, the mobile robot traveled a loop path inside a greenhouse. The track was
under harsh environmental conditions, including intense sunlight, repeated scenes and
dynamically changing crops, as shown in Figure 5a. Algorithms of wheel odometry, IMU,
visual–inertial odometry and the proposed Visual–IMU–Wheel odometry were executed
online to estimate the robot’s pose. It can be seen from column (c) of test1 in Figure 6 that
the overall performance of the VIO estimation results in this test is relatively accurate, so
the VIO is a good choice as the observation model of the EKF.

However, the localization error of the VIO suddenly becomes large when the robot
turns right angles to return to the origin. Thus, the trajectory estimated by the VIO does not
form a loop path and the loop error is about 1 m. In stark contrast, the trajectory estimated
by our approach is exact, with the max absolute pose error (APE) of 0.25, and the loop
error of our method is approximately equal to zero, reaching a perfect loop closing effect in
the greenhouse environment, due to the fusion of the wheel odometry, IMU and VIO. In
addition, each error evaluation index caused by our method is lower than the error value
of the VIO, demonstrating the effectiveness of the proposed method in such a loop path
test, as shown in the first and second rows of Table 1.

3.1.2. Crossing the Intersection in the Greenhouse

For agricultural robots, it is a highly crucial ability to achieve a turn between crop
rows in a large facility greenhouse environment. The accuracy of the turns has a direct
influence on the effectiveness of autonomous operations. Therefore, in test 2, we evaluated
the validity of the multi-sensor fusion localization method by having the robot cross the
intersections in the greenhouse. The scenario of this test is shown in Figure 5b.

As shown visually from column (a) of test 2 in Figure 7, the trajectory estimated by
our proposed method almost coincides with the ground truth trajectory. In contrast, the
trajectory singly calculated by the VIO has a translational estimation error since the first
turn of the test. In addition, the absolute pose error of our method throughout the test
is close to zero and noise error appears only slightly, as shown in column (b) of test 2 in
Figure 7. However, the APE from the VIO is relatively giant at the beginning and end of the
test, and there is much noise error during the middle time of the experiment, compared to
our method. Although the Root Mean Square Error (RMSE) and max error of the VIO are
0.564 and 0.89, respectively, seeming not so large, the RMSE and max error of the proposed
localization method are only 0.023 and 0.09, respectively, approaching zero, as can be seen
from the third and fourth rows of Table 1. Therefore, our method can provide the robot with
a more accurate localization result when the robot crosses the intersections in greenhouses
to benefit autonomous navigation for agricultural robots.

3.1.3. Traveling in a Soilless Greenhouse

Soilless culture has been widely used in agriculture in recent years, so it is of great
significance for robots to realize accurate localization in these environments. In test 3,
the robot traveled through an area of a soilless greenhouse under the control of motion
commands from the laptop to verify the applicability of the proposed localization method
in soilless greenhouses. Figure 5c shows an area of the soilless greenhouse used for this test.

In this test, the robot started with a slight change in direction, as marked by the black
circle in column (a) of test 3 in Figure 7. Our method accurately estimates the subtle shift in
direction; however, the VIO fails to precisely perceive this small change and the estimated
trajectory is a straight line. The track also contains multiple turns. We can see from the
result that the trajectory calculated by the VIO is not smooth after the turns, especially after
the second quarter turn, as marked by the red circle. However, the trajectory estimated by
our method is smooth throughout. In addition, the max error of the VIO is 1.304, while
the max error of our strategy is 0.214, almost equal to the minimum error of the VIO, as
shown in the fifth and sixth rows of Table 1. Therefore, the VIO is not accurate enough due
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to the high complexity of the soilless greenhouse and our method can achieve a reasonable
accuracy in such an environment.

3.1.4. Moving through the Gallery Frame Structure in the Greenhouse

The gallery frame structure is widely used in greenhouses and agricultural environ-
ments. It brings significant challenges to robot localization due to the long, narrow, and
highly repetitive gallery frame structure. To evaluate the localization effect of our method
in these environments, in test 4, we designed an ‘8′-shaped trajectory for the robot to
move through the gallery frame structure in the greenhouse. The test scenario is shown in
Figure 5d.

As can be seen from group test 4 in Figure 6, the overall localization accuracy of the
VIO is not ideal, causing apparent trajectory drift. The error of the VIO indicates that the
visual approach is not well suited to this type of environment, even with the tight coupling
of IMU, because of the large number of mismatches when there are repetitive features
such as the frames in the long and narrow gallery. However, our approach dramatically
improves the localization precision by using the measurements from wheel odometry and
a three-axis gyroscope as the prediction of the EKF. The RMSE of our method is only 0.109.
In comparison, the RMSE of the VIO is about 0.782, being a significant error for the robot
to navigate in the narrow gallery frame structure environments. Therefore, the proposed
localization method successfully makes up for the deficiency and misestimation of visual
sensors in such a complex gallery frame structure environment.

3.1.5. Moving in the Long Straight Grove

Our proposed method has relatively high localization accuracy in various greenhouse
environments, as can be concluded from tests 1 to 4. To evaluate the positioning ability of
our approach in other settings, we carried out two tests in the outdoor campus environment.
Figure 8 shows the APE and RES of tests 5 and 6. In test 5, the robot traveled a path similar
to test 1 in a long straight grove on campus, but there was no loop. Figure 5e shows the
long straight grove with the intense sunlight.

Unlike test 1, the localization accuracy of the VIO is weak and the estimated trajectory
differs significantly from the ground truth, as shown in Figure 8c, due to the intense light
affecting the visual estimation. However, the trajectory calculated by our method achieves
relatively high accuracy with the RMSE is 0.607. Although there is an offset error at the tail
of the trajectory estimated by our approach because of the direct sunlight, the estimation
is generally reliable. Therefore, the measurements of wheel odometry and gyroscope
efficiently improve the localization accuracy of the VIO, and our proposed method is more
suitable for localizing robots in such a harsh environment.

3.1.6. Touring at the Edge of the Pond

In test 6, the mobile robot traveled at the edge of the pond on the campus, as shown in
Figure 5f. The road around the pond is curved, with a pool reflecting light on one side and
trees on the other, bringing many challenges for robots to achieve precise localization.

As can be seen from Figure 8k, the estimated trajectory of the VIO has the same shape
as the ground truth. However, there are a certain number of estimation failures of the VIO
in this test, especially the scale estimation errors. The reasons for this problem include
the lack of sufficient feature points when the camera is in the reflective area and the large
number of mismatches when there are repetitive and dynamic features such as the wicker
flapping in the wind. In contrast, aided by the wheel odometry and gyroscope, not only the
scale problem is eliminated, but also the localization accuracy was remarkably improved,
as shown in the eleventh and twelfth rows of Table 1. The RMSE drops from 5.714 to
0.583, reaching an ideal result in an open outdoor area. In consequence, the multi-sensor
fusion method can make up for the defects of each sensor to achieve relatively accurate
localization in complex environments.
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3.2. Analysis of Localization Robustness

In the experiment, we carried out robot localization tests in a variety of complex
scenarios, as can be seen from Section 3.1. The experimental environments are all highly un-
structured and crops are in dynamic growth and change. Moreover, the sunlight is intense
and the GPS is ineffective. All these factors make the localization extremely challenging:
(1) The unstructured characteristics significantly reduce the stable geometric features for
the visual SLAM, especially in test 6; (2) The dynamics of the environments cause outliers
to the visual features; (3) The highly repeated visual features of the leaves cause the error
in matching and tracking the features in visual SLAM; (4) Intense illumination seriously
affects the robustness of the visual estimation method.
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Despite these challenges, our localization approach is robust enough to survive in
these scenes. The results show that our method can achieve accurate localization under
various challenges and even endure the severe estimation error of the visual algorithm.
The results demonstrate that our localization strategy is of high robustness and accuracy.

3.3. Mapping Quality

Localization and mapping are essential abilities for robots to realize autonomous
navigation. Using the dense 3D point cloud map in the navigation tasks can provide the
robot with a more detailed representation of the surroundings. Therefore, the robot can
achieve safer and more accurate autonomous navigation. In order to verify the availability
of the dense 3D mapping method, a series of experiments were conducted in complex
greenhouse environments. The results are shown in Figure 9.
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Experiments 1 to 3 were carried out in a soilless greenhouse. The soilless greenhouse
has various kinds of spatial cultivation structures. We choose orbital cultivation, wall
cultivation and stereoscopic cultivation sites to generate dense 3D maps. Figure 9a,b
show the scene and dense 3D map of the orbital cultivation site. Figure 9c,d represent
the experiment of the wall cultivation site. Figure 9e,f represent the experiment of the
stereoscopic cultivation site. The three kinds of spatial cultivation structures have extremely
complex characteristics, bringing challenges to the dense mapping task. The experimental
results show that the dense 3D point cloud maps are well displayed and the real-time
dense mapping algorithm is effective. Both unstructured crops and structured shelves are
well constructed into dense point cloud maps. However, the maps are still not perfect.
There are some holes and gaps in the maps because some places are not scanned by the
RGB-D camera.

Experiments 4 and 5 are carried out in a greenhouse with intense sunlight. The
scene of experiment 4 is a crop inter-row, as shown in Figure 9g,h. The row and crops
are effectively mapped; even the weeds are reconstructed. Therefore, the dense mapping
method is suitable for such an environment and can be employed for obstacle avoidance
and autonomous navigation. In experiment 5, a dense 3D point cloud map of the periphery
of crop rows is constructed, as shown in Figure 9i,j. The crops and shelves in this scene are
successfully mapped and the spatial structure of the environment is clear and distinct on
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the map. However, the map is still not perfect. The crops are slightly indistinct due to the
influence of intense sunlight.

To verify the broad applicability of the dense mapping method, we conducted experi-
ment 6 in an outdoor forest. The mapping result is shown in Figure 9k. From the result,
the trunks, leaves and lawn are all constructed into a dense 3D point cloud map effectively,
so the method is suitable for large-scale and unstructured 3D mapping. However, some
specific details of the trees are unclear on the map. The reasons for this problem are:
(1) Some leaves were sheltered by other chaff interferents or not in the range of the RGB-
D camera; (2) This experiment was carried out outdoors, therefore the mapping quality
was influenced by the sunlight; (3) The scanning speed of the camera was a little fast. In
the mapping experiments, the results show the accuracy and robustness of the dense 3D
mapping method for unstructured, dynamic and large-scale greenhouse environments.

4. Conclusions

In this paper, a novel real-time localization and mapping method is proposed for
unstructured, dynamic and GPS-denied greenhouse environments. To achieve accurate
and robust pose estimation of the robot in complex greenhouses, the proposed method
integrates measurements from wheel odometry, an inertial measurement unit and visual–
inertial odometry into a loosely coupled multi-sensor fusion framework based on the
Extended Kalman Filter to make up for the defects of a single sensor. The dense 3D point
cloud map of the surroundings is generated using the modified ORB-SLAM2 algorithm
simultaneously as localization. By combining the result of accurate localization and dense
3D point cloud map, agricultural robots can realize more precise re-localization and provide
the basis for further autonomous navigation.

The method is evaluated in modern standard solar greenhouses and an outdoor cam-
pus environment with various complex environmental conditions. In all the tests, our
method achieves a high level of accuracy and robustness in localization and mapping.
However, in the outdoor environment, since the visual part is greatly affected by light,
the accuracy of the multi-sensor fusion localization and mapping system is reduced to a
certain extent, and the effect is not as good as in the greenhouse. Moreover, this study
does not go deep into combining localization and mapping results for autonomous nav-
igation. Therefore, for future work, the multi-sensor fusion localization framework may
involve other sensors to adapt to more severe environments and the results of localiza-
tion and mapping will be better combined to achieve autonomous navigation in complex
agricultural environments.
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