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Abstract: Pennisetum species have importance in foraging, agriculture, energy-production, the envi-
ronment, and landscaping. To promote the preservation and utilization of ornamental Pennisetum
resources, we developed simple sequence repeat (SSR) markers from the Pennisetum setaceum cv.
‘Rubrum’ transcriptome and verified their conservation in 38 sources. Our transcriptome sequencing
efforts generated 58.91 Gb of clean data containing 55,627 unigenes. We functionally annotated
30,930 unigenes, with functions enriched in translation and ribosomal structure and biogenesis.
Database comparisons indicated that the closest relative of P. setaceum cv. ‘Rubrum’ is Setaria italica.
Over five thousand SSR markers were detected in the transcriptomic data. We selected 38 pairs
of highly polymorphic SSR markers from 50 randomly selected SSR markers. Based on genetic
diversity analysis of 38 ornamental Pennisetum sources, we obtained 312 polymorphic bands, with an
average of 8.21 alleles per primer. Principal coordinate analyses and generation of a, which proved
that Pennisetum has moderate genetic diversity. In addition, fingerprint maps were constructed to
improve Pennisetum identification. The transcriptome data generated by our study enhances the
transcriptional information available for P. setaceum. This study lays the foundation for the collection
and utilization of ornamental Pennisetum resources and provides a basis for future breeding projects
using this species.

Keywords: Pennisetum; illumina sequencing; genetic diversity; SSR molecular marker; transcriptome

1. Introduction

The genus Pennisetum belongs to the grass family (Poaceae), represent annual or
perennial herbs distributed in tropical and subtropical regions [1]. Pennisetum species have
importance in foraging [2], agriculture [3], environment [4] and energy production [5], and
are also widely used in ornamental gardening [6]. Pennisetum ornamental grasses have
elegant stalks, beautiful inflorescences, and colorful leaves. Pennisetum can be used for
diverse landscaping needs, as they can be planted as a single plant, in clusters, in pieces, or
in rows [7]. In addition to their ornamental value, they also have the advantage of being
adaptable, and resistant to drought, and requiring low maintenance [8]. One member of
this family, P. setaceum cv. ‘Rubrum’ has purple leaves throughout most of its growth stages,
with high ornamental value, is widely used all over the world [9] and is lovingly referred
to as “purple fountain grass” [10].

Molecular markers that have been developed to date include inter-simple sequence
repeat (ISSR) [11], random amplified polymorphism DNA (RAPD) [12], restriction fragment
length polymorphism (RFLP) [13], amplified fragment length polymorphism (AFLP) [14],
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simple sequence repeat (SSR) [15] and simple nucleotide polymorphism (SNP) [16]. Among
these marker types, the use of SSR markers is advantageous as they are abundant, multi-
allelic, highly polymorphic, and co-dominant. As such, SSRs are an ideal tool to examine
the genetic diversity of plants [17]. The key to utilizing SSR molecular markers lies in their
development. Early SSR primer development methods includes cDNA library construction
and clone sequencing [18], as well as by searching for expressed sequence tags in public
databases [19]. Transcriptome sequencing has become a popular method for developing
SSR markers. Transcriptome sequencing (i.e., RNA-seq) represents a high-throughput
technology for sequencing cDNAs obtained by reverse transcription of mRNA transcribed
in a specific tissue or cell at a certain developmental stage or functional state [20]. It is an
effective tool to identify SSR markers in species without reference genome and non-model
organisms [20]. Furthermore, it has been shown that SSRs obtained from one species can be
used to detect the diversity of related species and even other genera of the same family [21].

Zhou et al. [22] conducted genetic diversity analysis on 35 sources of Pennisetum from
China and the United States. They verified the cross-species reactivityof Hemarthria EST-SSR
markers. Wang et al. [23] developed 83,706 SSR markers from Pennisetum purpureum Schum
‘Zise’ and identified 28 pairs of polymorphic markers. In the past, our group has screened
15 Pennisetum-specific SSR markers by magnetic bead enrichment technology, and 147
polymorphic alleles were used to further verify the traditional phylogenetic classification of
Pennisetum [6]. However, the sources of Pennisetum used in these studies were mostly forage-
type Pennisetum or Pennisetum crops, and research on ornamental Pennisetum remained
minimal. In terms molecular information on ornamental Pennisetum grasses, there are
only a few SSR markers that have been developed. In addition, trancriptome data from
ornamental Pennisetum species are lacking.

In our previous research, we constructed the full-length transcriptome of P. setaceum cv.
‘Rubrum and revealed the molecular mechanism underlying anthocyanin accumulation [24].
In the present study, we used this Illumina transcriptome data to: (1) develop SSR markers
for P. setaceum cv. ‘Rubrum’ and enhance the transcriptional information available for
Pennisetum, (2) verify whether these SSR markers are conserved among various Pennisetum
species, and (3) analyze the genetic diversity of 38 Pennisetum accessions, investigate their
genetic relationships, and establish genetic fingerprints. Thus, our study will provide
a basis for functional genetic analyses, resource identification, and cultivation of new
varieties of ornamental Pennisetum.

2. Materials and Methods
2.1. Plant Material and DNA Extraction

The P. setaceum cv. ‘Rubrum’ selected for transcriptome sequencing was collected
from the National Precision Agriculture Research Demonstration Base in 2020 (116◦28′ E,
39◦94′ N). The 38 sources of Pennisetum included some widely used Pennisetum varieties
and different mutants cultivated by our group. The original materials were collected from
Beijing, Anhui and Kunming in China (Table 1). Meanwhile, Setaria viridis and Panicum
virgatum were selected as experimental controls. The experimental materials consisted
of fresh leaves or stems that were sampled and stored at −80 ◦C. Genomic DNA was
extracted from the 40 plant samples using the CTAB method [25]. The concentration of the
extracted DNA samples were measured using a Nanodrop 2000 (NanoDrop Technologies,
Wilmington, DE, USA), uniformly diluted DNA to 20 ng/µL and stored at −20 ◦C until
further use. PCR amplifications were optimized according to our previously reported
protocols with minor modifications [21].
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Table 1. The information of 38 Pennisetum and 2 control materials.

Sample ID Sample Name Sampling Location

1 P. alopecuroides—A Beijing
2 P. alopecuroides—B Beijing
3 P. alopecuroides—C Beijing
4 P. alopecuroides—D Beijing
5 P. alopecuroides—E Beijing
6 P. purpureum Schum. —A Beijing
7 P. purpureum Schum. —B Beijing
8 P. purpureum Schum. —C Beijing
9 P. purpureum Schum. —D Beijing

10 P. purpureum Schum. —E Beijing
11 P. purpureum Schum. —F Beijing
12 P. purpureum Schum. —G Beijing
13 P. alopecuroides—F Anhui
14 P. alopecuroides cv. ‘Ziguang’ Beijing
15 P. alopecuroides cv. ‘Liren’ Beijing
16 P. alopecuroides cv. ‘Baijian’ Beijing
17 P. alopecuroides cv. ‘Wucai’ Beijing
18 P. alopecuroides variation ‘Wucai’ —A Beijing
19 P. alopecuroides variation ‘Wucai’ —B Beijing
20 P. villosum Beijing
21 P. setaceum cv. ‘Rubrum’ Beijing
22 P. purpureum Beijing
23 P. orientale cv. ‘Xuerong’ Beijing
24 P. setaceum Beijing
25 P. alopecuroides cv. ‘Changsui’ —A Beijing
26 P. alopecuroides cv. ‘Changsui’ —B Beijing
27 P. alopecuroides cv. ‘Aizhu’ —A Beijing
28 P. alopecuroides cv. ‘Aizhu’ —B Beijing
29 P. alopecuroides cv. ‘Little Bunny’ Beijing
30 P. alopecuroides cv. ‘Hameln’ Beijing
31 P. purpureum schumab cv. Red Kunming
32 P. alopecuroides cv. ‘Ziguang’ Kunming
33 P. clandestinum Kunming
34 P. alopecuroides cv. ‘Little Bunny’ Kunming
35 P. alopecuroides cv. ‘Purple’ Kunming
36 P. alopecuroides cv. ‘Fire Works’ Kunming
37 P. alopecuroides cv. ‘Baimeiren’ Kunming
38 P. villosum Kunming
39 P. virgatum Beijing
40 S. viridis Beijing

2.2. Transcriptome Sequencing of P. setaceum cv. ‘Rubrum’

Total RNA was extracted from P. setaceum cv. ‘Rubrum’ using the Trizol method as per
the manufacturer’s specifications. The constructed cDNA libraries were then sequenced
using the Illumina NovaSeq 6000 high-throughput sequencing platform (San Diego, CA,
USA). Sequencing and quality control processes were performed according to the stan-
dard workflow of the Biomarker Corporation (Beijing, China). After obtaining a large
amount of high-quality sequencing data, sequence assembly was performed using Trin-
ity software [26]. The resulting unigenes were aligned with the Non-Redundant Protein
(NR) [27], Swiss-Prot [28], Clusters of Orthologous (COG) [29], Eukaryotic Orthologous
Groups (KOG) [30], eggNOG4.5 [31], and Kyoto Encyclopedia of Genes and Genomes
(KEGG) [32] databases using the DIAMOND software [33]. SSR analysis was performed on
unigenes that were longer than 1kB using MISA software [34]. SSR loci with dinucleotide
to hexanucleotide repeat types are preferentially selected. The number of SSR markers
selected for different repeat types is determined by their proportions. Using Primer3
(http://primer3.sourceforge.net/releases.php) (accessed on 3 December 2021) for each SSR
primer design.

2.3. SSR Prediction, Selection, and Primer Design

Eight materials with different phenotypic traits including P. alopecuroides—A P. pur-
pureum Schum. —D P. alopecuroides cv. ‘Wucai’, P. villosum, P. alopecuroides cv. ‘Little Bunny’,

http://primer3.sourceforge.net/releases.php
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P. alopecuroides cv. ‘Fire Works’, P. virgatum, and S. viridis were selected for use in screening
50 randomly selected molecular markers that were generated from the RNA-seq data. The
primers that produced clear bands and detected polymorphism were used in subsequent
experiments. All materials were amplified by PCR using primers synthesized by Ruibiotech
Company (Beijing, China). The concentration of primers is 10 µmol/L. Our optimized 10 µL
PCR reaction system consisted of 5 µL 2 × Taq Master Mix, 0.6 µL forward primer, 0.6 µL
reverse primer, 1 µL DNA, and 2.8 µL ddH2O. The PCR cycling conditions were as follows:
pre-denaturation at 94 ◦C for 3 min, 35 cycles of denaturation at 94 ◦C for 30 s, annealing
at 48 ◦C for 30 s and extension at 72 ◦C for 1 min, followed by a final extension at 72 ◦C
for 10 min. The resulting PCR products were electrophoresed on an 8% non-denaturing
polyacrylamide gel at 170 V 70 min. A 100 bp ladder (TransGen Biotech, Beijing, China)
was used as a size marker. After electrophoresis, the PCR amplicons were by silver staining
and photographed.

2.4. Genetic Diversity Analysis

To establish the original matrix, the bands visualized on the non-denaturing polyacry-
lamide gel were manually read. Due to the complex genetic background of Pennisetum,
aneuploidy and polyploidy exist widely in Pennisetum, and it is difficult to detect the peak
value of each locus, so we analyzed SSR markers as binary dominant. We used the molecu-
lar markers of co-dominant inheritance as dominant markers. Clear bands were recorded
as “1”, whereas samples were assigned a “0” if the bands were difficult to distinguish
or non-existent. POPGENE v1.3.2 [35] was used to analyze genetic distance, observed
allele number (Na), effective allele number (Ne), gene diversity index (H), and Shannon
information index (I), and to analyze genetic diversity. The formula PIC = 1−∑i

j Pij
2 (Pi

and Pj are the frequencies of the ith and jth genes at a locus) [21], was used to calculate the
polymorphism information content (PIC) of the primers.

2.5. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) Clustering Analysis and
Principal Component Analysis (PCoA) of 38 Accessions

NTSYS v2.1 [36] was used to evaluate the similarity of 38 Pennisetum samples, and
to establish UPGMA and PCoA. A UPGMA cluster diagram was drawn by the SSR data
similarity matrix. PCoA was performed according to anastomotic differences between
binary genotypic profiles. Distance and covariance were both standardized [21].

2.6. Construction of Fingerprints

Fingerprints were constructed by reading the banding information obtained following
gel electrophoresis of the PCR products. At positions of the same length, positions with a
band were marked in white, and positions without a band were marked in black, with their
binary identities represented as “1” and “0”, respectively. Binary identities were converted
to decimal identities.

3. Results
3.1. Illumina Sequencing and De Novo Transcriptome Assembly

A total of 58.91 Gb of clean data was obtained from the transcriptome sequencing of
P. setaceum cv. ‘Rubrum’. Clean data from each sample reached a maximum of 6.15 Gb, and
the percentage of Q30 bases was over 94.22%. After assembly, a total of 55,627 unigenes
were obtained, and their N50 was 1637 bp in length. The assembly integrity qualified the
transcriptome for subsequent analysis. The transcriptome data has been deposited in the
NCBI database under accession number “PRJNA744323”.

3.2. Functional Gene Annotation

Functional annotation of the unigenes was performed by aligning them to the NR,
Swiss-Prot, KEGG, COG, KOG, GO, eggNOG, and Pfam databases. In general, a total
of 30,930 unigene annotations were obtained (Table 2). The COG classification statistics
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showed that the most genes were classified into “translation, ribosomal structure, and
biogenesis”, followed by “posttranslational modification, protein turnover, and chaperones”
(Figure 1a). The eggNOG classification statistics showed that the genes were widely
distributed in “signal transduction mechanisms posttranslational modification, protein
turnover chaperones” (Figure 1b). The results of NR protein sequence alignment showed
that the closest relative species to Pennisetum was Setaria italica, followed by Setaria viridis,
Panicum hallii, Panicum miliaceum (Figure 1c), with homologous percentages of 37.10%,
23.50%, and 7.00%, respectively.

Figure 1. The gene annotation results of P. setaceum cv. ‘Rubrum’ based on COG, NOG and NR
databases. (a) COG gene annotation results. (b) NOG gene annotation results. (c) NR function
classification of consensus sequences.
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Table 2. Unigene annotation statistics.

Database Annotated Number 300 ≤ Length < 1000 Length ≥ 1000

COG Annotation 6606 1553 5053
GO Annotation 22,845 8859 13,986

KEGG Annotation 17,384 5855 11,529
KOG Annotation 13,498 4152 9346
Pfam Annotation 18,502 5282 13,220

Swissprot Annotation 16,727 5347 11,380
eggNOG Annotation 23,365 8827 14,538

Nr Annotation 30,020 12,302 17,718
All Annotated 30,930 12,999 17,931

3.3. Development of Novel SSRs and Analysis of Their Conservation

A total of 5122 SSR loci were obtained from the 55,627 unigenes using MISA software,
and the distribution frequency of SSR loci was 9.21%. There were six SSR types, including
mononucleotide repeats, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats,
pentanucleotide repeats, and hexanucleotide repeats (Table 3). The most abundant type
of SSR was trinucleotide repeats (41.94%), followed by mononucleotide repeats (39.26%),
and dinucleotide repeats (14.70%). The number of tetranucleotide repeats, pentanucleotide
repeats, and hexanucleotide repeats was low, with the number of hexanucleotide repeats
(0.04%) being the least (only two) (Table 3). Fifty pairs of SSR primers were randomly
selected from the 5122 SSR loci (Table 4), and eight materials with obvious phenotypic
differences were utilized to further select polymorphic SSRs. We selected 38 pairs of primers
with higher polymorphisms to perform PCR amplification of 40 experimental materials.
The raw band data are presented in Table S1. The amplification results of representative
polymorphic primers in 40 samples are shown in Figure S1.

Table 3. The distribution and quantity of different SSR types.

Type Number Proportion

Mono nucleotide 2011 39.26%
Di nucleotide 753 14.70%
Tri nucleotide 2148 41.94%

Tetra nucleotide 42 0.82%
Penta nucleotide 11 0.21%
Hexa nucleotide 2 0.04%

c 1 153 2.99%
c* 2 2 0.04%

Total number of identified SSRs 5122
1 “c” means contains at least two SSRs, and the distance between them is less than 100bp without overlap. 2 “c*”
means there is overlap between composite SSRs.

Table 4. The information of 50 pairs of SSR makers.

Primer ID Polymorphism Forward Primer Sequence (5–3) Reverse Primer Sequence (5–3)

PaSSR—1 Yes TATACTTGGTTGCCACGGGT TTCATGGTGATGCGTCATTT
PaSSR—2 Yes AACCCCTAGCAGTCTCTCCC GCGGTACTCGTACTGCTTGA
PaSSR—3 No TCCATGGAGTACCCGAAGAG ACATCAACCACTGCAACCAA
PaSSR—4 No AAAATTAGGTCCGCTTGCCT GACCGATTCCAATTCCGTTA
PaSSR—5 No CCCCTTTTTCTCTCACTCCC CCACCAATTTGCCTTTCAGT
PaSSR—6 No AAAGAAAGAAAAGAAAACGCACA CCTAGCTTGTCTGCCTCCTG
PaSSR—7 Yes GCGAGGAGATTCAGAGATCG GGACGAACAAAGAGACCGAG
PaSSR—8 Yes TATGGGTTGCTCCTCGAATC ATTGAACAGCTTCTGCGGAT
PaSSR—9 Yes TGGATGGAGGACAGTGATGA ACGACCAGGAAAGCCTTACA
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Table 4. Cont.

Primer ID Polymorphism Forward Primer Sequence (5–3) Reverse Primer Sequence (5–3)

PaSSR—10 Yes TGTTCCGATATGCCTGTTTT CTGCAACATTCTGCATGGAC
PaSSR—11 Yes AGCTAGGCACAAAGAAGGCA CTAGCTTCATGATGCACGGA
PaSSR—12 Yes CTTTACCCAAACAGCCCCTC TCTGGATTAACCACTTCGGC
PaSSR—13 Yes TGGTCAGTTGTCGACTCAGG ACGCACTTGTACTGTGGCTG
PaSSR—14 Yes GTCCACGAGAGAGGGAAGAG GTAGCATATCCCGCCTGTGT
PaSSR—15 No GGCTCAATTTGGTGCATTCT TATTAAACCAGGGTGGCTGC
PaSSR—16 Yes AGCAGCAACAACTGCAACAG GCTACAGGGTTTGCCACATT
PaSSR—17 Yes GACCAGTCGCTCTCGACC TAATCCACCTTCCAAGCCAG
PaSSR—18 Yes CTCAGAAGGGTGGGTACGAA TGTGCCAATGCAGAGAAGTC
PaSSR—19 No TCAACCAGGCCAGATCATAA ACGAGGCCTCTACGACAGAA
PaSSR—20 No ACCTCTGCGTGGTGAAGAAT CTCCAGAAGTAGCAGCAGCA
PaSSR—21 Yes GCTCTCGCAGTACATCTCCC GCCACTTGACCTTCTCCTTG
PaSSR—22 No TCGTGGTCAAACTGATAGCG CTCCAGAAGTAGCAGCAGCA
PaSSR—23 No CAGCAAATGCAGCCTATCAA CTGTTGGTCACTGGTCCCTT
PaSSR—24 Yes AAGGGACCAGTGACCAACAG CCAGATTCACGAACTGACCA
PaSSR—25 No GACAAAACTACGGGGGTCAA CGGTGGGGAAGAAAGAAAAT
PaSSR—26 Yes AGACGAGCGGAGAGGAAAC TCCGCTCCTTGATCTTTCTG
PaSSR—27 Yes GCACCACCACCTCTCTTCTT CGAGGAGGAAGATCTCGATG
PaSSR—28 Yes AACCTCTTCGCTTCTCTCCC CAGCAGGCACAACTTCCAT
PaSSR—29 Yes TTCGATTGCTTGTATGCTGC CCGCACGTAGTTGTGAGTGT
PaSSR—30 Yes TTCTTCTTCGCCGTACGAAT GATCGAGATGGCGACAAAAT
PaSSR—31 Yes GTTCCCCTCTGTATCTGGGC GCTGGGGAAGGAAGACCTC
PaSSR—32 Yes AGTACGGCTGCCTCGTCTAC TAGTTGCGGTCGAGAAGGAT
PaSSR—33 Yes ATCAGGTCGGTGGTGAGAAC CCCATCTGATGCTCCAACTT
PaSSR—34 Yes TGCAGAGAAACCAATTGCAG CCGGTTCATAAGCTGGTGTT
PaSSR—35 Yes ATGCTCTATGCACTCCCACC TGAACCCTGATTTGAGGTCC
PaSSR—36 Yes CCGCTGTAACTCTCAGCCAC CACTCCTTCACTCAGCCTCC
PaSSR—37 No CGCACCTCGTTCGATTTTT GAACAGGTGCACAGGAGGAC
PaSSR—38 Yes TTACCCTCCCAGATTGCTTG CGTGAAAAGAATAGTCGTCCG
PaSSR—39 Yes CACCACCACCTCTCCTCTTC GAGAAGCTCATGTCGACGG
PaSSR—40 Yes TTCCACATCTCCGCTTCTCT CCTTGAACTTCTCCTCGTCG
PaSSR—41 Yes TCGGGAAGAAAGCTGAAAAA CTCGCCTCCTCTCCTCTCTT
PaSSR—42 Yes GAGGCCTCTCCCTCTCTCTC GACCAAACCCAAACCCAAC
PaSSR—43 Yes CTCCGCTCATCCTACCCTC TGGGTTCTAGGGTTCTGTCG
PaSSR—44 Yes CCAAATTTTCCAAGCCAAAA ACTGGTGGATCTGCGCCT
PaSSR—45 Yes GCTCTTCATCATAGCGGTGG AGACCGAGGACGTAGAGCAG
PaSSR—46 Yes AAATGCCATGACAACTGCTG CAAGAACGCAGACGACAAAA
PaSSR—47 Yes CGGATTTCCTACAGCGAGAG ATACCGACAAAAACCCGACA
PaSSR—48 Yes GTGCGTCTCACACACCACA CCAAGTGGGGATGAACAGAG
PaSSR—49 No TAGACTTCGGTCGACTCGCT AACGAACACCTGGCGTAGAT
PaSSR—50 Yes CAGGGTGCAGTTAAGGGTTC CCATCTGTGTTCATATGGCG

3.4. Genetic Diversity Statistics

A total of 312 polymorphic bands were amplified using 38 pairs of SSR markers,
with an average of 8.21 bands per marker. The PIC ranged from 0.16 (PaSSR—2) to 0.44
(PaSSR—47), with an average of 0.35 (Table S2). 37 locus was medium level polymorphism
(0.25 < PIC < 0.5), one locus was low level (PIC < 0.25), and not have high level polymor-
phism (PIC > 0.5) locus. SSRs displayed wide genetic variation among accessions. The
average Na was 2.00. The Ne ranged from 1.19 (PaSSR—2) to 1.81 (PaSSR—47), with an
average of 1.60. The H ranged from 0.16 (PaSSR—2) to 0.44 (PaSSR—47), with an average
of 0.35. The I values were between 0.16 (PaSSR—2) and 0.63 (PaSSR—47), with an average
of 0.52 (Table S2). The genetic similarity coefficient between accessions (Table S3) ranged
from 0.39 to 1.00 with an average of 0.58 (Table S3).
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3.5. Cluster Analysis of 38 Pennisetum Accessions

UPGMA cluster analysis was performed on 40 samples according to the genetic
distance, and the genetic relationships between all samples were obtained by combining
the clustering results. Based on the control samples, S. viridis and P. virgatum verified the
reliability of the test results. S. viridis was singly branched at a genetic similarity coefficient
of 0.43, and the switchgrass P. virgatum was classified into a single class at a genetic similarity
coefficient of 0.44 (Figure 2). When the genetic distance was 0.50, the 38 Pennisetum samples
were divided into five categories. The Pennisetum variants were divided into one category
at a genetic similarity of 0.89. When the genetic similarity was 0.81 (Figure 2), the P.
purpureum Schum. variants were classified into one category. P. alopecuroides ‘Baimeiren’
from Kunming, Yunnan, and P. setaceum from Beijing are classified into one category,
indicating that the two are closely related and could be distinguished when the genetic
similarity is 0.47. The phenotypes of these variant materials have different degrees of
variation, and it is impossible to accurately classify them only by phenotypic characteristics.
The results confirmed their genetic relationship and further verified the reliability of
the clustering results. P. clandestinum was branched separately at a genetic similarity of
0.48, indicating that it is distantly related to other Pennisetum samples. P. alopecuroides
cv. ‘Little Bunny’ and P. alopecuroides cv. ‘Hameln’ have similar phenotypes at a certain
growth stage, thus it is difficult to distinguish the two based on their phenotype. UPGMA
clustering revealed that they branched at a genetic similarity of 0.48 (Figure 2). These results
demonstrate that this clustering method can effectively distinguish similar materials.

Figure 2. UPGMA clustering analysis of 40 samples. The number on the horizontal axis in the figure
represents the genetic coefficient, and the number on the vertical axis represents the samples number
from 1 to 40.
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3.6. PCoA of 38 Pennisetum Accessions

PCoA was performed on 38 Pennisetum materials according to genetic distance (Figure 3),
and the 38 Pennisetum samples were divided into five parts, consistent with the UPGMA
clustering tree. P. clandestinum was classified as a separate category. Samples 1–5, 13–16,
25–28, 30, and 35 were clustered into one category. Sample 24 (P. setaceum) and sample
37 (P. alopecuroides cv. ‘Baimeiren’) were found to be closely related. It may be because
their genetic backgrounds are more consistent. Samples 23 (P. orientale cv. ‘Xuerong’), 29
(P. alopecuroides cv. ‘Little Bunny’ (Beijing, China)), and 34 (P. alopecuroides cv. ‘Little Bunny’
(Kunming, Yunnan)) were classified into one category. These findings suggest that these
species are closely related, genetic relationship is less related to region, and there is less
gene exchange with local varieties.

Figure 3. PCoA analysis of 38 Pennisetum materials. The numbers on the horizontal and vertical
coordinates in the figure represent the genetic coefficient, and the numbers represent the sample
numbers from 1 to 40.

3.7. Fingerprint of Pennisetum Varieties with Similar Genetic Background

PCR analysis of the SSR markers revealed that the PaSSR-11 primer could effectively
distinguish five strains of Pennisetum with the same genetic background, including samples
1–5 (P. alopecuroides—A, P. alopecuroides—B, P. alopecuroides—C, P. alopecuroides—D, and
P. alopecuroides—E. Fingerprints were established for the identification of variants (Figure 4).
In addition, the PaSSR-1 and PaSSR-8 primers could distinguish between P. purpureum
Schum. samples (samples 6–12).
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Figure 4. Identification fingerprint of 5 Pennisetum varieties by primer PaSSR11. The numbers 1–5
on the ordinate represent Pennisetum samples (No. 1–5), and the numbers on the abscissa represent
the length of alleles; the white squares represent amplified bands, and the black squares represent
non-amplified bands. The binary identity is represented as “1” and “0” respectively; the decimal
identity is converted from the binary identity.

4. Discussion

As an ornamental Pennisetum species with purple appearance, P. setaceum cv. ‘Rubrum’
has high ornamental value, strong drought tolerance, low maintenance cost, and land-
scaping value. In this study, 58.91 Gb of clean data was obtained via second-generation
transcriptome sequencing of P. setaceum cv. ‘Rubrum’. The N50 of unigenes was 1637 bp,
which was higher than those of two P. purpureus samples (N50 of 586 bp and 583 bp) [37]
but lower than two P. glaucum samples (1860 bp and 1691 bp) [38]. The percentage of Q30
bases in P. setaceum cv. ‘Rubrum’ transcriptome was over 94.22%, which was higher than
that of two kinds of P. glaucum (92.2% and 83.5%) [38]. A total of 55,627 unigenes were ob-
tained after sequencing and assembly of the P. setaceum cv. ‘Rubrum’ transcriptome, which
was more than the 6799 and 1253 unigenes identified in the two kinds of P. glaucum [39].
Compared with the transcriptome data of Pennisetum above, the assembly integrity of the
transcriptome data and number of unigenes detected in this study is higher. This may
be related to the genome size of the species itself and the quality of the sequencing. The
NR database comparison showed that the species most closely related to Pennisetum was
S. italica, followed by S. viridis. According to the records of Flora of China, both S. italica
and S. viridis belong to the genus Setaria, and both Pennisetum and Setaria belong to the Trib.
Paniceae R. Br. Pennisetum was not present in the top ten species with according to protein
sequence alignment, which may be due to the lack of Pennisetum information currently
available in the database. Therefore, it is very important to generate additional Pennisetum
transcriptome information.

Previous studies obtained 4493 SSR markers through the transcriptome sequencing
of Medicago sativa, with an SSR distribution frequency of 8.28% [40]. A total of 3745 SSR
loci were obtained from transcriptome sequencing of Pinus kesiya var. langbianensis, with
an SSR distribution frequency of 6.28% [41]. These values are lower than the number
of SSR markers (5122) we obtained from the P. setaceum cv. ‘Rubrum’ transcriptome in
this study. Among the SSR markers we identified, trinucleotide repeats (41.94%) were
the most abundant, followed by mononucleotide repeats (39.26%). The main SSR type
observed in the Pinus kesiya var. langbianensis transcriptome was the trinucleotide repeat
(49%), followed by the dinucleotide repeat (24%) [41]. Among the SSR markers developed
by transcriptome sequencing of purple elephant grass, trinucleotide repeats (59,368) were
the most abundant, followed by dinucleotide repeats (15,524) [23]. Mononucleotide repeats
(64.93%) were the most abundant in the Carex breviculmis transcriptome, followed by
trinucleotide repeats [21]. This indicates that there are differences in the distribution of SSR
repeat types among different species.

The ability to use the same SSR primers across species determines the value of these
primers. In our previous studies, 42 SSRs from C. breviculmis were found to be conserved
between species and within Carex species [21]. Li et al. [42] developed 18 polymorphic SSR
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markers for P. glaucum, which amplified polymorphic bands from 40 Pennisetum sources.
Seventy-eight SSRs from Triticum aestivum were conserved from Triticum to Hordeum [43].
In the present study, 50 SSR markers were randomly selected from the 5122 SSR markers we
identified, of which 38 pairs of SSR primers showed polymorphism. Those primers were
used in PCR among different Pennisetum species and demonstrated that the corresponding
SSRs were conserved. The SSR marker amplification results of the 38 Pennisetum samples
in this study showed that the average PIC value was 0.35, which indicates a moderate
level of polymorphism [44]. The PIC in our study was lower than the average PIC value
of the SSR markers of the 128 Camellia sinensis varieties (0.704) [45], and Prunus avium
(0.59) [46], but higher than Carex (0.259) [21]. This suggests that the PIC value, reflecting
the degree of variation in SSR loci, may be related to germplasm. The genetic diversity
in the collected Pennisetum samples was found to be moderate, which may be due to
the materials having been collected in a relatively concentrated place where the genetic
background difference may not be particularly large. In addition, based on the results of
UPGMA clustering and PCoA analysis, we were able to determine the genetic background
of different Pennisetum plant materials. And the results showed that the genetic relationship
of Pennisetum samples was not closely related to the geographical distribution location. The
phylogeny of P. clandestinum was classified into a separate category in UPGMA clustering
and PCoA analysis. P. clandestinum is native to Africa and, thus, it perhaps not expected to
have genetic similarity to other materials [47]. In addition, two kinds of P. alopecuroides cv.
‘Little Bunny’ materials from Beijing and Yunnan were clustered as one category, indicating
that they are closely related. However, P. alopecuroides cv. ‘Ziguang’ from Beijing and
P. alopecuroides cv. ‘Ziguang’ from Kunming, Yunnan, were classified into two categories.
We speculated that this may be because they can cross with other local varieties when
applied in different places.

Fingerprint maps can be used to identify different varieties, which is an important step
for furthering Pennisetum breeding applications. We constructed fingerprints based on the
genetic relationships and SSR results of 38 samples. In previous studies, the Ctcp016 primer
was able to identify 12 samples of Carex based on genetic diversity, and the MtTFSSR-
10 primer could distinguish seven varieties of alfalfa. In a study on Chrysanthemum ×
morifolium Ramat., researchers identified 480 traditional Chinese chrysanthemum varieties
and established their fingerprints [48]. The fingerprints generated in the present study
have important reference value in Pennisetum, which are notoriously difficult to distinguish.
It is worth noting that the PaSSR-11 primer can distinguish strains of P. alopecuroides,
and a combination of the PaSSR-1 and PaSSR-8 primers can distinguish seven kinds of
P. purpureum Schum. P. alopecuroides cv. ‘Hameln’ and P. alopecuroides cv. ‘Little Bunny’ are
similar in appearance and cannot be distinguished based on phenotypic characteristics. In
this study, we succeeded in distinguishing them at the gene level using the PaSSR-1 and
PaSSR-2 primers. The SSR markers developed in this study have greatly improved our
ability to identify Pennisetum species.

5. Conclusions

Second-generation transcriptome sequencing of P. setaceum cv. ‘Rubrum’ provided
abundant transcriptome data for Pennisetum. Thirty-eight of 50 randomly selected SSRs
were conserved among the Pennisetum species studied herein, demonstrating the feasibility
of developing SSR markers using RNA-seq in Pennisetum. Genetic diversity analysis of
38 Pennisetum samples was performed, revealing a high level of genetic diversity among
Pennisetum species. Through UPGMA clustering and PCoA analysis, 38 Pennisetum samples
were genetically classified, and a fingerprint map was developed to improve Pennisetum
identification. This study lays the foundation for the subsequent collection and utilization
of ornamental Pennisetum resources.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy12071683/s1, Figure S1: Representative SSR amplification
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results of Pennisetum varieties coded from 1 to 40; Table S1: Band Statistics Raw Data; Table S2: Genetic
diversity parameters of 38 pairs of polymorphic primers in the 38 Pennisetum materials; Table S3: The
genetic similarity coefficient between accessions.
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