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Abstract: Path-tracking control algorithms in agriculture typically focus on how to improve the
trajectory-tracking performance of autonomous agricultural machinery, and the agricultural produc-
tivity is optimized in a two-layer way. The upper operational layer optimizes an optimal tracking
trajectory with the best agricultural productivity, and the lower control layer—such as Nonlinear
Model Predictive Control (NMPC)—receives this optimized tracking trajectory first, and then steers
the vehicle to track this trajectory with high accuracy. However, this two-layer structure cannot im-
prove the agricultural productivity at the control layer online, which makes the agricultural operation
sub-optimal. In this paper, we focus on agricultural machinery operational efficiency, to represent
agricultural productivity; in order to realize optimizing control to further improve agricultural ma-
chinery operational efficiency, a new path-tracking control algorithm, named Efficiency-oriented
Model Predictive Control (EfiMPC), is proposed. EfiMPC is intrinsically a nested structure, which
can consider the global performance of the whole system defined in the operational layer—like the
agricultural machinery operational efficiency considered in this paper—in the control layer online;
thus, the agricultural machinery operational efficiency can be improved during the farming operation.
An unreachable tracking point, denoted as the pseudo-point, has been proposed, to indicate the
agricultural machinery operational efficiency objective in a receding horizon fashion; EfiMPC can
utilize this pseudo-point to realize the optimizing control online. A simulation case study was used to
test the superiority of the proposed EfiMPC algorithm, and the results show that, compared with the
traditional NMPC algorithm, the agricultural machinery operational efficiency realized by EfiMPC
was improved by 8.56%; thus, the effectiveness of the EfiMPC has been demonstrated.

Keywords: autonomous agricultural machine; Nonlinear Model Predictive Control; real-time optimization;
optimal control; path-tracking algorithm

1. Introduction

The main functions of autonomous agricultural machinery are to realize unmanned
driving and autonomous operation in the agricultural field [1]. The agricultural operations
of agricultural machinery include in-field and inter-field transports while executing farming
tasks, and the planning and the execution for these transports can significantly affect the
productivity of the whole system [2]. In view of this, two key problems must be addressed,
for autonomous agricultural machinery to be operated successfully in an arable field: one
is the path-planning problem [3]; the other is the path-tracking problem [4].

As optimizing the driving path of autonomous agricultural machinery is key to im-
proving agricultural production efficiency and operational quality [5,6], the path-planning
procedure can be regarded as an operational layer which aims to optimize the global per-
formance of the agricultural operation system. Agricultural productivity consists of typical

Agronomy 2022, 12, 1662. https://doi.org/10.3390/agronomy12071662 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12071662
https://doi.org/10.3390/agronomy12071662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-2819-4380
https://doi.org/10.3390/agronomy12071662
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12071662?type=check_update&version=2


Agronomy 2022, 12, 1662 2 of 19

global performances. In this paper, agricultural productivity is represented by agricultural
machinery operational efficiency, and the optimization of this agricultural machinery oper-
ational efficiency is further simplified by reducing the operational time of the autonomous
agricultural machinery in the arable field. A path-planning problem in the agricultural
domain is the derivation of a pre-determined trajectory which can be used to steer the
movements of autonomous agricultural machinery [7]. A significant amount of research
has been dedicated to the development of advanced algorithms for path planning in arable
farming [8]. For example, Han, et al. [9], proposed an Adaptive Elite Differential Evolution
(AEDE) algorithm, which is suitable for multi-tractor path optimization, and can reduce
the total turning time and the total operating time of the vehicle. Nørremark, et al. [10],
proposed an Artificial Bee Colony (ABC) algorithm for the capacitated vehicle routing
problem, to obtain a coverage path-planning optimization method; its overall objective
was to minimize the costs in time and distance of all vehicles featuring a harvest oper-
ation. Khosravani, et al. [11], proposed a common benchmarking field as a capacitated
coverage path-planning problem to test existing and future optimization algorithms. More
approaches to path-planning algorithms in agriculture can be found in [12,13].

Once the optimal tracking trajectory has been optimized, the desired agricultural ma-
chinery operational efficiency is assumed to be determined accordingly, and a path-tracking
algorithm will be utilized to realize this pre-determined agricultural machinery operational
efficiency, by tracking the optimized trajectory with the best accuracy. Specifically, the
execution of the transports along the optimized trajectory from the operational layer is
typically an autonomous navigation problem, or a path-tracking problem, which is an
important challenge that agricultural applications have in common [14]. The optimized
trajectories are usually composed of two major categories: the working trajectories within
the tracks, and the non-working trajectories in the headlands. Automatic steering systems
based on path-tracking algorithms have become an important tool for guidance on a track,
with accuracy in the range of centimeters; the transition from one track to another in the
headlands must also be conducted exactly. There are many turning types proposed by
research on the headlands. The most commonly used maneuvers are: (a) loop turn (Ω-turn);
(b) double-round-corner turn (Π-turn); (c) reverse turn (T-turn) [15]. For more types of
turning maneuvers, interested readers can refer to [16,17].

The main goal of the traditional path-tracking algorithm in agriculture is to control
the agricultural machinery, in order to track a pre-determined path with best accuracy
by calculating the optimal control variables. The path-tracking procedure can therefore
be regarded as a control layer which aims to minimize deviations of the autonomous
agricultural machinery from the pre-determined trajectory. As it is moving along the
trajectory, the autonomous agricultural machinery executes farming tasks such as tillage,
harvesting, and application of inputs such as nitrogen, seeds, and pesticides [18].

Most path-tracking control algorithms in agriculture only focus on how to improve the
trajectory-tracking performance of autonomous agricultural machinery on both straight-
line parallel tracks and headland turning curves, in the face of slippage and other dis-
turbances [19]. These algorithms are denoted as traditional path-tracking algorithms.
Nonlinear Model Predictive Control (NMPC) is a promising control algorithm, which can
solve path-tracking problems in agricultural operations with high accuracy [20]. Model
Predictive Control (MPC) refers to a class of computer control algorithms that utilize an
explicit process model to predict the future responses of a plant [21]. Nonlinear-model-
based MPC is denoted as NMPC. The main difference from conventional control methods
is that NMPC uses an online control law in a receding horizon fashion [22], and this control
law is the optimal solution obtained by solving an online optimization problem. Since its
inception in the 1970s, MPC has been successfully applied to complex industrial processes,
and it has shown great potential for handling complex constrained-optimization control
problems [23,24]. More detailed descriptions of model predictive control can be found
in [25]. Thanks to the development of microprocesses, the NMPC algorithm can nowadays
also be applied to agricultural applications [4,26].



Agronomy 2022, 12, 1662 3 of 19

However, this NMPC-based path-tracking algorithm can only optimize the control
performance of the autonomous agricultural machinery while the machinery is in mo-
tion, and the agricultural machinery operational efficiency is only a by-product of the
control performance with respect to a pre-determined trajectory. In other words, the tradi-
tional NMPC path-tracking algorithm is unable to optimize the global performance of the
whole system defined in the operational layer—like agricultural machinery operational
efficiency—directly online.

Specifically, the use of NMPC is typically in a two-layer structure: the upper opera-
tional layer first optimizes a tracking trajectory based on the global performance of the
whole system, such as improving the agricultural machinery operational efficiency; and
then the lower NMPC control layer receives this optimized trajectory, and it tries its best
to track this given trajectory by solving online optimization problems. This hierarchical
two-layer structure has its own limitations: the path-planning procedure is determined
offline, and therefore cannot predict future unknown disturbances which may occur in
arable farming; and the optimized path is only a sub-optimal trajectory, considering the
real-time disturbances. The NMPC control layer can overcome disturbances in order to
perfectly track the pre-determined trajectory; however, this control performance may un-
expectedly degrade the potential agricultural machinery operational efficiency, because
the aim of the optimization problem in NMPC is to minimize the tracking errors, not to
improve the agricultural machinery operational efficiency. In this paper, we introduce the
concept of “beneficial disturbances” to show that an ideal path-tracking algorithm should
have the ability to improve agricultural machinery operational efficiency directly in the
control layer online.

The Robotic Operation System (ROS), on the other hand, can also realize autonomous
navigation by the embedded Navigation Stack [27]. The Navigation Stack is a package
of the ROS that performs SLAM (Simultaneous Localization and Mapping) and path
planning, along with other functionalities for navigation [28]; the ROS will then send control
instructions to a lower controller, like PID (proportional integral derivative) controller, to
implement control actions [29]. Unlike NMPC, where the reference trajectory is determined
offline, ROS-based navigation can update the global path in real-time, which enables it to
improve the operational performance. More details of the autonomous navigation realized
by the ROS can be found by referring to [30–32]. However, ROS-based navigation also has
limitations: (1) it is a two-layer structure, where the upper layer is the Navigation Stack
in the ROS aiming to obtain the updated global path, and the lower layer is the controller
aiming to implement the control actions. As the time scales of the upper layer and the
lower layer are not equal, the update of the global path is executed at a certain time interval
which is greater than the time interval of the lower controller. Thus, during the control of
the lower layer, it can only optimize the control performance of the given trajectory, and
the optimization towards the operational performance is ignored; (2) Navigation Stack
is powerful, yet it requires fine tuning of parameters to optimize its performance, and
this tuning task is not as simple as it looks, and is potentially time-consuming [33]. To
summarize, the Navigation Stack technique in the ROS has the potential to obtain better
operational performance by updating the global path, but the large update interval and the
parameter tuning tasks mean that the operational performance remains sub-optimal.

Thus, it is not enough for the path-tracking algorithm to track a pre-determined trajec-
tory perfectly, regardless of the disturbances in NMPC, or to track an updated trajectory
at a certain interval by the lower controller. An ideal path-tracking algorithm should also
take the global performance of the whole system defined in the operational layer (denoted
as operational performance for brevity), like agricultural machinery operational efficiency,
into consideration to guide the movements of the autonomous agricultural machinery. This
kind of path-tracking algorithm is denoted as an intelligent path-tracking algorithm, and
was the main motivation behind this paper.

From the perspective of control theory, the optimizing control technique—which inte-
grates the optimization in the operational layer with the control in the control layer—has
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the potential to improve the operational performance in the control layer online. This
optimizing control idea is still absent in agricultural operation. Introducing this opti-
mizing control concept into autonomous agricultural machinery should help to improve
agricultural machinery operational efficiency online.

The main contribution of this paper is to propose a new kind of intelligent path-
tracking algorithm, named Efficiency-oriented Model Predictive Control (EfiMPC), to
realize optimizing control of autonomous agricultural machinery. EfiMPC can not only
consider the control performance towards a given trajectory, but can also consider the
global performance objective defined in the operational layer—like agricultural machinery
operational efficiency—in the control layer online, by a nested optimization structure. Thus,
EfiMPC can further improve agricultural machinery operational efficiency based on a
given tracking trajectory, and the intended farming tasks can be completed successfully in
the meantime.

2. Vehicle Kinematic Model

Autonomous agricultural machinery could be modelled with a high-fidelity nonlinear
dynamic model, in which every force that affects the system is considered. However, this
kind of complicated model would require modeling of the environments: for example,
slipping, which depends on soil moisture and tire properties [34]. In addition, using this
strict model with Nonlinear Model Predictive Control (NMPC) would lead to difficulties
with computational capacity. As we only tried to demonstrate the effectiveness of the pro-
posed Efficiency-oriented Model Predictive Control (EfiMPC) algorithm for its application
in autonomous agricultural machinery, a simplified model is qualified in this paper. A
more complicated nonlinear model with environmental interactions will be investigated in
our future research. The kinematic model of autonomous agricultural machinery is briefly
illustrated in Figure 1.
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Figure 1. The kinematic model of autonomous agricultural machinery.

As shown in Figure 1, a simplified kinematic model was applied to describe the motion
of autonomous agricultural machinery in Cartesian coordinates XOY. The red point, M,
is the mid-point of the rear axle of a vehicle representing the position of the autonomous
agricultural machinery in the arable field. The coordinates of M are (x, y). θ represents
the heading angle of the vehicle; δ represents the steering angle of the front wheel; v
represents the velocity; L represents the length of the vehicle wheelbase; and r represents
the turning radius.

The derivative of the heading angle θ is given by
.
θ = v/r, where r = L/ tan δ. Thus,

we have [35]:
.
θ =

v tan δ

L
, (1)
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The derivative of x represents the velocity in the X axis, and it is given by:

.
x = v cos θ, (2)

The derivative of y represents the velocity in the Y axis, and it is given by:

.
y = v sin θ, (3)

Then, the kinematic model of the autonomous agricultural machinery is given as follows:
.
x
.
y
.
θ

 =

v sin θ
v cos θ
v tan δ

L

, (4)

where the system states are z = [x, y, θ]T , and the control inputs are u = [δ, v]T , where
the superscript T represents the transpose of a vector. In addition, Equation (4) can be
expressed as

.
z = f (z, u), for brevity.

3. Control Algorithm
3.1. Problem Statement

In a field operation in agriculture, the autonomous agricultural machinery executes
farming tasks while it is moving [36], and a tracking trajectory is usually optimized in the
operational layer before the agricultural vehicle starts to work. The farming task considered
in this paper was simplified into working from track1 to track8, as shown in Figure 2, with
the requirement that all eight tracks should be covered thoroughly by the vehicle once.
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As shown in Figure 2, there were two distinct categories in this agricultural field:
one category consisted of the working areas where the autonomous agricultural machin-
ery executed tasks while moving along the tracks (the blue rectangular areas); the other
category consisted of the headland areas, where the autonomous agricultural machinery
only executed turning maneuvers from one track to another (the dashed-green rectangular
areas). The respective aims in these two categories were also different from one other: when
working in the tracks, the autonomous vehicles were expected to cover the tracks perfectly,
in order to execute their farming tasks successfully; when moving in the headlands, the
autonomous vehicles were expected to spend less time on these non-working areas. All
eight of the tracks were required to be visited once via the headland areas. There have been
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many useful maneuvers in the headlands proposed by different researchers. The three most
commonly used maneuvers are illustrated in Figure 3: (a) Ω-turn; (b) Π-turn; (c) T-turn.
Optimal maneuvers in the headlands are determined by the specific environment of the
operation field, which was not a major concern of this paper; thus, only the Π-turn maneu-
vers were used in the given optimized trajectory in Figure 2, to illustrate the ideas of the
newly proposed Efficiency-oriented Model Predictive Control algorithm.
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In order to improve the agricultural machinery operational efficiency, which was the
global objective of the whole system considered in this paper, the operational layer tried to
minimize the total traveling time Tcom of the autonomous agricultural machinery, from the
starting point P1 of track1 to the ending point P2 of track8, so that the farming tasks could
be completed successfully while it was moving. Thus, the tracking trajectory was optimized
in the operational layer, and the agricultural machinery operational efficiency objective
and farming constraints (the constraints of the autonomous vehicles, the constraints of
the obstacles in the field, etc.) were considered during optimization. Then, this optimized
trajectory was sent to the control layer in the autonomous agriculture machinery, to steer its
movements. In this way, the agricultural objective in the operational layer was translated
into a control objective in the control layer.

The hierarchical two-layer structure of this typical control strategy is illustrated in
Figure 4. From the perspective of the control theory, however, there needed to be a feedback
mechanism from the control layer to the operational layer, so that this feedback could help
to further improve the agricultural machinery operational efficiency online during the
working periods of the autonomous vehicle.
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We assumed that the optimized trajectory (zT (t), uT (t)) had already been given by
the operational layer, and that it was denoted as the red trajectory in Figure 3 (as the specific
construction of this tracking trajectory was not the concern of this paper, we assumed that
this tracking trajectory had already been given offline). Then, the control layer of the
agricultural vehicle would try its best to track this pre-determined trajectory during its
motion, and the autonomous agricultural machinery would execute agricultural tasks in
the meantime.

Thus, the problem of the autonomous agricultural machinery control became an
optimal path-tracking problem, defined as follows:

min
u

∫ t f

t0

lc(z̃(t), u(t); zT (t), uT (t))dt (5)

s.t.
.
z̃(t) = f (z̃(t), u(t)), z̃(t0) = z(t0)

z̃(t) ∈ Z , u(t) ∈ U , t0 ≤ t ≤ t f
z̃(t f ) ∈ Bε(zP2)

where t0 and t f were the initial and the ending-time instant, respectively, of the agricultural
operation; z(t0) was the system state at the current sample instant, t0; z̃(t) was the predicted
system state of the open-loop system; (zT (t), uT (t)) was the optimized trajectory received
from the operational layer; f (z(t), u(t)) was the dynamic model of the autonomous agri-
cultural machinery defined in Equation (4); Z and U were the constraints of the system
states and control inputs, respectively. Bε(zP2) was a ε -neighborhood of the ending point
zP2 in the agricultural field, as shown in Figure 3, and was defined as follows:

Bε(x0) = {x|||x− x0||2 ≤ ε, ε > 0},

where ||x||2 =
√

x2. was a norm computation; ε was a parameter bigger than 0, and it was
defined as ε = 5 cm in this paper.

In Equation (5), lc(·) was a cost function representing the deviation from the given
tracking trajectory, (zT (t), uT (t)), and it was defined as follows:

lc(t) = ||z(t)− zT (t)||2Q + ||u(t)− uT (t)||2R (6)

where Q and R were symmetric positive semi-definite weighting matrices, and ||x||2Q = QxQ.
The disturbance considered in the simulation was w(t) ∈W ⊆ R3, adding to the state

z(t) at the closed-loop system, where W was a bounded disturbance satisfying:

W = {w = {w1, w2, w3}|−0.01 ≤ w1 ≤ 0.01,−0.05 ≤ w2 ≤ 0.05,−0.01 ≤ w3 ≤ 0.01},

and the updated state at the closed-loop system satisfied z(tk+1) = z̃(tk+1) + w(tk+1),
where z̃(tk+1) was the open-loop predicted state. The sample interval considered in this
paper was tk+1 = tk + ∆t where ∆t = Ts = 0.1 s.

Some researchers have focused on how to plan the optimal trajectory, (zT (t), uT (t)),
while others have focused on how to control the agricultural vehicle to track this optimized
trajectory perfectly; however, few researchers have focused on how to integrate optimiza-
tion and control, to improve the operational layer performance online (the agricultural
machinery operational efficiency considered in this paper). Integration of optimization and
control is one of the most popular research topics in control theory nowadays.

In this paper, we propose a new kind of path-tracking algorithm, named Efficiency-
oriented Model Predictive Control (EfiMPC), which can improve agricultural machinery
operational efficiency in the control layer online. One of the basic motivations of EfiMPC is
that it can take advantage of “beneficial disturbance” to improve the performance defined
in the operational layer. The brief ideas of beneficial disturbance are illustrated in Figure 5.
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As shown in Figure 5: z(tk) is the system state at the current sample instant, tk;
z̃(tk+1) is the predicted state of the open-loop system; z(tk+1) is the closed-loop state at
the next sample instant, tk+1, influenced by the disturbance w(tk+1). This disturbance
pushes the system state towards the tracking points, zT (tk+2) and zT (tk+3). Then, the
controller will determine an optimal solution, uo, to track zT (tk+2) at the sample instant,
tk+1. This optimal solution, uo, will result in a predicted state, z̃1(tk+2), which can perfectly
track zT (tk+2). There exists another feasible solution, u f , which steers the predicted state
into z̃2(tk+2), and this z̃2(tk+2) is reachable because the beneficial disturbance, w(tk+1)
(z̃2(tk+2), is not reachable from z̃(tk+1)). The question is: which one is the preferred
solution? From the perspective of tracking performance, there is no doubt that z̃1(tk+2)
is preferable, because z̃1(tk+2) is nearer to zT (tk+2); however, from the perspective of
the operational layer performance—which wants to improve the agricultural machinery
operational efficiency—z̃2(tk+2) is preferable because: (1) it satisfies the constraints and
meets the requirements of the farming tasks, and (2) it saves working time, because it
moves further in the track, and the agricultural machinery operational efficiency can be
improved accordingly.

The traditional NMPC algorithm is unable to consider the objective defined in the
operational layer, and it cannot make use of beneficial disturbances to improve the agricul-
tural machinery operational efficiency online; whereas the proposed EfiMPC algorithm is
able to consider the operational layer performance in the control layer online, to further
improve the agricultural machinery operational efficiency, which makes the autonomous
agricultural machinery more intelligent.

3.2. Traditional NMPC Algorithm

The basic idea of traditional Nonlinear Model Predictive Control (NMPC) is to predict
the future responses of a nonlinear system under control actions, while the constraints
are satisfied, and a given cost function is optimized online, in order to obtain optimal
controls in a receding horizon fashion. Thus, NMPC uses finite-horizon-based online
optimization problems to replace Equation (5), which is unrealistic in practice due to its
large optimization horizon.

Given an optimized tracking trajectory, (zT (t), uT (t)), from the operational layer, the
NMPC controller solves the following optimization problem online at every sample instant,
tk, k = 0, 1, 2, . . ., to control the autonomous agricultural machinery:

J∗C,k = min
uHp

∫ tk+Hp

tk

lc(z̃(t), u(t); zT (t), uT (t))dt (7)

s.t.
.
z̃(t) = f (z̃(t), u(t)), z̃(tk) = z(tk)

z̃(t) ∈ Z , uHp(t) ∈ U , tk ≤ t ≤ tk + Hp
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where: Hp is the prediction horizon; tk is the current sample instant; lc is the cost function
defined in Equation (6); f (z(t), u(t)) is the dynamic model of the autonomous vehicle
defined in Equation (4); Z and U are the constraints of the system states and control inputs,
respectively, and they satisfy:

Z = {z = (z1, z2, z3)|z1 > 0, z2 > 0,−π ≤ z3 ≤ π}

U = {u = (u1, u2)|δmin ≤ u1 ≤ δmax, vmin ≤ u2 ≤ vmax}.

The solution to Equation (7) is the optimal control u∗Hp
(t), t ∈

[
tk, tk + Hp

)
. In this

paper, u∗Hp
was a piece-wise constant control sequence, satisfying:

u∗Hp
(
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control the system from the perspective of the control performance, based on the opti-
mized terminal state 𝑧𝑧(𝑡𝑡𝑘𝑘 + 𝐻𝐻1). Thus, the inner level focused more on the stability of the 
system, the outer level focused more on the optimality of the agricultural machinery op-
erational efficiency, and (𝑢𝑢𝐻𝐻1 ,𝑢𝑢𝐻𝐻2) together were able to realize optimizing control by 
considering operational layer performance in the control layer online. 
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trol problem, and the ideal optimal control problem has a corresponding optimal solution 
which will result in an optimal operational performance, 𝐽𝐽𝑃𝑃∗ , indicating the ideal optimal 
agricultural machinery operational efficiency. The traditional NMPC strategy, and the 
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∈ [tk, tk+1).

Only the first control action in u∗Hp
(t) will be implemented into the system in the

closed-loop perspective, and the optimization procedure will be repeated with the updated
system state, z(tk+1), at the next sampling instant tk+1. The control procedure will be
terminated once the system state becomes the end state P2 in Figure 2, which means
z(tk+1) ∈ Bε(zP2).

The NMPC controller defined in Equation (7) is a two-layer structure, as shown in
Figure 4, and there are two main issues: (1) the objective function defined in Equation (7)
is the control performance, and the agricultural machinery operational efficiency defined
in the operational layer cannot be optimized directly; (2) the given tracking trajectory,
(zT (t), uT (t)), is optimized offline, which will result in sub-optimal operation.

To address the above two issues, a feedback mechanism between the control layer and
the operational layer should be introduced to integrate control and optimization. In this
way, the agricultural machinery operational efficiency can be further improved online. In
addition, the given tracking trajectory, (zT (t), uT (t)), should be regarded as one feasible
solution, and better solutions could be optimized online, taking the beneficial disturbances
into account.

3.3. Efficiency-Oriented Model Predictive Control Algorithm
3.3.1. Ideas of Efficiency-Oriented Model Predictive Control

Efficiency-oriented Model Predictive Control (EfiMPC) aims to solve an online opti-
mization problem at every sample instant tk in a receding horizon fashion, and is defined
as follows:

J∗E,k = min
uH1 ,uH2

JE,k = min
uH1 ,uH2

VOP
(
uH1 , uH2 ; z(tk), Hp

)
(8)

s.t. Hp = H1 + H2.
z̃(t) = f

(
z̃(t), uH1(t)

)
, z̃(tk) = z(tk)

z̃(t) ∈ ZU , uH1(t) ∈ UU , tk ≤ t ≤ tk + H1
z̃tk+H1 ∈ Zter, z̃tk+H1 = z̃(tk + H1)
uH2 = argmin

uH2

VC
(
uH2 ; z̃tk+H1 , H2

)
s.t.

.
z̃(t) = f

(
z̃(t), uH2(t)

)
, tk + H1 ≤ t ≤ tk + Hp

z̃(t) ∈ ZL, uH2(t) ∈ UL, tk + H1 ≤ t ≤ tk + Hp

where most definitions of parameters are the same as those defined in Equation (7). VOP is
an objective function to measure the performance of the agricultural machinery operational
efficiency defined in the operational layer. VC is an objective function to measure the
performance of the control performance defined in the control layer. ZU and UU are
the constraints of the system states and control inputs, respectively, in the outer-level
optimization problem. ZL and UL are the constraints of the system states and control
inputs, respectively, in the inner-level optimization problem. Zter is the terminal constraint
of the outer level. z(tk) is the closed-loop state of the system at the current sample instant
tk, and z̃(t) are the predicted states of the open-loop system. Hp is the prediction horizon
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defined in Equation (7), and it is divided into two parts: H1 and H2; thus, the control actions
have also been divided into two parts: uH1 and uH2 (u

∗
H1

, u∗H2
) is the optimal solution to

Equation (8), and z̃∗(t), t ∈ [tk, tk + Hp) is the corresponding optimal state trajectory.
The EfiMPC strategy defined in Equation (8) is intrinsically a nested optimization prob-

lem [37], where the outer-level optimization problem optimizes the performance defined in
the operational layer by

(
uH1 , uH2

)
, and the inner-level optimization problem optimizes

the performance defined in the control layer by uH2 . In this way, the predicted dynamics
resulting from the control objectives can be assessed by the operational layer objectives
online; thus, EfiMPC builds feedback between the control layer and the operational layer
with the help of this nested structure. See Figure 6 for the nested structure of EfiMPC.
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As shown in Figure 6, the independent variable uH1 was used to optimize the per-
formance of the operational layer directly, and the independent variable uH2 was used to
control the system from the perspective of the control performance, based on the optimized
terminal state z(tk + H1). Thus, the inner level focused more on the stability of the system,
the outer level focused more on the optimality of the agricultural machinery operational
efficiency, and

(
uH1 , uH2

)
together were able to realize optimizing control by considering

operational layer performance in the control layer online.
At every sample instant, tk, EfiMPC solved the optimization problem (8) repeatedly,

and then it executed the first control action, u∗H1
(tk), into the closed-loop system. The

resulting implicit closed-loop input profile, u∗E, realized by the receding horizon fashion,
had the following form:

u∗E(
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The closed-loop system had a corresponding closed-loop performance, J∗E, measuring
the objective of the operational layer VOP(u∗E; z(t0), t f ), where t0 was the starting instant
of the agricultural operation, and t f was the ending instant of the agricultural operation.
EfiMPC is a receding horizon strategy, which approximates the ideal optimal control prob-
lem, and the ideal optimal control problem has a corresponding optimal solution which
will result in an optimal operational performance, J∗P, indicating the ideal optimal agricul-
tural machinery operational efficiency. The traditional NMPC strategy, and the proposed
EfiMPC strategy, both try to realize this ideal performance, J∗P. The main difference is
that EfiMPC can use a feedback mechanism to optimize J∗E online, to render it closer to J∗P
(increasing the agricultural machinery operational efficiency online, in this paper); while in
NMPC, there are no such feedbacks, and it can only optimize the control performance. The
operational performance is only a byproduct of the control performance in NMPC, and this
performance could be degraded by real-time disturbances.

3.3.2. The Application of Efficiency-Oriented Model Predictive Control

The objective in the operational layer considered in this paper was to maximize
the agricultural machinery operational efficiency; it was simplified into minimizing the
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working time from the start point P1 to the end point P2, as shown in Figure 2. Furthermore,
the farming tasks had to be completed by autonomous agricultural machinery.

However, in the EfiMPC strategy defined in Equation (8), it was inappropriate to
directly use the working time Tcom as the objective function VOP, because the receding
horizon strategy used in EfiMPC rendered the prediction horizon, Hp, fixed during the
optimization. To overcome this limitation, EfiMPC translated the objective of “minimize the
working time in a certain field” into the objective of “maximize the working distance within
a certain working time”. In other words, the following three objectives were expected to
be equivalent:

min
u

Tcom ⇔ max
u
L
(

Hp
)
⇔ min

u

∣∣∣∣∣∣z̃tk+Hp − zp

∣∣∣∣∣∣2,

where Tcom is the working time of the autonomous vehicle, spent from P1 to P2, in Figure 2;
L
(

Hp
)

is the length of the effective distance the autonomous vehicle covered within the
prediction horizon; Hp; z̃tk+Hp is the terminal state at the end of the prediction horizon; and
zp is a pseudo-state which helps to maximize the effective distance L

(
Hp
)
. The ideas of the

effective distance L
(

Hp
)
, as well as the pseudo-state zp, are illustrated in Figure 7.
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As shown in Figure 7: z(tk) is the state of the closed-loop system at the current
sample instant tk; z̃(tk+i), i = 1, . . . , Hp are the predicted system states of the open-loop
system; zT (tk+i), i = 1, . . . , Hp are the tracking points at the given tracking trajectory;

denoting z(tk) as point PA; denoting zT
(

tk+Hp

)
as point PH ; and point PB being the

projection of z̃
(
tk + Hp

)
into the straight line PAPH . Then, the length of the line segment,

PAPB, is denoted as the effective distance L
(

Hp
)
. This effective distance represents the

working distance of the autonomous agricultural machinery covered in the tracks within
the prediction horizon Hp. A larger working distance within a certain time interval, Hp,
indicates a shorter time spent in agricultural operation, and thus min

u
Tcom ⇔ max

u
L
(

Hp
)

is verified.
However, the tracking control of z̃(tk+i) towards zT (tk+i) will restrict the terminal

state z̃
(

tk+Hp

)
within a small neighborhood of zT

(
tk+Hp

)
, and the optimization of L

(
Hp
)

will suffer accordingly. This limitation implies that the control performance may degrade
the optimization performance of the operational layer.

Thus, in order to realize the optimization of the effective distance, L
(

Hp
)
, a pseudo-

point zp is introduced, and it satisfies zp = zT
(
tk + Hp + q

)
, where q is a non-negative inte-

ger. In essence, this pseudo-point is an unreachable tracking point that cannot be reached
from z(tk) within the prediction horizon Hp, and it can help optimize the length of L

(
Hp
)
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beyond zT
(
tk + Hp

)
. See Figure 7 again: point PC is the projection of the pseudo-point zp

into the extension of the line segment PAPH , and it satisfies PAPB < PAPC = (PAPB + PBPC).
Thus, the maximization of effective distance PAPB is identical to the minimization of PBPC,
and the equivalence of max

u
L
(

Hp
)
⇔ min

u
||z̃tk+Hp − zp||2 has been verified accordingly.

To summarize, the objective of minimizing the working time Tcom has been converted
into the objective of minimizing the distance between the terminal state z̃tk+Hp and the
pseudo-state zp, and the resulting EfiMPC controller, is thus defined as follows:

J∗E,k = min
uH1 ,uH2

JE,k = min
uH1 ,uH2

||z̃tk+Hp − zp||2 (9)

s.t. Hp = H1 + H2.
z̃(t) = f

(
z̃(t), uH1(t)

)
, z̃(tk) = z(tk)

z̃(t) ∈ ZU , uH1(t) ∈ UU , tk ≤ t ≤ tk + H1
z̃tk+H1 ∈ Zter, z̃tk+H1 = z̃(tk + H1)

uH2 = argmin
uH2

∫ tk+Hp
tk+H1

(||z̃(t)− zT (t)||2Q1
+ ||u(t)− uT (t)||2Q2

)dt

+||z̃tk+Hp − zp||2R
s.t.

.
z̃(t) = f

(
z̃(t), uH2(t)

)
, tk + H1 ≤ t ≤ tk + Hp

z̃(t) ∈ ZL, uH2(t) ∈ UL, tk + H1 ≤ t ≤ tk + Hp

where most definitions of parameters are the same as those defined in Equation (8); Zter is
a terminal constraint in the outer level, which restricts the outer-level terminal state z̃tk+H1

within a neighborhood of zT (tk + H1); Q1, Q2 and R are symmetric positive semi-definite
weighting matrices.

In Equation (9), EfiMPC divides the control variables into two parts: uH1 in the
outer-level optimization, and uH2 in the inner-level optimization. The outer level focuses
mainly on improving the operational performance, and the inner level guarantees that the
optimized control action can also satisfy the control performance.

The farming tasks were not specifically defined in this paper; instead, they are indi-
cated by the constraints defined in Equation (9). Thus, once the constraints in Equation (9)
were satisfied, it was assumed that the corresponding farming tasks had also been com-
pleted successfully. The detailed constraints indicating the farming tasks are defined
as follows:

ZU = {z = (z1, z2, z3)|zT (t)− ε ≤ z1(t) ≤ zT (t) + ε, z2 > 0,−π ≤ z3 ≤ π)}
Zter = {z = (z1, z2, z3)|zT (tk + H1)− ε ≤ z1(tk + H1) ≤ zT (tk + H1) + ε, z2 > 0,−π ≤ z3 ≤ π)}

UU = {u = (u1, u2)|δmin ≤ u1 ≤ δmax, vmin ≤ u2 ≤ vmax}
ZL = ZU ,UL = UU

where ε is the parameter defined in Bε, and this ε also represents the maximum lateral
deviations of the autonomous agricultural machinery while in motion.

4. Results

In order to demonstrate the effectiveness of the proposed path-tracking algorithm,
Efficiency-oriented Model Predictive Control (EfiMPC), a case study of the agricultural
operation defined in Figure 2 was used for simulation here. The ultimate objective was to
improve agricultural machinery operational efficiency, which meant that the autonomous
agricultural machinery had to execute the required farming tasks in the tracks successfully,
while the working time spent from the starting point P1 to the ending point P2 had
to be minimized in the meantime. The ideal shortest working time of the autonomous
agricultural machinery was 108.5 s in this case study.

The EfiMPC algorithm defined in Equation (9), and the traditional NMPC algorithm
defined in Equation (7), were used as the comparative algorithms for the autonomous
agricultural machinery here, and the specific parameters and setups were defined as
follows: the sampling interval Ts = 0.1 s; the prediction horizon, Hp = 10; the outer-layer
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horizon, H1 = 6; the inner-layer horizon H2 = 4; the pseudo-point parameter q = 2;
the minimum steering angle of the front wheel, δmin = −1.0427 rad/s; the maximum
steering angle of the front wheel, δmax = 1.0427 rad/s; the minimum velocity of the vehicle,
vmin = 0 m/s; the maximum velocity of the vehicle, vmax = 1.5 m/s; the weighting matrices,
Q1 = diag([1, 1, 1]), Q2 = diag([1, 1]), and R = diag([10, 10, 10]), where diag represented
the diagonal matrix; the dimension of the vehicle, z = [x, y], was 2; the dimensions of the
fields and the tracks were also 2 (Cartesian coordinates XOY); the length of a single track
was 18 m, and the distance between two neighboring tracks was 1.5 m.

The optimization of the outer-level problem, with respect to uH1 in Equation (9), was
realized by metaheuristic algorithms, such as the OSPO algorithm [38]; the optimization of
the inner-level problem, with respect to uH2 in Equation (9), was realized by deterministic
algorithms, such as the sequential quadratic programming [39] embedded in the fmincon
algorithm in MATLAB. The optimization of Equation (8) was also realized by the fmincon
algorithm in MATLAB.

The simulation results of the working trajectories realized by EfiMPC and NMPC
are illustrated in Figure 8a,b, respectively. Both control strategies executed the farming
tasks successfully from the start point P1 to the end point P2, because they satisfied all the
constraints during the operation. However, the amount of working time spent by EfiMPC
and NMPC differed: the autonomous agricultural machinery controlled by EfiMPC took
TE f i

s = 116.4 s to complete the farming tasks, while the autonomous agricultural machinery
controlled by NMPC took TNMPC

s = 127.3 s to complete the same farming tasks. Thus,
the agricultural machinery operational efficiency realized by EfiMPC was better than that
by NMPC, and the specific improvement, by using the EfiMPC algorithm, was 8.56%
compared to the NMPC algorithm.
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Figure 8. The working trajectories of autonomous vehicles controlled by (a) EfiMPC, and (b) NMPC.

To finish the farming tasks quickly is not enough; it is also necessary to satisfy the
farming requirements during the operations. The farming requirements considered in this
paper were mainly to keep the lateral deviations from the tracks smaller than 5 cm (which
are denoted by the regions between dashed lines in Figure 8); the detailed lateral deviations
controlled by EfiMPC and NMPC for each track are illustrated in Figure 9a,b, respectively.
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Figure 9. The lateral deviations controlled by (a) EfiMPC, and (b) NMPC in different tracks.

The maximum lateral deviation of the movements in the working tracks controlled
by EfiMPC was 4.1363 cm, while the maximum lateral deviation of the movements in the
working tracks controlled by NMPC was 3.97 cm. The average lateral deviations of the
movements in the working tracks controlled by EfiMPC and NMPC were 1.1161 cm and
1.1118 cm, respectively. Thus, from the lateral deviation perspective, NMPC outperformed
EfiMPC. The reason for this phenomenon was that EfiMPC sacrificed some tracking perfor-
mance in order to realize better agricultural machinery operational efficiency, defined in
the operational layer. As the lateral deviation was still within the constraints (4.1363 cm is
smaller than 5 cm), the kind of sacrifice made by EfiMPC in this case was worthwhile, in
order to improve the agricultural machinery operational efficiency.

The control actions of the autonomous agricultural machinery, taken by EfiMPC and
NMPC, are illustrated in Figure 10. As shown in Figure 10, the velocity of the vehicle
controlled by EfiMPC was kept at the maximum value for most of the time, while the
velocity of the vehicle controlled by NMPC may have deteriorated during the operation.
This difference can be explained easily: the goal of EfiMPC was to improve the agricultural
machinery operational efficiency, so the velocity of the vehicle was expected to be large;
while the goal of NMPC was to track the tracking trajectory perfectly, so the vehicle
may have had to slow down to track the neighboring tracking points, and it could make
use of the beneficial disturbances. Furthermore, the steering angle δ of the vehicle was
changed frequently in order to optimize the objectives defined in EfiMPC and NMPC, and
one could define an additional constraint on the changing rate ∆δ ≤ ∆δmax to alleviate
these variations.



Agronomy 2022, 12, 1662 15 of 19

Agronomy 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 

tracking performance in order to realize better agricultural machinery operational effi-
ciency, defined in the operational layer. As the lateral deviation was still within the con-
straints (4.1363 cm is smaller than 5 cm), the kind of sacrifice made by EfiMPC in this case 
was worthwhile, in order to improve the agricultural machinery operational efficiency. 

The control actions of the autonomous agricultural machinery, taken by EfiMPC and 
NMPC, are illustrated in Figure 10. As shown in Figure 10, the velocity of the vehicle con-
trolled by EfiMPC was kept at the maximum value for most of the time, while the velocity 
of the vehicle controlled by NMPC may have deteriorated during the operation. This dif-
ference can be explained easily: the goal of EfiMPC was to improve the agricultural ma-
chinery operational efficiency, so the velocity of the vehicle was expected to be large; 
while the goal of NMPC was to track the tracking trajectory perfectly, so the vehicle may 
have had to slow down to track the neighboring tracking points, and it could make use of 
the beneficial disturbances. Furthermore, the steering angle δ of the vehicle was changed 
frequently in order to optimize the objectives defined in EfiMPC and NMPC, and one 
could define an additional constraint on the changing rate Δ𝛿𝛿 ≤ 𝛥𝛥𝛿𝛿𝑚𝑚𝑚𝑚𝑥𝑥 to alleviate these 
variations. 

  
(a) (b) 

Figure 10. The control actions of autonomous vehicles controlled by (a) EfiMPC, and (b) NMPC. 

5. Discussion 
According to the simulation results, it is clear that autonomous agricultural machin-

ery controlled by an EfiMPC algorithm can achieve better agricultural machinery opera-
tional efficiency than that controlled by an NMPC algorithm, because the working time 
spent by EfiMPC was reduced by 8.56%. 

Some readers may argue that the given tracking trajectory was not the optimal one, 
and thus degraded the performance of the NMPC; however, this was precisely another 
superior aspect of using EfiMPC. Specifically, given any feasible tracking trajectory which 
can complete the farming tasks while satisfying all the constraints, the EfiMPC algorithm 
can control the autonomous machinery to achieve better agricultural machinery opera-
tional efficiency by considering the operational performance in the control layer online; 
thus, a feasible tracking trajectory is enough for EfiMPC. 

ROS-based navigation control has the ability to update the tracking trajectory online; 
thus, it also has the potential to improve operational performance. Here, we assumed that 
the Navigation Stack in the ROS could obtain the ideal trajectory, and that the updated 
trajectory would be sent to the lower controller. In the traditional ROS, the lower control-
ler is typically a PID controller; here, we used an MPC controller to further improve the 
performance of the ROS. In this way, the ROS played the role of an upper layer, which 
updated the optimal tracking trajectory at a certain interval, and we defined this interval 
as 0.2 s, which was greater than 𝑇𝑇𝑠𝑠 = 0.1 s (because the upper layer typically has a lager 

Figure 10. The control actions of autonomous vehicles controlled by (a) EfiMPC, and (b) NMPC.

5. Discussion

According to the simulation results, it is clear that autonomous agricultural machinery
controlled by an EfiMPC algorithm can achieve better agricultural machinery operational
efficiency than that controlled by an NMPC algorithm, because the working time spent by
EfiMPC was reduced by 8.56%.

Some readers may argue that the given tracking trajectory was not the optimal one,
and thus degraded the performance of the NMPC; however, this was precisely another
superior aspect of using EfiMPC. Specifically, given any feasible tracking trajectory which
can complete the farming tasks while satisfying all the constraints, the EfiMPC algorithm
can control the autonomous machinery to achieve better agricultural machinery operational
efficiency by considering the operational performance in the control layer online; thus, a
feasible tracking trajectory is enough for EfiMPC.

ROS-based navigation control has the ability to update the tracking trajectory online;
thus, it also has the potential to improve operational performance. Here, we assumed that
the Navigation Stack in the ROS could obtain the ideal trajectory, and that the updated
trajectory would be sent to the lower controller. In the traditional ROS, the lower controller
is typically a PID controller; here, we used an MPC controller to further improve the
performance of the ROS. In this way, the ROS played the role of an upper layer, which
updated the optimal tracking trajectory at a certain interval, and we defined this interval
as 0.2 s, which was greater than Ts = 0.1 s (because the upper layer typically has a lager
time scale than that of the lower layer controller). The other parameter definitions were the
same as those used in EfiMPC, and the simulation result is illustrated in Figure 11.

As shown in Figure 11, the working time spent by the ROS strategy was 122.5 s,
which was better than the NMPC strategy (127.3 s), and worse than the EfiMPC strategy
(116.4 s). The reason why the ROS strategy performed better than the NMPC strategy
was that the ROS strategy was able to update the tracking trajectory to obtain a higher
operational performance, while the NMPC strategy could only track an offline optimal
trajectory. The reason why the EfiMPC strategy performed better than the ROS strategy was
that, although the ROS strategy was able to update the tracking trajectory by a two-layer
structure, the updating frequency was slower than the lower-layer controller; while for
EfiMPC, it was able to optimize the control performance and the operational performance
online simultaneously in one layer.
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In addition, the parameter q, used for pseudo-state zp, was q = 2 in the simulation,
without further explanations. Indeed, the value of q can affect the performance of EfiMPC
defined in Equation (9). If q = 0, EfiMPC will be degraded into tracking NMPC; a small
value of q has the potential to improve the agricultural machinery operational efficiency to
a small extent, while the tracking performance can also be promised with a high accuracy;
a large value of q has the potential to improve the agricultural machinery operational
efficiency to a larger extent, while the tracking performance (like lateral deviations) may
suffer accordingly. Thus, the specific choice of the parameter q could be further investigated.
A balanced value, q = 2, was used in this paper, and more flexible values of q, as well as
their impacts, will be studied in our future research.

The main strength of EfiMPC is its nested structure, which can integrate the operational
layer performance and the control layer performance into one framework. In this way, the
optimizing control is realized by considering the operational performance in the control
layer online. However, the nested optimization problem is intrinsically a complicated
optimization problem, and an ideal optimization algorithm which can solve the EfiMPC
problem, by promising performance fast, is desired. We will try to propose a specific
optimization algorithm which aims to achieve this target in our future research.

This paper only uses a simulation to illustrate the superiority of the newly proposed
path-tracking algorithm EfiMPC; the effectiveness of EfiMPC could be further tested in a
real-world arable field. In our future studies, we will use EfiMPC to control autonomous
vehicles in a real-world agricultural application.

6. Conclusions

This paper proposes a new kind of intelligent path-tracking algorithm, named Efficiency-
oriented Model Predictive Control (EfiMPC), for autonomous agricultural machinery. EfiMPC
can integrate the optimization in the operational layer and the control in the control layer,
to further improve agricultural machinery operational efficiency online. The optimizing
control property of EfiMPC is promised by the nested optimization structure, where the global
performance of the whole system, defined in the operational layer, is mainly considered at the
outer level, and the control performance is mainly considered at the inner level. In order to
optimize agricultural machinery operational efficiency in a receding horizon fashion, ideas
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of effective distance and pseudo-point have been proposed in EfiMPC, and the optimization
of agricultural machinery operational efficiency has been translated into the optimization
of the distance between a terminal state and a pseudo-point. The simulation results show
that EfiMPC can improve agricultural machinery operational efficiency by 8.56%, compared
with the traditional NMPC algorithm; the effectiveness of the proposed EfiMPC has thus
been demonstrated.

However, in this paper, the noises and model uncertainties have been ignored; state
estimation and model parameter estimation techniques could be used to deal with these
situations. In addition, the nested structure will increase the computation burden of the
online optimization problem, and a suitable metaheuristic algorithm could be investigated
to reduce the online computation. Furthermore, obstacle detection and avoidance systems
are crucial to autonomous vehicles, and these systems could be integrated into EfiMPC by
modifying the objective function.

This paper presents the initial idea of using EfiMPC in autonomous vehicles, which
makes the autonomous agricultural machinery more intelligent by realizing optimizing
control. Future studies could investigate the parameter q defined in the pseudo-point, to
further improve agricultural machinery operational efficiency. In addition, well-performed
optimization algorithms suitable for the nested structure of EfiMPC could also be re-
searched. Finally, EfiMPC could be used in a real-world agricultural application, to further
investigate its properties.
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