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Abstract: Agricultural practices affect arbuscular mycorrhizal fungal (AMF) hyphae growth and
glomalin production, which is a recalcitrant carbon (C) source in soil. Since the spatial distribution
of glomalin is an interesting issue for agronomists in terms of carbon sequestration, digital maps
are a cost-free and useful approach. For this study, a set of 120 soil samples was collected from
an experimental area of 310 km2 from the Sarab region of Iran. Soil total glomalin (TG) and easily
extractable glomalin (EEG) were determined via ELISA using the monoclonal antibody 32B11. Soil
organic carbon (OC) was also measured. The ratios of TG/OC and EEG/OC as the glomalin–C quotes
of OC were calculated. A total of 17 terrain-related attributes were also derived from the digital
elevation model (DEM) and used as static environmental covariates in digital soil mapping (DSM)
using three predictive models, including multiple linear regression (MLR), random forests (RF), and
Cubist (CU). The major findings were as follows: (a) DSM facilitated the interpretation of recalcitrant
C source variation; (b) RF outperformed MLR and CU as models in predicting and mapping the
spatial distribution of glomalin using available covariates; (c) the best accuracy in predictions was for
EEG, followed by EEG/OC, TG, and TG/OC.

Keywords: digital soil mapping; environmental covariates; glomalin; modeling; organic carbon;
random forest

1. Introduction

Glomalin is a glycoprotein produced by the hyphae and spores of arbuscular mycor-
rhizal fungi (AMF) belonging to the phylum Glomeromycota [1]. The insoluble nature of
glomalin, together with its relative resistance to microbial degradation, results in a very
stable molecule in the soil environment with a half-life of nearly 50 years. Regarding this
feature of glomalin, it can be considered as a recalcitrant C source in soil. On a global
scale, glomalin is a hiding place for about one-third of the world’s stored soil carbon [2].
The conservation of soil carbon resources diminishes global greenhouse gas emissions,
significantly contributing to C sequestration and the international goal to limit climate
change [3]. The production of glomalin mainly depends on soil enrichment usages and
agricultural practices [4,5].

Total glomalin (TG) represents the accumulated glomalin produced by fungi over
consecutive years while easily extractable glomalin (EEG) is newly formed in soil. The
definitions of TG and EEG mainly depend on the type of extractant rather than time peri-
ods [6]. Since glomalin is a relatively stable entity in soil, TG, EEG, and the ratios of TG/OC
and EEG/OC as the glomalin–C quotes of soil OC can be considered glomalin-related
indices. Uunderstanding the spatial distribution of recalcitrant C sources is interesting for
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agronomists. Furthermore, it is valuable when research objectives involve finding low-cost
procedures, such as digital soil mapping (DSM).

In general, landscape physiography and terrain elements, such as slope, aspect, eleva-
tion, etc., directly or indirectly affect soil moisture and temperature. They can also influence
carbon assimilation by plants. The amount of sunlight captured by plants mostly depends
on slope and aspect and directly affects the photosynthesis rate and carbon allocation
to fungi; hence, glomalin production occurs underground. Conventional soil mapping
began in Iran in 1953, but it was not conducted on a large scale. Recently, Iranian soil
scientists have directed their attention to DSM [7]. It is one of the most user-friendly tools
for demonstrating the spatial variability of soil properties [8].

DSM has been developed globally since the early 2000s [9,10]. Since soil maps are
predominantly used as basic data for soil surveying, land evaluation, natural resource
management, and environmental modeling [11], we expected that applying DSM would
enhance our understanding of the spatial distribution of glomalin-related indices in the
landscape. DSM, as a low-cost means of providing relevant spatial soil information [12], has
been used as the basis of numerous digital assessments, e.g., soil OC [13]; clay content [14];
total nitrogen [15]; iron forms [16]; and many soil profile properties [17]. Although the
digital mapping of soil carbon storage has gained much attention [18], there is no specific
modeling of recalcitrant fractions of soil OC, i.e., glomalin. DSM has been implemented
with limited data to develop predictive relationships with environmental covariates [19].
For this study, an assumption was that temporally dynamic or static covariates [20] may be
useful in the prediction of glomalin-related indices. However, the application of additional
covariates, e.g., remotely sensed data, might improve the estimation. The importance of
environmental covariates in modeling and mapping has been reported previously [21]. In
regions with sufficient relief, terrain-related attributes, such as slope, topographic wetness
index (TWI), and curvature derived from DEM, can be used to quantitatively model the
spatial distribution of soil properties in the landscape [22]. The performance of some data
mining techniques, e.g., random forests [23], artificial neural networks [24], Cubist [25],
decision trees [26], and support vector machines [27], were previously reported in DSM.

Understanding the spatial distribution of soil OC in soils and its relationship with
environmental covariates is an important and vital topic. Terrain attributes derived from
DEM have been used widely for mapping soil OC [28]. There is a relationship between
glomalin and soil OC [29]; therefore, terrain-related attributes can provide useful data
to model and monitor the spatial distribution of glomalin-related indices. It was also
reported that an earth system model might improve the prediction of fungal communities
in terrestrial shrub ecosystems when using glomalin as a signature molecule for AMF [30].

The overall aims of this study were: (a) to indicate the successful usage of DSM in
describing the spatial distribution of glomalin-related indices using solely DEM-derived
data; (b) to test the performance of multiple linear regression (MLR), random forests (RF),
and Cubist (CU) and select a parsimonious model for the prediction of the aforementioned
indices; (c) to rank the importance of covariates in modeling; and (d) to provide the
variation maps of glomalin-related indices in space for developing a better understanding
of their relationship with the landscape.

2. Materials and Methods
2.1. Study Area and Sampling

The present study was conducted in the Sarab region in the East Azerbaijan province
of Iran, with a total area of 310 km2 and 1660–1912 m altitude (Figure 1). It is located along
lat. 37◦52′39′′ to 38◦00′30′′ N, long. 47◦41′06′ ′ to 48◦26′46′′ E (EPSG: 32638). The dominant
soil orders for the entire study area were Inceptisols and Entisols [31].
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Figure 1. A brief description of the study area: (a) the map of Iran; (b) the location of the study area 
in East Azerbaijan province; (c) indication of the sampling points across the study area and the map 
of digital elevation model (DEM). 

Geologically, the low-level piedmont fan and valley terrace deposits comprised 
about 80% of the study area. The climate is semi-arid with an average annual precipita-
tion of ~280 mm [32]. Field observations revealed that the plant cover was dominated by 
festuca and alfalfa as perennial plants, and wheat and potato as annual plants. In addi-
tion, fallow is not a common practice in this region. The crops mentioned in this study 
were the crops at the sampling time. 

Although sampling designs are very important for validating soil maps [33], in this 
research, a total of 120 samples were randomly collected in June 2019, covering the whole 
study area. Since glomalin is mostly found in the A horizon, all soil samples were col-
lected down to 30 cm depth as this is a typical topsoil depth for soils across the study 
area. The geographical coordinates of the sampling points were carefully navigated in the 
field using GPS (60CSx, Garmin, Taipei, Taiwan). TG, EEG, and OC were determined in 
the soil samples as described below. The overall scheme of the procedure is presented in 
Figure 2. 

Figure 1. A brief description of the study area: (a) the map of Iran; (b) the location of the study area
in East Azerbaijan province; (c) indication of the sampling points across the study area and the map
of digital elevation model (DEM).

Geologically, the low-level piedmont fan and valley terrace deposits comprised about
80% of the study area. The climate is semi-arid with an average annual precipitation of
~280 mm [32]. Field observations revealed that the plant cover was dominated by festuca
and alfalfa as perennial plants, and wheat and potato as annual plants. In addition, fallow
is not a common practice in this region. The crops mentioned in this study were the crops
at the sampling time.

Although sampling designs are very important for validating soil maps [33], in this
research, a total of 120 samples were randomly collected in June 2019, covering the whole
study area. Since glomalin is mostly found in the A horizon, all soil samples were collected
down to 30 cm depth as this is a typical topsoil depth for soils across the study area. The
geographical coordinates of the sampling points were carefully navigated in the field using
GPS (60CSx, Garmin, Taipei, Taiwan). TG, EEG, and OC were determined in the soil
samples as described below. The overall scheme of the procedure is presented in Figure 2.

2.2. Soil Analyses

The sampling was performed during three consecutive days. On each day, all collected
samples were initially stored in ice boxes (~4 ◦C) and then immediately transferred to the
lab. For glomalin (TG and EEG) determination, nearly 50 g subsamples were kept frozen at
−20 ◦C. The remaining samples were air-dried and sieved through a 10-mesh sieve and
kept in room temperature for OC determination.

2.2.1. Determination of Soil Organic Carbon

Soil OC was measured via the method of wet oxidation with chromic acid and back
titration with ferrous ammonium sulfate [34].
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LSF: LS factor; MCA: modified catchment area; MTF: multi-resolution ridge top flatness; MVF: 
multi-resolution index of valley bottom flatness; RSP: relative slope position; SLP: slope; TWI: 
topographic wetness index; VLD: valley depth; OC: organic carbon; ELISA: enzyme-linked im-
munosorbent assay; TG: total glomalin; EEG: easily extractable glomalin; MLR: multiple linear re-
gression; RF: random forests; CU: Cubist. 
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for 15 min, and the supernatant was stored at 4 °C for ELISA (enzyme–linked immuno-
sorbent assay) analysis. For EEG determination, the same procedure was used with 20 
mM sodium citrate at pH 7 for 30 min of autoclaving [35]. 

The ELISA method utilizing monoclonal antibody (MAb) 32B11 (Mab32B11) was 
implemented to determine TG and EEG in the soil extracts. This method is commonly 
employed for biochemical assays and determines the amount of immunoreactive gloma-
lin. The procedure involved used the MAb32B11 antibody as an initial antibody and bio-
tinylated (horseradish peroxidase–Goat) anti-mouse immunoglobulin M (IgM) antibody 
as the secondary antibody. MAb32B11 was previously developed from Rhizophagus in-
traradices FL208 spores that were used to immunize a BALB/c mouse and is specific to 
glomalin [6]. 

2.3. DEM-Derived Data 

Figure 2. The general scheme of the procedure used in this experiment. LGC: longitudinal curvature;
FLA: flow accumulation; ELE: elevation; DRI: direct insolation; DFI: diffuse insolation; CSC: cross-
sectional curvature; CGI: convergence index; CNB: channel network base level; ASP: aspect; LSF:
LS factor; MCA: modified catchment area; MTF: multi-resolution ridge top flatness; MVF: multi-
resolution index of valley bottom flatness; RSP: relative slope position; SLP: slope; TWI: topographic
wetness index; VLD: valley depth; OC: organic carbon; ELISA: enzyme-linked immunosorbent assay;
TG: total glomalin; EEG: easily extractable glomalin; MLR: multiple linear regression; RF: random
forests; CU: Cubist.

2.2.2. Glomalin Determination

TG was extracted from soil via autoclaving 1 g of soil in 8 mL of 50 mM sodium citrate
with pH 8 at 121 ◦C for 60 min. After cooling, the extracts were centrifuged at 5000× g for
15 min, and the supernatant was stored at 4 ◦C for ELISA (enzyme–linked immunosorbent
assay) analysis. For EEG determination, the same procedure was used with 20 mM sodium
citrate at pH 7 for 30 min of autoclaving [35].

The ELISA method utilizing monoclonal antibody (MAb) 32B11 (Mab32B11) was
implemented to determine TG and EEG in the soil extracts. This method is commonly
employed for biochemical assays and determines the amount of immunoreactive glomalin.
The procedure involved used the MAb32B11 antibody as an initial antibody and biotiny-
lated (horseradish peroxidase–Goat) anti-mouse immunoglobulin M (IgM) antibody as the
secondary antibody. MAb32B11 was previously developed from Rhizophagus intraradices
FL208 spores that were used to immunize a BALB/c mouse and is specific to glomalin [6].

2.3. DEM-Derived Data

In this research, a total of 17 static covariates (terrain attributes) were created using
SAGA GIS software. These attributes were subdivided into four sets of: (a) channels,
e.g., channel network base level (CNB) and valley depth (VLD); (b) hydrology, e.g., flow
accumulation (FLA), LS factor (LSF), and TWI; (c) lighting visibility, e.g., direct insolation
(DRI) and diffuse insolation (DFI); and (d) morphometry, e.g., longitudinal curvature
(LGC), elevation (ELE), cross-sectional curvature (CSC), convergence index (CGI), aspect
(ASP), modified catchment area (MCA), multi-resolution ridge top flatness (MTF), multi-
resolution index of valley bottom flatness (MVF), relative slope position (RSP), and slope
(SLP). After creating above-mentioned covariates using SAGA GIS, they were imported to
R as predictors. It was obvious that all rasters had same resolution (30-m) and extension
(EPSG: 32638). The next step was to stack the imported rasters and point data.
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2.4. Modeling with Applications in R

Modeling is commonly used in the general ecological literature to improve the causal
understanding developed from observational data [36]. Indeed, R (programming language)
version 3.5.1 [37] was used for DSM in this work. Predictive models forecast outputs and
estimate metrics. Since the field observations interrelated to TG as well as EEG were not
available across the study area, the predictions and digital maps were improved in this
study using iterative models of terrain attributes [38]. In this paper, three algorithms,
i.e., MLR, RF, and CU, were the candidates for predictions. All three approaches were
implemented in the “Caret” package [39].

MLR is one of the simplest approaches to predict values in new locations. In order to
fit an MLR model using least squares, the “lm” function (with a total of 17 covariates) was
utilized here and a stepwise regression with R was performed to determine statistically
significant variables [40]. Implementing this method provided an opportunity to add and
remove potential candidates in the models and to keep those with a significant impact on
the dependent variables, i.e., glomalin-related indices. RF was also fitted to the dataset
using the “randomForest” package in R [41]. One of the advantages of RF is bagging; thus,
there was no need for normalization of the dataset. In this paper, to optimize the number
of parameters, the number of trees (ntree) and the number of variables or covariates (mtry)
were set on 500 and 17, respectively. The former is based upon the mean decrease in
accuracy in predictions on the out-of-bag samples, while the latter is a measure of the total
decrease in node impurity that results from splits over that variable, averaged over all trees.
For plotting the results, the function “varImpPlot” was utilized. The last candidate model
used for evaluating was Cubist, which has been implemented in soil science studies [25].
Quinlan [42] reported that the Cubist model can be optimized with three parameters: (a)
maximum number of rules or partitions in the data that can be explored; (b) number of
committees of boosted iterations of the algorithm, which is similar to the ntree parameter
in RF model; (c) extent of allowable extrapolation. To facilitate Cubist model fitting in R,
the “Cubist” package was used [43].

2.5. Model Validation

The “goof” function provides a number of model goodness-of-fit measures using
the package “ithir” [44]. It includes the root mean square error (RMSE), mean square
error (MSE), prediction bias, coefficient of determination (R2), concordance correlation
coefficient (CCC) [45], ratio of performance to deviation (RPD), ratio of performance to
interquartile distance (RPIQ), and residual variance estimates [40]. Since R2 measures the
precision of the relationship between observed and predicted variables, while CCC is a
single statistic that both evaluates the accuracy and precision of the relationship, CCC was
used as a useful statistic criterion in this research [46]. Therefore, the CCC values were
considered to determine the parsimonious model for predicting and digitally mapping the
spatial distribution of the studied glomalin-related indices for the entire study area. To
distinguish the calculated criteria for either calibration (in-the-bag) or validation (out-of-
bag) datasets, the models were set on 200 bags and bootstrapping method was used for
iteration [25,47,48].

2.6. Spatial Mapping

DSM has provided a pathway for creating thematic maps to evaluate the spatial dis-
tribution of difficult-to-measure properties using easily available ones, e.g., DEM-derived
data. To apply the model spatially, the R programming language was deployed to model,
manipulate, and map the spatial distribution of TG, EEG, and their ratios on OC due
to its high performance in DSM. The application of spatial data analysis in R was well-
documented [49,50]. Finally, the results of modeling via R were imported to ArcGIS 10.3 for
further visualization. Since in DSM, it is common to create final maps as a stretch mode, the
areas with high and low concentrations were only illustrated in this manuscript. However,
it could be provided as a classified mode using “Natural Breaks” as default in ArcGIS.
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As there was no background for separating the classes with maximum differences, the
“Natural Breaks” method was used as a default in this study. With this method, class breaks
are created, and the method groups similar values together and maximizes the differences
between classes. Based on these inputs, maps were then utilized for monitoring and assess-
ing. Although an associated uncertainty map for each created map is useful [40], this was
not addressed in this paper. Instead, the optimal model performance from the different
goodness-of-fit diagnostics, e.g., R2, RMSE, and CCC, were selected as the parsimonious
model. The highest CCC and lowest RMSE were the main criteria.

3. Results
3.1. Soil Data

A brief statistical description of TG, EEG, TG/OC, and EEG/OC is summarized in
Table 1.

Table 1. Summary of the statistical analysis of used field data (n = 120).

Properties Min Max Mean 1st Qu. 2rd Qu. 3rd Qu. CV Ske. Kur. p-Value

TG (mg/g) 0.161 0.643 0.302 0.219 0.264 0.367 35.92 0.409 1.049 3.6 × 10−12

EEG (mg/g) 0.064 0.256 0.161 0.122 0.162 0.198 28.95 −0.058 0.809 0.05
TG/OC 0.004 0.097 0.019 0.010 0.017 0.023 73.16 −0.044 1.066 2.2 × 10−16

EEG/OC 0.002 0.079 0.012 0.005 0.008 0.014 94.88 0.341 1.284 2.2 × 10−16

OC (%) 0.179 8.385 2.224 1.244 1.591 2.146 78.34 0.231 3.255 2.2 × 10−16

TG: total glomalin; EEG: easily extractable glomalin; OC: organic carbon; 1st Qu, 2nd Qu, and 3rd Qu refers to
the 25% quartile, median, and 75% quartile, respectively; CV: coefficient of variation (%); Ske: skewness; Kur:
kurtosis; p-value: calculated via Anderson–Darling method for normality testing.

Based on the results, TG and EEG showed a fourfold variation between their maximum
and minimum values. This variation was also high for TG/OC (24-fold), EEG/OC (39-fold),
and OC (47-fold). Normality testing using the Anderson–Darling p–value [51] revealed
that EEG was the only normally distributed property among the studied properties. In
addition, these results showed that the mean and median were not equivalent for TG,
TG/OC, and EEG/OC, indicating the distribution of the data deviated from normality.
Therefore, the data for TG was normalized using an inverse normal transformation method.
Subsequently, the data for TG/OC and EEG/OC were normalized via the method of log-
normal transformation [52]. Both positive and negative skewness with coefficients were
determined for the examined properties. The CV of EEG/OC was high, and it was low
for EEG. Overall, all studied parameters were categorized as having moderate variability
except for EEG/OC based on the classes issued by Fang et al. [53].

3.2. Terrain-Related Attributes

Two DEM derivatives (MVF and TWI) for the study area are presented in Figure 3.
Summary statistics of these rasters revealed that MVF in the study area varied from

0 to 6.38 (3.58 on average). For further visualization on digital maps, the MVF index was
classified into three categories within ArcGIS as follows: (a) Class 1: <2.07; (b) Class 2:
2.07–4.22; and (c) Class 3: 4.22–6.38. Class 3 had an area extension of approximately 42%
(located in the central part of the study area), followed by Class 2 (34%) and Class 1 (24%).

In terms of TWI, the results indicated that it varied from 3.08 to 22.58 (11.42 on average)
across the study area. In addition, the original map of TWI was categorized into three
classes as follows: (a) Class 1: 3.08–9.73; (b) Class 2: 9.73–12.79; and (c) Class 3: 12.79–22.58.
This indicated that the vast area included Class 2 (45%), followed by Class 3 (32%) and
Class 1 (23%).

Similar rules were performed for the remaining 15 environmental covariates for
further analysis for the entire study area. Those are illustrated in Supplementary Material
(Figures S1–S15).
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3.3. Model Selection

The best fit model among the three candidate algorithms, e.g., MLR, RF, and CU, was
selected according to the CCC and RMSE values. The results showed that for the calibration
(in the bag), CCC was high compared to the validation (out of the bag) when using all
aforementioned algorithms (Table 2). These analyses were based on using the normalized
values of the dataset. Based on the findings, MLR and CU were withdrawn from the
modeling process due to their lower prediction accuracy in calibration and validation
assessments. The overall results demonstrated that RF calibration did not distinctly vary
for the four examined properties. However, according to the values of CCC, the best
accuracy was found for TG (CCC = 0.33) and EEG (CCC = 0.27) followed by EEG/OC
(CCC = 0.24) and TG/OC (CCC = 0.21).

Table 2. The statistical criteria for evaluating the performance of predictions in calibration and
validation datasets across the study area as a result of 200 iterations.

R2 Concordance RMSE Bias

RF MLR CU RF MLR CU RF MLR CU RF MLR CU

Calibration dataset (in the bag)
TG (mg/g soil) 0.93 0.14 0.07 0.87 0.26 0.15 0.45 1.01 1.06 0.00 0.00 0.08

EEG (mg/g soil) 0.94 0.07 0.2 0.87 0.14 0.36 0.02 0.05 0.04 0.00 0.00 0.00
TG/OC 0.94 0.17 0.21 0.85 0.29 0.35 0.11 0.23 0.30 0.00 0.00 −0.03

EEG/OC 0.93 0.14 0.14 0.87 0.27 0.26 0.14 0.31 0.24 0.00 0.00 0.00

Validation dataset (out of bag)
TG (mg/g soil) 0.14 0.00 0.00 0.33 0.00 0.00 0.94 0.94 0.94 −0.31 −0.24 −0.25

EEG (mg/g soil) 0.18 0.00 0.07 0.27 0.00 0.19 0.03 0.04 0.04 0.00 0.00 0.00
TG/OC 0.12 0.00 0.00 0.21 0.09 0.23 0.17 0.16 0.25 −0.05 −0.03 −0.11

EEG/OC 0.15 0.00 0.00 0.24 0.08 0.07 0.21 0.23 0.16 −0.08 −0.08 −0.03

RF: random forest; MLR: multiple linear regression; CU: Cubist model; R2: coefficient of determination; CCC:
concordance; RMSE: root mean square error; TG: total glomalin; EEG: easily extractable glomalin.
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3.4. The Importance of Static Covariates

With the application of RF, it is possible to prioritize the importance of covariates in
the prediction of glomalin-related indices. It identified a single calculation of importance
for each predictor variable that took into account interactions among the 17 DEM-derived
attributes without requiring model specification. The covariate importance rankings are
illustrated in Figure 4, demonstrating that LGC and VLD were the two most important
covariates to predict TG and TG/OC, respectively.
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3.5. Digital Maps

Digital maps were needed prior to digital assessments for each studied soil property. It
was also possible to assess the effect of various plant cover types on the distribution pattern
of glomalin-related indices across the study area using accurate digital maps. Digital soil
maps of TG, EEG, TG/OC, and EEG/OC are shown in Figure 5. The presented values for
EEG are based on the original data, while the remaining maps are the back-transformations
of the modeled predictions.
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Further visualization and analysis were made possible by classifying the maps from
raster to vector format [54]. The spatial distribution map of TG was classified into three
categories as follows: (a) Class 1: less than 0.271 mg/g; (b) Class 2: 0.271–0.318 mg/g; and
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(c) Class 3: more than 0.318 mg/g. Class 2 had an area extension of approximately 41%,
followed by Class 1 (38%) and Class 3 (21%). The mean value of TG, 0.29 mg/g, based on
RF analyses for the study area was close to the measured mean value. However, TG varied
widely across the study area (0.161–0.643 mg/g).

Approximately 46%, 39%, and 15% of the study area was classified into three EEG
classes as follows: (a) Class 3 (more than 0.168 mg/g), Class 2 (0.141–0.168 mg/g), and
Class 1 (less than 0.141 mg/g), respectively. The mean value of both the predicted pixel
values and the original measured data were not significantly different and reflected the
accuracy of the modeling.

4. Discussion
4.1. Plant Cover Type Effects on Soil Glomalin

One of the advantages of DSM is to find an opportunity for investigating soil–landscape
relationships. To monitor plant cover type effects, the cells of a raster based on a set of
coordinate points comprising various covers were extracted and indicated that annual
crops and perennial plants had different impacts on TG, EEG, TG/OC, and EEG/OC. In
general, TG results from the accumulation of glomalin in soil over years of cultivation,
while EEG is the recently produced glomalin. Therefore, the recalcitrant C source of the
soil showed a variety of differences among anthropogenic management activities in the
study area. Since the soil in perennial plants is not disturbed and is not subjected to tillage
every year, the mycorrhizal network structure remains intact and active for the continued
secretion of glomalin. Yearly tillage for the cultivation of annual crops reduces the active
AM fungal populations. In summary, the study showed that the prediction of soil glomalin
using easily measured variables helps to manage and monitor natural grasslands and culti-
vated areas in a manner that encourages mycorrhizal network development and improves
glomalin production. Compared to annual crops, perennials showed the highest influence
on carbon sequestration in terms of glomalin production. This means that tillage practices
are the most important factor for conserving the C pool in soil. Moreover, accelerated tillage
practices decrease OC as well as its mean residence time in soil [55].

As was expected, the highest values of TG were associated with the undisturbed areas
(grasslands dominated by festuca), and the lowest values were found in the cultivated areas.
Therefore, TG must have been higher than EEG because, based on the field observations,
the vast study area was covered by perennial plants, i.e., festuca and alfalfa. A similar
observation showed that TG in a forest ecosystem of the temperate Himalayan region is
approximately two times more than that of a wheat field [56]. The differences between TG
and EEG in soils of perennial plants, including festuca and alfalfa, were greater than those
between soils of annual crops, i.e., wheat and potato. Despite having high TG in alfalfa,
its EEG was lower compared to the other plants. This can be explained by the tripartite
symbiosis of alfalfa–mycorrhizal fungi–rhizobia as the carbon allocated to the alfalfa root is
divided between the bacterial and fungal microsymbionts [57].

The highest OC being in soils dominated by festucas can be attributed to the absence
of tillage in grassland conditions. The loss of carbon from agricultural soils is strongly
associated with tillage severity [58]. Carbon constitutes about 50% of the glomalin molecule,
representing, in turn, 0.52–1.62% of the soil OC pool. Many scientists previously reported
that soil OC can be successfully predicted with DEM-derived data not only in semi-arid
regions [59] but also in permafrost regimes [60]. A positive correlation between soil OC
and TG or EEG was found, which re-iterated their contributions to the soil carbon pool,
and the relation of soil glomalin content with plant cover types and its applicability as
a putative indicator of carbon sequestration has been reported previously [61]. The low
values for TG/OC and EEG/OC ratios in festucas can be understood by considering the
huge amount of OC in this plant type, despite the relatively higher TG and EEG.
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4.2. The Role of DEM-Derived Data

The most important finding of this study was that the terrain-related attributes suc-
cessfully contributed to the modeling and mapping of recalcitrant C sources of soils in the
study area. The performance of DEM-derived data as a subset of digital soil morphometrics
was described by Hartemink and Minasny [62]. It was also reported that latitude and
longitude, in addition to soil OC and total nitrogen, can be a useful predictor to estimate the
distribution of the fungal community [30]. The importance of terrain-related attributes may
be explained by the idea that soil OC can be estimated with topographic properties [63].
Notwithstanding that remotely sensed data did not contribute to the prediction of glomalin-
related indices, the relationship between NDVI with DEM was previously reported [64].
Moreover, the possibilities for the application of DEM for mapping vegetation tiers have
been explored [65]. Since there is a strong correlation between soil OC and TG or EEG [66],
the spatial distribution of TG, EEG, TG/OC, and EEG/OC was successfully predicted by
using only terrain-related attributes, as was expected.

4.3. Accuracy of Modeling and Covariates Ranking

Among the three candidate models, RF outperformed MLR and CU with the chosen
soil data and static environmental covariates in the present study. Belgiu and Drăguţ [67]
pointed out that RF has become popular within pedometrics due to the accuracy of its
classifications. Although the validation was not high, it was considered because the terrain-
related attributes, as easy-to-measure static environmental covariates, were divergent from
the target variable. A similar conflict was reported in terms of OC. The efficiency of RF for
predicting soil OC (and glomalin) has been previously reported [13], but Were et al. [68]
reported a high tendency for overestimations. Moreover, the greatest accuracy was found
for the prediction of TG followed by EEG, EEG/OC, and TG/OC.

LGC and VLD were identified as the two most important covariates to predict TG and
TG/OC, respectively. Furthermore, CNB was recognized as the most important covariate
to predict both EEG and EEG/OC. The other crucial covariates for predicting all studied
properties were DRI and DFI, which were classified into the lightening visibility category.
Since the production of glomalin by fungi highly depends on their successful symbiosis
with plant roots and sufficient photosynthates, radiation played an important role, as was
expected. Among the 17 studied covariates, the MVF and ELE in the RF model for the
prediction of all parameters were identified in the subsequent importance ranking. The
importance of the MVF index for identifying valley bottoms from hill slopes to distinguish
sediment deposits was also reported by Gallant and Dowling [69]. TWI has also proven
to be a significant indicator in explaining soil moisture and OC status [70]. Moreover, Pei
et al. [28] reported that OC can be predicted by TWI, although it only played a moderate
role in this research. The overall outcomes showed that the importance of variables differed
for each studied property.

4.4. Digital Assessments

The final step was the digital soil assessment [12] to understand the spatial distribu-
tion of soil glomalin across the study area. The application of DSM is useful to evaluate
the spatial distribution of glomalin-related indices and involves easily measured param-
eters. Although four sets of DEM-derived data (e.g., channels; hydrology; lighting; and
morphometry) were used in the modeling process, the intensity of lighting visibility and
radiation, viz., DFI and DRI, played a crucial role in the digital mapping of soil glomalin. A
possible reason for this is that the production of glomalin by fungi highly depends on their
successful symbiosis with plant roots and creating enough photosynthates.

Digital TG and EEG maps, as a result of RF modeling, identified locations of high
and low concentrations in the entire study area. For example, the highest value of TG
was found in the central part and somewhat south of the study area, which was mainly
covered by festuca and alfalfa. This can be attributed to the fact that those areas have a
moderate catchment area and high TWI. Further visualization using the aforementioned
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digital maps showed that the spatial distribution of EEG did not correspond to TG variation
across the study area, which was most likely due to the different natures of cultivated and
grassland plant species along with their different field practices. Integrated assessments of
field observations and digital maps revealed that potato and wheat, as annual crops, were
the most frequent plant cover in the area containing high EEG. Since EEG represents newly
formed glomalin, its abundance was seen in potato and wheat cultivated areas.

The fluctuation in the TG/OC ratio in the study area was almost the same as that
observed for the EEG/OC ratio; this may be due to their dependence on both glomalin and
soil OC content. TG/OC and EEG/OC represent the glomalin–C quote of soil OC. These
seem to be very important indicators for explaining carbon conservation in soil. Therefore,
the spatial distribution maps of the above-mentioned ratios (Figure 5c,d) were provided
previously for detailed illustrations. Since soil glomalin content, as a recalcitrant C source,
has a positive correlation with soil OC, it could be an effective indicator, in part, to monitor
soil carbon sequestration. Consequently, it would be possible to enrich soil C pools with
low-degrading C compounds and increase carbon sequestration as well. Festuca had the
highest influence on carbon sequestration via glomalin production, followed by alfalfa,
potato, and wheat. This can be explained by the fact that forage crops without tillage
sequester carbon by declining CO2 emissions and maintaining the mycorrhizal network.
Moreover, this effect is vital to mitigate environmental challenges such as climate change.

5. Conclusions

Since soil glomalin content, as a recalcitrant C source, showed a significantly positive
correlation with soil OC, it could be an effective indicator to monitor soil carbon sequestra-
tion. Our findings showed that terrain-related attributes can predict the spatial distribution
of TG, EEG, and their ratios on OC successfully. Since the production of glomalin by
fungi highly depends on their successful symbiosis with plant roots and receiving enough
photosynthates, as we expected, the intensity of lighting visibility, e.g., DFI and DRI, played
a crucial role on the digital mapping of soil glomalin.

Based on the findings, RF outperformed MLR and CU using available field soil data
and environmental covariates. Moreover, the most accuracy was found for the prediction
of EEG followed by EEG/OC, TG, and TG/OC. In general, this article revealed that DSM
plays an important role in soil biological traits. For instance, it can assist us with managing
natural grasslands and monitoring climate change impacts.

Our findings showed that terrain-related attributes could be successfully used in
predicting glomalin-related indices. Since this paper outlines the performance of DSM and
terrain-related attributes, it is advisable to further investigate this scenario using remote
sensing data, e.g., Landsat 8 OLI, Sentinel, MODIS, etc.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12071653/s1, Figure S1: The stretched map relevant
to aspect (ASP); Figure S2: The stretched map relevant to convergence index (CGI); Figure S3: The
stretched map relevant to channel network base level (CNB); Figure S4: The stretched map relevant
to cross-sectional curvature (CSC); Figure S5: The stretched map relevant to diffuse insolation (DFI);
Figure S6: The stretched map relevant to direct insolation (DRI); Figure S7: The stretched map relevant
to elevation (ELE); Figure S8: The stretched map relevant to flow accumulation (FLA); Figure S9: The
stretched map relevant to longitudinal curvature (LGC); Figure S10: The stretched map relevant to LS
factor (LSF); Figure S11: The stretched map relevant to modified catchment area (MCA); Figure S12:
The stretched map relevant to multi-resolution ridge top flatness (MTF); Figure S13: The stretched
map relevant to relative slope position (RSP); Figure S14: The stretched map relevant to slope (SLP);
Figure S15: The stretched map relevant to valley depth (VLD).
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