
Citation: Li, H.; Liu, Z.-N.; Li, Q.;

Zhu, W.-L.; Wang, X.-H.; Xu, P.; Cao,

X.; Cui, X.-Y. CBL-Interacting Protein

Kinase 2 Improves Salt Tolerance in

Soybean (Glycine max L.). Agronomy

2022, 12, 1595. https://doi.org/

10.3390/agronomy12071595

Academic Editor: Pilar Soengas

Received: 27 April 2022

Accepted: 28 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

CBL-Interacting Protein Kinase 2 Improves Salt Tolerance in
Soybean (Glycine max L.)
Hui Li 1,2, Zhen-Ning Liu 1 , Qiang Li 1, Wen-Li Zhu 3, Xiao-Hua Wang 1, Ping Xu 1, Xue Cao 1 and Xiao-Yu Cui 1,*

1 College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China; lihuiqau@163.com (H.L.);
liuzhenning@lyu.edu.cn (Z.-N.L.); liqiang@lyu.edu.cn (Q.L.); wangxiaohua@lyu.edu.cn (X.-H.W.);
xuping@lyu.edu.cn (P.X.); caoxue@lyu.edu.cn (X.C.)

2 Center for International Education, Philippine Christian University, Metro Manila 1004, Philippines
3 College of Modern Agriculture, Linyi Vocational University of Science and Technology, Linyi 276000, China;

wlzhu22@126.com
* Correspondence: cuixiaoyu@lyu.edu.cn

Abstract: Salt stress severely limits soybean production worldwide. Calcineurin B-like protein-
interacting protein kinases (CIPKs) play a pivotal role in a plant’s adaption to salt stress. However,
their biological roles in soybean adaption to salt stress remain poorly understood. Here, the Gm-
CIPK2 expression was increased by NaCl and hydrogen peroxide (H2O2). GmCIPK2-overexpression
Arabidopsis and soybean hairy roots displayed improved salt tolerance, whereas the RNA interference
of hairy roots exhibited enhanced salt sensitivity. Further analyses demonstrated that, upon salt
stress, GmCIPK2 enhanced the proline content and antioxidant enzyme activity and decreased the
H2O2 content, malondialdehyde (MDA) content, and Na+/K+ ratios in soybean. Moreover, GmCIPK2
promoted the expression of salt- and antioxidant-related genes in response to salt stress. Moreover, the
GmCIPK2-interacting sensor, GmCBL4, increased the salt tolerance of soybean hairy roots. Overall,
these results suggest that GmCIPK2 functions positively in soybean adaption to salt stress.

Keywords: soybean; CIPK; salt tolerance

1. Introduction

Plants are sessile organisms that often encounter various environmental changes,
including salt, drought, and extreme temperatures [1,2]. During evolution, plants have
evolved complex strategies to adapt to unfavorable conditions [2,3]. Calcium (Ca2+) is
a universal secondary messenger that regulates plant growth, development, and stress
responses [4,5]. Environmental stimuli can trigger spatio-temporal changes in cytoplas-
mic Ca2+ concentrations [4,6]. The changes are then detected by Ca2+ sensors, such as
Ca2+-dependent protein kinases, calmodulins, and calcineurin B-like proteins (CBLs) [6,7].
Subsequently, the Ca2+ sensors interact with their downstream targets, causing a series of
physiological and metabolic alterations in plants [7,8].

CBLs can specifically bind to CBL-interacting protein kinases (CIPKs) to form plant-
specific Ca2+ signal decoding systems [4,7,9]. CIPKs have been identified as a class of
serine/threonine (Ser/Thr) kinases that share a close evolutionary relationship with SNF1
(sucrose non-fermenting-1)-related kinases 3 [7,8]. The catalytic domain of CIPKs is lo-
cated at the N-terminus and contains an activation loop and an ATP binding site [7,9]. A
NAF/FISL motif is found in the C-terminus of CIPKs, adjacent to the junction domain [10].
The NAF/FISL motif is critical for the interaction with CBLs [8,9]. Since the CBL-CIPK
pathway was discovered in Arabidopsis (Arabidopsis thaliana L.) [11], CIPK homologs have
been found in rice (Oryza sativa L.) [12], pepper (Capsicum annuum L.) [13], maize (Zea
mays L.) [14], tomato (Solanum lycopersicum L.) [15], soybean (Glycine max L.) [16], wheat
(Triticum aestivum L.) [17], apple (Malus domestica Borkh.) [18], and cotton (Gossypium
hirsutum L.) [19].
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CIPKs affect ion homeostasis, hormonal signaling, and tolerance to abiotic stresses [4,9].
For example, AtCIPK8 has been demonstrated to positively regulate Arabidopsis’ salt toler-
ance [20]. AtCIPK24 is a key component of the salt overly sensitive pathway that regulates
the salt tolerance of Arabidopsis [21]. Additionally, it has been demonstrated that AtCIPK14
participates in Arabidopsis’ glucose response [22]. Studies have explored the functions
of CIPKs in other plant species. For instance, cold stress leads to the increased expres-
sion of OsCIPK3 and OsCIPK7, and transgenic plants overexpressing (OE) OsCIPK3 and
OsCIPK7 display cold-tolerant phenotypes [23,24]. Furthermore, ZmCIPK16 regulates
stress-responsive gene expression to mediate maize adaption to salt stress [25]. TaCIPK27
and TaCIPK23 respond to drought stress by regulating the stomatal movement [26,27]. In
addition, CaCIPK13 expression is induced by cold stress, and CaCIPK13-OE tomato plants
exhibit cold-resistant phenotypes [28]. SlCIPK24 is found to modulate Na+/K+ homeostasis
in tomato salt responses [15].

Soybean is an important economic crop and a crucial source of edible oil, high-quality
protein, and industrial products [29,30]. Salt stress is a major environmental challenge that
severely restricts crop quality and yields worldwide [1,31]. It has been established that
CIPKs play a crucial role in a plant’s adaption to adverse conditions [4,5]. Nevertheless,
whether CIPKs participate in alleviating salt stress in soybean remains largely unknown.
Our previous study demonstrated that GmCIPK2 serves as a positive regulator of drought
tolerance for soybean [32]. In the present study, the biological functions of GmCIPK2 in
the salt response are characterized. Salt stress increases the transcript level of GmCIPK2.
Further physiological and molecular assays demonstrate that GmCIPK2 contributes to the
salt tolerance of soybean.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Soybean seedlings (Williams 82) were cultured in a growth room under a 16 h light/8 h
dark photoperiod, in 70% relative humidity, at a temperature of 25 ◦C. Fourteen-day-old
soybean plants of the same size were transferred to the 1/2 Hoagland’s solution containing
200 mM NaCl and 10 mM H2O2 for the expression profile analysis. The soybean leaves
that were used for the RNA extraction were harvested at 0, 1, 3, 7, 12, and 24 h. Seeds of
Arabidopsis ecotype Columbia-0 were germinated in the 1/2 Murashige and Skoog (MS)
medium in an illumination incubator with a photoperiod of 16 h light/8 h dark, in a relative
humidity of 70%, at 23 ◦C. Twenty seeds were sown on each plate and vernalized for three
days at 4 ◦C.

2.2. Transgenic Arabidopsis and Soybean Plant Construction

Arabidopsis with GmCIPK2 overexpression was constructed by a previously described
floral dip method [31,32]. Transgenic soybean hFairy roots were constructed by an Agrobac-
terium rhizogenes-mediated transformation, as described previously [1,30,33]. To obtain the
OE transformation vectors, the full-length open reading frames of GmCIPK2 and GmCBL4
were inserted into pCAMBIA3301, driven by cauliflower mosaic virus 35S promoter, respec-
tively. The sense and antisense fragments of GmCIPK2 (28 bp–178 bp) were connected
by the intron 6 of the rice zinc finger gene to constitute the specific RNA interference
(RNAi) fragment [31,32]. The specific RNAi fragments were ligated into pCAMBIA3301 to
generate the pCAMBIA3301-GmCIPK2-RNAi constructs. Subsequently, these vectors were
transformed into A. rhizogenes strain K599. The 5-day-old soybean seedling was infected
with A. rhizogenes strain K599, harboring the transformation vectors (RNAi, VC, and OE)
around the cotyledonary node area with a syringe needle. The infected plants were then
covered with plastic cups and kept in the dark at 28 ◦C. After 24 h, the plastic cups were
removed. Meanwhile, the infection sites were covered with wet vermiculite until the hairy
roots were generated. Two weeks later, the original roots of the soybean were removed,
and then soybean plants were grown with hairy roots forming transgenic soybean hairy
root composite plants. The transcript levels of functional genes were detected by qRT-PCR
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assays. The composite plants were planted in flowerpots (12 cm × 14 cm) containing
nutrient soil and vermiculite (1:1). Each pot contained 10 independent composite plants as
a sample.

2.3. Quantitative Real-Time-PCR Assay

Total RNA was isolated and extracted using the RNA extraction kit (ZP401, Zomanbio,
Beijing, China). The quantitative real-time (qRT) PCR analyses were conducted using an
Applied Biosystems real-time PCR system and a TransStart Top Green qPCR SuperMix
kit (AQ131, TransGen, Beijing, China) [31]. The relative expression levels of these selected
genes were calculated with the 2-∆∆CT method, and the Gmtubulin expression was used as
an internal reference. The primers used for the qRT-PCR assay are displayed in Table S1.

2.4. Salt Tolerance Assay

The Arabidopsis seedlings were grown in the 1/2 MS medium for seven days. Then,
these plants underwent salt treatment (75 mM NaCl). After 10 days, the total root length,
proline content, malondialdehyde (MDA) content, and H2O2 content were measured.
To analyze the soybean salt tolerance, the composite soybean plants were cultured in
flowerpots (12 cm × 14 cm) containing nutrient soil and vermiculite (1:1) for one week. For
the salt stress treatment, 0.4 L of NaCl solution (200 mM) was added to the bottom tray of
each flowerpot once every 3 days. After treatment for 10 days, clearly wilting differences
were distinguished between the transgenic (RNAi and OE) and control plants. Each sample
contained 10 independent seedlings, and the experiments were repeated three times. For the
analysis of the physiological parameters, soybean seedlings underwent the salt treatment
for seven days. The transgenic soybean hairy roots were then collected to assay the proline
content, MDA content, H2O2 content, peroxidase (POD), and glutathione S-transferase
(GST) activity using the corresponding detection kit (BC3595, BC0025, BC0095, BC0355,
Solarbio, Beijing, China). The contents of Na+ and K+ were analyzed by an inductively
coupled plasma-optical emission spectrometer (ICP-OES, United States), as described
previously [1].

2.5. Yeast Two-Hybrid Assay

Using the MatchmakerTM Two-Hybrid System, empty pGADT7 (AD), empty pGBKT7
(BD), GmCBL4-AD, and GmCIPK2-BD plasmids were transfected into yeast cells (AH109)
according to the manufacturer’s protocol. Subsequently, these transformants were plated
on the SD/-Ade/-Leu/-Trp/-His medium containing X-α-gal [26,32].

2.6. Pull-Down Assay

To obtain the GmCIPK2-His and GmCBL4-GST recombinant proteins, pCold-GmCIPK2
and pGEX-4T-1-GmCBL4 were constructed and transfected into Escherichia coli (BL21),
respectively. The glutathione agarose beads bounded with GmCBL4-GST proteins were
then used to combine with the soluble GmCIPK2-His protein. The products were then
washed and used for the Western blotting assay, as described previously [2,26].

2.7. Subcellular Localization Assay

The GmCIPK2-GFP and GmCBL4-mCherry plasmids were transformed into Arabidopsis
protoplasts using a PEG-mediated transformation system. After incubating in the dark
for 12 h, the fluorescence signal in the transfected protoplasts was analyzed by a confocal
laser-scanning microscope [3,32].

2.8. Statistical Analysis

All experiments were repeated three times independently. The values are displayed as
the mean ± SE of three biological replicates. The differences between the various treatments
were analyzed using the one-way analysis of variance (ANOVA) using the SPSS software
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(SPSS, statistics). Significant differences were determined by a Student’s t-test and labeled
as * p < 0.05.

3. Results
3.1. Isolation of Salt Stress-Responsive Gene GmCIPK2

CIPKs function essentially in plant tolerance to environmental stresses, while the func-
tions of soybean CIPKs’ tolerance to salt stress remain largely unknown. The BlASTP and
multiple sequence alignment analyses demonstrated that GmCIPK2 has a high sequence
identity with OsCIPK2 and AtCIPK2 (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
25 April 2022). The structure analysis result revealed that GmCIPK2 contained typical CIPK
domains: the N-terminal Ser/Thr kinase domain and the NAF/FISL domain (Figure S1).
Further qRT-PCR assays demonstrated that NaCl-mediated salt stress increased the tran-
script levels of GmCIPK2, peaking at 3 h (Figure 1A), implying a potential role of GmCIPK2
in salt response. Notably, H2O2-mediated oxidative stress led to an enhanced GmCIPK2
expression with a similar expression pattern in response to salt stress (Figure 1B).
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Figure 1. Transcript levels of GmCIPK2 under salt and oxidative stresses. The expression levels of
GmCIPK2 under (A) NaCl treatment and (B) H2O2 treatment were measured in qRT-PCR assays.
Gmtubulin was used as an internal reference. Each data point represents the mean (±SE) of three
independent biological replicates.

3.2. GmCIPK2 Overexpression Confers Transgenic Arabidopsis Tolerance to Salt Stress

To explore the salt resistance associated with GmCIPK2, transgenic Arabidopsis plants
with GmCIPK2 overexpression (GmCIPK2-#3, GmCIPK2-#7, and GmCIPK2-#11) were gener-
ated (Figure 2B). Under favorable conditions, the OE Arabidopsis plants exhibited a similar
phenotype to the wild-type (WT) plants. Nevertheless, the salt treatment resulted in signifi-
cant differences in physiological traits among the different genotypes. The OE Arabidopsis
plants showed salt-tolerant phenotypes with larger biomass accumulation and longer root
lengths (Figure 2A,C,D). Proline is a well-characterized osmolyte that enhances plant toler-
ance to salt stress [3,26]. The salt-treated OE Arabidopsis plants accumulated a significantly
larger proline content than the control plants (Figure 2E). Additionally, salt stress promoted
malondialdehyde (MDA) synthesis, which was negatively correlated with salt tolerance [3].
The MDA levels of salt-treated OE Arabidopsis plants were lower than that of the control
plants (Figure 2F).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 2. GmCIPK2 overexpression results in transgenic-Arabidopsis-enhanced salt tolerance. (A) Anal-
yses of the salt tolerance in OE and WT Arabidopsis plants. Bar = 1 cm. (B) The transcript of GmCIPK2
was determined using semi RT-PCR assays. (C) Fresh weight, (D) total root length, (E) proline con-
tents, and (F) MDA contents in OE and WT Arabidopsis plants under salt conditions. Each data point
represents the mean (±SE) of three independent biological replicates. The * represents significant
differences with the corresponding controls (* p < 0.05).

3.3. GmCIPK2 Promotes the Salt Tolerance of Soybean Hairy Roots

We generated transgenic hairy roots through the RNAi and OE technologies to verify
the salt resistance associated with GmCIPK2 in soybean. GmCIPK2 transcript levels in
transgenic hairy roots were examined using qRT-PCR assays (Figure 3B). Before salt stress,
the different genotypes have no significant difference (Figure 3A,C). Subsequent salt stress
triggers the phenotypic and physiological changes among the different genotypes. Under
salt stress, the OE soybean plants exhibited better salt-tolerant phenotypes and higher
survival rates than the vector control (VC) plants. In contrast, the RNAi soybean plants
had salt-sensitive phenotypes with lower survival rates (Figure 3A,C). Furthermore, upon
salt stress, the proline content was higher in the OE hairy roots than in the VC hairy roots.
Conversely, the salt-treated RNAi hairy roots contained a lower proline content (Figure 3D).
Additionally, the salt-treated OE hairy roots accumulated lower MDA levels than the
control ones. However, a larger MDA level accumulated in the RNAi hairy roots than in the
VC hairy roots under salt conditions (Figure 3E). Considering that the H2O2 treatment led
to the increased expression of GmCIPK2, we analyzed the ROS contents in the hairy roots
of RNAi, VC, and OE. Under normal conditions, ROS contents in the different genotype
hairy roots are comparable (Figure 3F,G). Salt stress promoted ROS synthesis. H2O2 is a
well-recognized moderately reactive ROS that can induce oxidative stress [1,29]. The DAB
staining and quantitative assays showed that the H2O2 content was lower in the OE hairy
roots than in the VC hairy roots after the salt treatment. By contrast, the salt-treated RNAi
hairy roots contained higher H2O2 levels (Figure 3F,G). Antioxidant enzymes function
essentially in scavenging ROS [1,3,29]. Upon salt stress, compared to the control roots, the
OE hairy roots exhibited greater POD activity and GST activity, whereas the activity of
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the POD and GST enzymes in RNAi hairy roots was lower (Figure 3H,I). Moreover, salt
stress usually causes a Na+/K+ imbalance. The Na+/K+ ratios are negatively related to
the salt tolerance of plants [1,29]. When subjected to salt stress, the OE hairy roots showed
a lower Na+ content, higher K+ content, and lower Na+/K+ ratios than the control hairy
roots. In contrast, the salt-treated RNAi hairy roots displayed a higher Na+ content, lower
K+ content, and larger Na+/K+ ratios (Figure 3J–L).
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Figure 3. GmCIPK2 imparts salt tolerance in hairy roots of soybean. (A) Analyses of the salt tolerance
in RNAi, VC, and OE plants under salt treatment. Bar = 10 cm. (B) The transcripts of GmCIPK2
were measured by qRT-PCR analysis. (C) Survival rates, (D) proline contents, (E) MDA contents,
and (F) DAB staining of RNAi, VC, and OE hairy roots. Bar = 0.1 cm. (G) H2O2 content measure-
ment, (H) POD activity detection, (I) GST activity detection, (J) Na+ contents, (K) K+ contents, and
(L) Na+/K+ ratios of RNAi, VC, and OE plants under salt treatment. Each data point represents the
mean (±SE) of three independent biological replicates. The * represents significant differences with
the corresponding controls (* p < 0.05).
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3.4. GmCIPK2 Activates the Expression of the Salt Stress- and Antioxidant-Related Genes

To clarify the molecular mechanisms of the GmCIPK2-mediated salt stress adaption in
soybean, we examined the transcript levels of several salt- and antioxidant-related genes
in the hairy roots of GmCIPK2-RNAi, VC and GmCIPK2-OE under salt treatment. No
significant difference was identified among the different genotypes under normal condi-
tions. However, when subjected to salt stress, the GmCIPK2-OE hairy roots showed higher
expression levels of salt-responsive genes (GmP5CS, GmMYB118, GmDHN15, GmLEA5,
GmSOS1, and GmNHX1) and oxidative-responsive genes (GmPOD21, GmPOD47, GmGST18,
and GmGST20) than the control hairy roots. In contrast, the salt-treated GmCIPK2-RNAi
hairy roots displayed lower expression levels of these salt- and antioxidant-related genes
(Figure 4).
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Figure 4. GmCIPK2 enhances transcripts of stress-related genes regulated by GmCIPK2. Transcript
levels of (A–F) salt-responsive gene (GmP5CS, GmMYB118, GmDHN15, GmLEA5, GmSOS1, and
GmNHX1) and (G–J) antioxidant-related genes (GmPOD21, GmPOD47, GmGST18, and GmGST20)
in RNAi, VC, and OE hairy roots under salt conditions. Each data point represents the mean
(±SE) of three independent biological replicates. The * represents significant differences with the
corresponding controls (* p < 0.05).

3.5. GmCBL4 Combines with GmCIPK2 at the Plasma Membrane

CIPKs are well-recognized for combining with specific CBLs to modulate plant adapta-
tion to abiotic stress. The candidate CBLs that interact with GmCIPK2 were isolated using
a yeast two-hybrid system. The co-expression of GmCBL4-AD with GmCIPK2-BD in the
same yeast strain activated the reporter gene expression (Figure 5A). Therefore, GmCBL4
was identified as an interaction sensor of GmCIPK2.

We then performed pull-down assays to confirm the interaction between GmCIPK2
and GmCBL4. In this assay, the soluble GmCIPK2-His recombinant protein was co-purified
with GmCBL4-GST but not with the control GST protein (Figure 5B), validating the direct
interaction between GmCIPK2 and GmCBL4.
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GmCBL4 by yeast two-hybrid assay. Transformed yeast cell (AH109) containing GmCIPK2-BD and
GmCBL4-AD was grown in SD/-Ade/-Trp/-His/-Leu medium containing X-α-gal. (B) Interaction
analysis of GmCIPK2 and GmCBL4 by pull-down assay. The Western blotting assay showed that
GmCIPK2-His was associated with GmCBL4-GST, unlike the control GST protein. (C) Subcellular
localization analysis of GmCIPK2 and GmCBL4 in Arabidopsis protoplasts. Images were observed
under a laser scanning confocal microscope. Bar = 10 µm.

3.6. GmCBL4 Overexpression Imparts Salt Tolerance of Soybean Hairy Roots

To further explore the significance of the combination of GmCIPK2 and GmCBL4,
we examined the distribution of both GmCBL4 and GmCIPK2 using the method of PEG-
mediated protoplast transformation. PIP-mCherry protein was used as a membrane-
localized marker [27]. GFP signals were mainly distributed in the nucleus and cytoplasm
when the PIP-mCherry constructs were co-expressed with the GmCIPK2-GFP constructs in
the same Arabidopsis protoplasts. However, as the GmCIPK2-GFP and GmCBL4-mCherry
constructs were co-expressed in the same Arabidopsis protoplasts, GFP signals were only
detected in the plasma membrane. Noteworthily, GmCBL4 encoded a membrane-localized
protein (Figure 5C). Therefore, GmCBL4 may bind to GmCIPK2 at the plasma membrane
to influence cellular processes.

Considering that GmCBL4 acted as a CIPK2-interacting protein, we generated hairy
roots with GmCBL4 overexpression (Figure 6B). Without salt stress, the GmCBL4-OE plants
had a similar phenotype as the control plants (Figure 6A). The hairy roots with GmCBL4
overexpression were more tolerant to salt stress and had significantly higher survival
rates than the VC plants under salt stress (Figure 6A,C). Further physiological analyses
illustrated a significantly lower MDA content and larger proline level that accumulated in
the salt-treated GmCBL4-OE hairy roots than in the VC hairy roots in response to the salt
stress (Figure 6D,E). More importantly, the results of the DAB staining and quantitative
assays showed that salt-treated GmCBL4-OE hairy roots contained a lower content of H2O2
than VC hairy roots (Figure 6F,G). Additionally, the GmCBL4-OE hairy roots showed a
lower Na+ content, higher K+ content, and lower Na+/K+ ratios than the VC hairy roots
did under salt stress (Figure 6H–J).
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significant differences with the corresponding controls (* p < 0.05).

4. Discussion

There is ample evidence to show that CIPKs play a pivotal role in plant tolerance to
salt stress [4,5]. Salt stress increases the AcCIPK5 transcripts, and the overexpression of
AcCIPK5 confers salt tolerance in transgenic plants [34]. ZmCIPK42 responds to salt stress,
and ZmCIPK42 overexpression leads to the improved salt resistance of maize [35]. In recent
years, the whole soybean genome has been sequenced [36]; nonetheless, the functions
of soybean CIPKs in salt stress responses remain largely unknown. In the assay, a salt-
inducible gene, GmCIPK2, was isolated from soybean (Figure 1A). GmCIPK2 overexpression
increased the salt tolerance of Arabidopsis plants and soybean hairy roots. Conversely, the
downregulation of GmCIPK2 by the RNAi technology resulted in increased salt sensitivity
of hairy roots (Figures 2 and 3). Taken together, GmCIPK2 acts as a key regulator in
alleviating soybean salt stress.

Salt stress has been documented to trigger the overproduction and accumulation of
ROS, which causes oxidative damage to cells, such as membrane damage and enzyme
activity disruption, and even cell death [1,29]. To survive, plants have evolved sophis-
ticated antioxidant defense systems to scavenge the redundant ROS [1,17,29]. Previous
studies demonstrated that GhCIPK6a and BdCIPK31 increased SOD, POD, CAT, and GST
enzyme activity to alleviate salt-induced oxidative stress [19,37]. In this study, the H2O2
treatment increased the transcript levels of GmCIPK2 (Figure 1B). Further DAB staining
and quantitative assays illustrated that a significantly lower content of H2O2 accumulated
in the salt-treated GmCIPK2-OE hairy roots than in the control roots. In contrast, the oppo-
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site findings were observed in the salt-treated GmCIPK2-RNAi hairy roots (Figure 3F,G).
Furthermore, consistent with the role of GmCIPK2 in activating the POD and GST enzymes
(Figure 3H,I), GmCIPK2 was found to promote the expression of GmPOD21, GmPOD47,
GmGST18, and GmGST20 under salt stress (Figure 4G–J). These results indicate that Gm-
CIPK2 participates in enhancing the antioxidant defense system to respond to salt stress in
soybean plants.

Salt treatment increases intracellular Na+ concentrations. The excessive accumulation
of Na+ usually triggers the inhibition of K+ absorption, breaking the Na+/K+ homeosta-
sis [1,29]. CIPKs function crucially in modulating ion transport, especially Na+ and K+. For
example, TaCIPK29 has been shown to enhance the expression of SOS1, NHX2, and NHX4
to reduce the Na+/K+ ratios, improving the salt tolerance of transgenic plants [38]. NtCIPK9
overexpression promotes the expression of NHX1 and NHX7 to increase the K+ content
and decrease the Na+ content under salt stress [39]. NHXs encode the Na+/H+ antiporters
that function in reducing the intracellular Na+ content by regulating Na+ extrusion or
storing redundant Na+ in the vacuole [40]. In this assay, upon salt stress, the overexpression
of GmCIPK2 decreased Na+ concentrations, increased K+ contents, and reduced Na+/K+

ratios in soybean plants (Figure 3J–L). On the contrary, the salt-treated GmCIPK2-RNAi
lines displayed the opposite. Furthermore, GmCIPK2 enhanced the transcript levels of
GmNHX1 and GmSOS1 in response to salt stress (Figure 4E,F). Collectively, our findings
demonstrate that GmCIPK2 is involved in enhancing Na+/K+ homeostasis to improve the
salt tolerance of soybean.

CIPKs have been reported to modulate salt-responsive gene expression to contribute to
salt tolerance in plants. A previous study reported that ZmCIPK21 increases the transcript
levels of RD29A, COR15, and DREB to increase salt tolerance in transgenic Arabidopsis [14].
NtCIPK11 was shown to regulate the expression of the proline biosynthesis-related genes
to increase the proline content in tobacco under salt stress [41]. In this assay, GmCIPK2
enhanced the transcript levels of the proline biosynthesis gene GmP5CS (Figure 4A), which
was consistent with its positive role in increasing the proline content under salt stress
(Figure 3D). Moreover, GmCIPK2 was found to increase the transcript levels of GmMYB118,
GmLEA5, and GmDHN5 in response to salt stress (Figure 4B–D). MYB transcription factors
usually function in mediating stress signal transduction to regulate plant adaption to stress
conditions [29,42]. DHN and LEA encode dehydrins that play critical roles in protecting cell
membrane stability, regulating ion balance, and controlling ROS homeostasis [1,3]. These
findings indicate that GmCIPK2 is associated with increasing the transcript levels of the
salt-related gene, contributing to the tolerance of soybean to salt stress.

CIPKs usually combine with specific CBL proteins to regulate plant adaptation to
adverse conditions [4,9]. For instance, CBL1/9 has been reported to combine with AtCIPK1
to mediate the Arabidopsis’ adaption to osmotic and salt stresses [43]. According to a
subsequent study, the AtCBL1/9-AtCIPK23 complex activates the inward K+ channel AKT1
to promote K+ absorption [44]. Moreover, CaCBL2 interacts with CaCIPK3 at the plasma
membrane to improve the drought tolerance of transgenic tomatoes [45]. In this study, the
results of the interaction assays verified that GmCBL4 functions as a GmCIPK2-interacting
sensor (Figure 5). Moreover, GmCBL4 overexpression conferred salt tolerance in transgenic
hairy roots. Furthermore, compared to the control, the salt-treated GmCBL4-OE hairy roots
had a higher proline content, a lower content of MDA and H2O2, smaller Na+ content
and Na+/K+ ratios, and a higher K+ concentration (Figure 6), which is consistent with the
function of GmCIPK2 in improving the salt tolerance of soybean (Figure 3). Collectively,
these results indicated that the GmCBL4-GmCIPK2 complex contributes to enhancing
soybean salt tolerance.

5. Conclusions

GmCIPK2 functions crucially in enhancing soybean tolerance to salt stress. Fur-
thermore, GmCIPK2 alters the antioxidant defense system, Na+/K+ homeostasis, and
salt-related gene expression to respond to salt stress. Moreover, GmCBL4 functions as
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a GmCIPK2-interacting sensor that improves the salt tolerance of soybean hairy roots.
Overall, this study contributed to elucidating the CBL-CIPK mediated salt-responsive
mechanism in soybean.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy12071595/s1, Figure S1. Sequence analysis of GmCIPK2.
(A) Multiple sequences alignment of GmCIPK2, OsCIPK2, and AtCIPK2. Dark blue shading indicates
identical residues. Dark lines demarcate the N-terminal Ser/Thr kinase domain and C-terminal
regulatory domains. The NAF/FISL domain is marked with a red rectangle. Table S1. Primers used
in RT-PCR assays.
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