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Abstract: The internal air temperature of Chinese solar greenhouse (CSG) has the problem of uneven
spatial and temporal distribution. To determine temperature distribution at different locations, we
designed a greenhouse temperature real-time monitoring system based on virtual local area network
(VLAN) and estimate, including interpolation estimation module, data acquisition, and transmission
module. The temperature data were obtained from 24 sensors, and the Ordinary Kriging algorithm
estimated the temperature distribution of the whole plane according to the data. The results showed
that the real-time temperature distribution monitoring method established was fast and robust.
In addition, data validity rate for VLAN technology deployed for data transmission was 2.64%
higher than that of cellular network technology. The following results are obtained by interpolation
estimation of temperature data using gaussian model. The average relative error (ARE) of estimate,
mean absolute error (MAE), root mean square error (RMSE), and determination coefficient (R?)
were —0.12 °C, 0.42 °C, 0.56 °C, and 0.9964, respectively. After simple optimization of the number
of sensors, the following conclusions are drawn. When the number of sensors were decreased to
12~16, MAE, RMSE, and R? were 0.40~0.60 °C, 0.60~0.80 °C, and >0.99, respectively. Furthermore,
temperature distribution in the greenhouse varied in the east-west and north—south directions and
had strong regularity. The calculation speed of estimate interpolation algorithm was 50~150 ms, and
greenhouse Temperature Distribution Real-time Monitoring System (TDRMS) realized simultaneous
acquisition, processing, and fast estimate.

Keywords: greenhouse; temperature distribution; real-time monitoring; ordinary kriging; LabVIEW

1. Introduction

With the rapid development of protected horticulture, the area under cultivation
has expanded exponentially in recent years. Statistics indicate that, as of 2018, total area
under facility planting in China stood at 1.894 million hectares, including 577 thousand
hectares under solar greenhouse agriculture [1]. These data show the growing importance
of facility agriculture in off-season supply of vegetables. Presently, the COVID-19 pandemic
and the volatile security situation in Russia and Ukraine have exacerbated the global
energy crisis. Therefore, for stable production and supply of vegetables, it is particularly
important that new agricultural production units such as greenhouses are developed.
In CSG, temperature is an important factor affecting crop quality and yield. However,
greenhouse environment is influenced by external environment and human factors [2].
Proper temperature regulation is an essential management aspect of greenhouse operations.
Winter heating and summer cooling have become an important research direction of
greenhouse temperature regulation. In most cases, temperature distribution inside a
greenhouse is considered to be uniform in using temperature measurements at the center
of the greenhouse or a few characteristic temperatures to represent the overall temperature
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of the greenhouse. However, studies have shown that temperature distribution in the
greenhouse is uneven due to the effect of external weather conditions, including outdoor
solar radiation and temperature and internal conditions such as greenhouse crops, soil,
and structural design [3,4]. The temperature has strong temporal and spatial distribution.
A high temperature gradient in the greenhouse has a negative impact on greenhouse
production [5].

Many studies have considered real-time monitoring of temperature variation and
distribution patterns in the greenhouse [6,7], and they use a variety of environmental moni-
toring sensors to obtain environmental data inside and outside the greenhouse, and use
different methods to build models of parameters such as temperature inside the greenhouse.
Presently, Computational Fluid Dynamics (CFD) software is widely used to simulate vari-
ous aspects of greenhouse environment, such as simulating temperature field distribution
of the wall to determine the thickness of the wall [8], horizontal and vertical temperature
fields [9-12], and humidity field [3,13]. Temperature is unevenly distributed in both hori-
zontal and vertical directions, as is humidity. Using CFD software can accurately reflect the
actual distribution of greenhouse temperature and provide a new approach for simulating
greenhouse temperature. In addition, many researchers have established highly accurate
and more realistic greenhouse temperature prediction models using machine learning.
These models accurately reflect changes and laws of greenhouse temperature. For example,
LSSVM (Least Squares Support Vector Machines) optimized by improved PSO (Particle
Swarm Optimization) [14], modeling greenhouse environment using SVM (Support Vector
Machines) [15], convex bidirectional extreme learning machine [16], and different neural
network algorithms [5,17-19] are used to predict and simulate environmental factors such
as greenhouse temperature. In particular, CFD software has high simulation accuracy and
offers additional advantages, including exploration of the distribution law of greenhouse
environmental factors. However, the calculation time is considerably long. Therefore, when
applied to regulation of greenhouse environment, it may not provide timely information
to guide greenhouse producers. Machine learning has a small error rate and good pre-
dictability when used to simulate environmental factors such as greenhouse temperature.
However, this method mainly simulates and predicts values where the representative
location within the greenhouse of one to several key parameters of environmental factors is
useful for greenhouse modeling and distribution law of environmental factors. Therefore,
for a rapid estimate of temperature field in the greenhouse, interpolation methods are used
to predict related greenhouse variables.

Xiao et al. [20] used Cubic, Natural, and Liner interpolation methods to visually
estimate the temperature field of the greenhouse. The average error was 1.5 °C and the
Cubic interpolation calculation was relatively accurate for simulating temperature field
at a specific time in the greenhouse. Bojacd et al. [21] introduced geostatistics into the
greenhouse temperature estimate field and used R software to interpolate the horizontal
temperature of an experimental greenhouse. The average error between estimated dataset
and observed dataset was 0.4 °C. Zhang et al. [22] used simple Kriging geostatistical
interpolation to estimate the temperature field of plant canopy in the solar greenhouse and
verified the interpolation in sunny, cloudy, and rainy days. The average root mean square
errors were 1.34 °C, 0.95 °C, and 0.40 °C for sunny, cloudy, and rainy days, respectively.
Geostatistical interpolation is more appropriate for different estimate interpolation analyses
of complex greenhouse temperature variables. However, real-time estimate of greenhouse
temperature field may not be achieved using geostatistical estimates, and the software
does not provide basic real-time temperature distribution data for formulating an effective
temperature control strategy.

Therefore, to compensate for the defects of the methods discussed and achieve real-
time analysis of the temperature distribution of greenhouses, a new tool is needed for geo-
statistical modeling. The present study combined virtual local area network (VLAN) [23]
technology and geostatistical estimate methods to derive interpolations of the temperature
field in the horizontal plane. We also compared the advantages and disadvantages of
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cellular network (CN) [24] technology and VLAN technology in transmitting data and ana-
lyzed interpolation effects after optimizing the sensors. Aiming at the uneven temperature
distribution in CSG, a real-time estimate method of CSG temperature distribution based
on VLAN technology was proposed to realize real-time monitoring of CSG temperature
distribution and further understand the specific situation of temperature distribution.

2. Materials and Methods
2.1. Description of Experimental Greenhouse

The experimental greenhouse was located in the horticulture field of Northwest A & F
University in Yangling Agricultural High-tech Industrial Demonstration Zone, Shaanxi
Province, 107°59" E~108°08' E and 34°14’ N~34°20" N. This location belongs to warm
temperate semi-humid and semi-arid climatic zones in East Asia and experiences a typical
continental monsoon climate. The experimental greenhouse was a modular assembled
solar greenhouse divided into three compartments according to the different types of the
northern wall (Earthen wall, water wall, gravel wall), separated by polystyrene board. This
experiment was conducted in a compartment bounded by an earthen wall covered exter-
nally with cement mortar in the north and a brick wall covered externally with polyurethane
panels in the west. The greenhouse was 10.5 m and 15.0 m long in the north—south and an
east—west direction, respectively. The number 1 in Figure 1a is the experimental greenhouse.
Figure 1b shows the interior and exterior of the earth-walled greenhouse.

_;' Earthen w!all 7

(b)

Figure 1. CSG real figure. (a) is a full-frontal view of the experimental CSG. (b) Earthen wall module
of experimental greenhouse.

2.2. Experimental Design

In the 15.0 m x 10.5 m test area, 28 Pt100 temperature sensors were installed at a
height of 1.5 m to measure temperature at different locations in the greenhouse. The solar
radiation sensor was located at the center of the greenhouse horizontal plane at 0.8 m to
measure the solar radiation, as shown in Figure 2.

2.3. Introduction of Real-Time Monitoring System for Temperature Distribution in a CSG

Greenhouse Temperature Distribution Real-time Monitoring System (TDRMS) con-
sisted of two parts: data acquisition part and data estimate part. The data acquisition
part included data acquisition module and data storage module. The data estimate part
included estimate algorithm module and estimate image output module. TDRMS real-time
input included temperature data collected by Data Acquisition Module (DAM). These



Agronomy 2022, 12, 1565 4 of 32

data were then passed into the temperature interpolation estimate module for real-time
monitoring of temperature distribution. The system architecture is shown in Figure 3.
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Figure 2. Distribution of indoor temperature and solar radiation sensors. (a) The distribution of
temperature and solar radiation sensors in the vertical direction; (b) The distribution of temperature
and solar radiation sensors on the horizontal plane. A is Pt100 temperature sensor; e is solar
radiation sensor. % is Pt100 temperature sensor used to obtain the observation value and analyze the
estimate interpolation effect. Where 1 to 4 are row marks; A to F are column marks; M1 to M4 are
sensor numbers.
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Figure 3. Greenhouse Temperature Distribution Real-time Monitoring System (TDRMS) flow diagram.

2.3.1. Introduction of Interpolation Estimate Module

The interpolation estimate algorithm is the ordinary Kriging interpolation in geostatis-
tics, and the interpolation algorithm is run by calling the DACE (Design and Analysis of
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Computer Experiments) tool library in MATLAB R2021a software (MathWorks Inc., Natick,
MA, USA). The DACE tool library automatically adjusts the parameters of the semivari-
ogram [25] to achieve the best estimate effect. In this experiment, the test area where the
north wall was earthen was divided into grids of equal rows and columns, and each grid
was filled with estimate data. Different data were given different pseudo-colors in TDRMS,
and then we used Laboratory Virtual Instrument Engineering Workbench (LabVIEW)’s
powerful user interface to visually display temperature data.

LabVIEW used in TDRMS is a graphical programming environment developed by
National Instruments, whereas MATLAB is a mathematical software developed for Math-
Works. LabVIEW provides a large number of integrated function libraries, which is more
useful for designing human-computer interaction interface, supports instrument program-
ming, equipment communication and data acquisition, and has a powerful visualization
function. MATLAB, as a mathematical software, offers great advantages in matrix opera-
tion processing. Therefore, combining LabVIEW and MATLAB provides a fast real-time
interpolation estimate of greenhouse temperature distribution.

2.3.2. Data Acquisition and Transmission

Temperature acquisition hardware adopted standard MODBUS TCP (Modicon, MA,
USA) protocol for industrial DAM. It was equipped with 32-bit ATMEL ARM high-speed
processor acquisition accuracy of 0.1 °C. The temperature data of observed values used
DAM (M1 and M4 are shown in Figure 2), including analog quantity of data interface and
Pt100 acquisition interface. The accuracy of Pt100 temperature measurement and analog
quantity of data were 0.1 °C and 0.1%, respectively. Data transmission equipment included
Oraybox-X4C wireless router (Oray, Shanghai, China) and USR-DR154 guide rail type DTU
(Data Transfer Unit).

In this experiment, data collected by VLAN and CN were used to compare efficiency
and stability between the two methods. When the CN technology of Internet of Things
(IoT) [26] platform is used for data collection, the electrical signal of Pt100 is input into the
DAM through three-core line, while the DAM is connected to 4G DTU through the RS-485
interface. The Modbus protocol is used for data transmission. Modbus protocol in 4G DTU
is converted into Message Queuing Telemetry Transport (MQTT, IBM, NY, USA) protocol.
The data are transmitted to the IoT platform through the cellular network technology and
downloaded to the personal computer for analysis and use. The architecture is shown
in Figure 4a. On the other hand, when TDRMS is used to collect data, Pt100 electrical
signal is transmitted to DAM through the three-core wire using TCP transmission protocol.
DAM is connected with the router through the RJ45 crystal interface. The router and the
personal computer are connected via VLAN technology. TDRMS is used to send Modbus
TCP instruction message to DAM. TDRMS receives a response message from DAM and
extracts data bytes in the returned message to convert them into decimal temperature data
that are stored in a database. The architecture is shown in Figure 4b. Compared with
CN technology transmission, VLAN technology can save a one-step protocol conversion
process, reducing the possibility of errors in the transmission process.

2.4. Temperature Interpolation Estimate Principle

In geostatistical interpolation, ordinary Kriging method is used for temperature data
interpolation. Kriging method is based on spatial autocorrelation. It uses raw data and semi-
variogram to correctly estimate unknown sampling points of regionalized variables [27]. In
geostatistics, Kriging is used for interpolation estimate of large-scale geostatistical elements
such as precipitation, temperature, and altitude. Unlike spatial deterministic interpolation
such as inverse-distance-weighted interpolation, global polynomial interpolation, and local
polynomial interpolation, ordinary Kriging interpolation is a spatial non-deterministic
interpolation approach. The Kriging interpolation principle formula can be expressed as:

Zx(s) = pu(s) +e(s) @
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In the formula, s is the point of different positions, namely spatial coordinates; Z*(s)
is a variable at s, which can be broken down into deterministic trend values p(s) and
autocorrelation random errors £(s).
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Figure 4. The frame structure of two data transmission methods. (a) Cellular Network technology
data transmission structure; (b) Virtual LAN technology data transmission structure.
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Kriging interpolation determines the optimal weight of interpolation estimate based
on unbiased prediction and minimum variance. Therefore, Kriging interpolation needs to
meet the following two conditions:

(1) Unbiased conditions:

E[Z % (s0) = Z(s0)] = 0 @

(2) Optimal conditions:

min Var[Z x (so) — Z(s0)] (3)

In the formula, Z*(sp) is the estimated value at the known point sy, and Z(sp) is the
observed value at sp. For unbiased condition to be met, the expected value of the difference
between observed value of the known point and estimated value must be the same. The
optimal condition is one with the smallest variance between observed value of the known
point and estimated value.

2.5. Semivariogram Model Selection

In the selection of semivariogram, gaussian model and spherical model are mainly
used. In DACE, Gaussian model and spherical model are expressed in the following forms:

(1) Spherical model:

1— 1.5+ 0.5¢, & = min{1,6;|d;|} @)

(2) Gauss model:

exp(ijdJZ») ©)

In the formula, ¢; is the independent variable at j. d; is a parameter with spatial
distance correlation at j. 6; is the parameter of the relevant model at j.

It can be concluded from Table 1 that there is little difference between the two kinds of
model in cross-verification, so the model is subsequently verified.
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Table 1. Cross-validation for precision evaluation.

SE R?
Spherical model: 0.022 0.9949
Gauss model: 0.029 0.9931

SE is the standard error of regression coefficient, and the smaller the value, the higher the accuracy; R? is the
square of the correlation coefficient, and the larger the value, the better the regression effect.

By comparison, it can be found that the difference estimation effect of zero-order
polynomial of Gaussian model is the best, and the results are shown in Table 2. Before
kriging interpolation estimation, the temperature data of observation points were ana-
lyzed normally, and the data distribution was in accordance with the normal distribution
according to the normal Q-Q diagram (see Appendix A Figure A1 for the Q-Q diagram).

Table 2. Different model fitting effects.

Decision Mean Absolute

Coefficient (R?) Error (MAE)/°C RMSE/*C

Zero order 0.9957 0.51 0.65
polynomial

Spherical Model First order 0.9941 0.51 0.70
polynomial

Second order 0.9930 0.49 0.72
polynomial

Zero order 0.9964 0.42 0.56
polynomial

Gaussian Model First order 0.9944 0.46 0.65
polynomial

Second order 0.9929 0.50 0.72
polynomial

2.6. Test Method

The temperature sensor adopted the Pt100 platinum thermal resistance chip of Her-
aeus, Germany. The signal line adopted three-core tetrafluoro silver plating shielding
line. The probe was 4 mm in diameter and 30 mm in length. Its measurement range is
—50~200 °C, with an accuracy of 0.1 °C. The temperature sensor probe was shielded by
a reflective shielding device consisting of a disposable paper cup coated with aluminum
foil to avoid direct exposure to the sun. Ice temperature calibration was performed for
each temperature sensor prior to the test. Twenty-four temperature data points were
recorded for estimate at one-minute intervals and stored in IoT platform database and
personal computer database. Indoor solar radiation sensor adopted HSTL-FSDJY type with
a measurement range of 0~1500 W-m~2. Solar radiation data were acquired at one-minute
intervals and stored in the IoT platform database. Outdoor meteorological data were
collected and stored in outdoor weather stations, and it is a small automatic weather station
HOBO U30 produced by Onset in the United States. Data recording interval was 10 min.
The total solar radiation sensor had a measurement range of 0~1280 W-m~2 and an accu-
racy of =10 W-m~2. The temperature sensor had a range of —40~100 °C and an accuracy
of £0.2 °C. Otherwise, observations were also stored at slightly different intervals. The
M2 and M3 data acquisition interval was 1 min, whereas the M1 and M4 data acquisition
interval for supplementary analysis was 10 min. The data were stored in the IoT platform
database (Figure 4b).

The test period was from December 2021 to February 2022. The crop cultivated in
the greenhouse during the test was chilli. Due to the cultivation matrix and management
problems, the growth of chilli was stagnant. Therefore, it can be assumed that there is no
crop influence in the ideal state. The ventilation mode used in the greenhouse was natural
ventilation, with lower vents and rear slope vents. In sunny days, the insulation cover was
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usually opened between 8:00 and 9:00 every morning and closed between 16:00 and 17:00
every evening. In cloudy and snowy days, the time of opening the insulation cover was
postponed according to the outdoor and indoor temperature gradient. The specific opening
and closing times were based on the experience of the planting operator and the specific
temperature in the greenhouse.

3. Results
3.1. Efficiency Analysis of Different Data Transmission Modes

The time interval between TDRMS and IoT platform data acquisition was 1 min. In
theory, 1440 data were collected per data point every day. After removing errors due to
program closing caused by human factors (active shut down program) and data missing
caused by power outage in the greenhouse, the efficiency of CN and virtual LAN data
acquisition technology used in IoT platform was analyzed. The data were preprocessed
before calculating data efficiency and redundant data in the two methods were deleted to
avoid distorting data qualified rate.

Data collected for nine consecutive days from 31 December 2021 to 8 January 2022 were
selected for analysis. These data are shown in Table 3. The average data efficiency of CN
technology transmission on IoT platform was 96.60%, whereas that of VLAN technology
transmission was 99.24%.

Table 3. Analysis of valid data transmitted by two transmission methods.

Data Transmission Method

Cellular Network Technology Virtual LAN Technology
Date Transmission Transmission

Valid Data Valid Data

Amount of To/tle;ilelc):ta Validity =~ Amount of Da;l;()/tlililece Validity

Data/Piece * Rate/% Data/Piece Rate/%
2021-12-31 34,152 34,560 98.82 34,332 34,560 99.34
2022-1-1 34,104 34,560 98.68 34,308 34,560 99.27
2022-1-2 33,744 34,560 97.64 34,428 34,560 99.62
2022-1-3 32,160 34,560 93.06 34,452 34,560 99.69
2022-1-4 33,360 34,560 96.53 34,452 34,560 99.69
2022-1-5 32,208 34,560 93.19 34,266 34,560 99.15
2022-1-6 33,648 34,560 97.36 33,996 34,560 98.37
2022-1-7 33,120 34,560 95.83 34,224 34,560 99.03
2022-1-8 33,960 34,560 98.26 34,212 34,560 98.99

* 24 data points were transmitted each minute and collected 1440 times a day. Valid data refer to values that can be
used for data analysis after the abnormal values (repeated data and 0) were excluded from normal data received.

Analysis results showed that both CN technology transmission and VLAN technology
transmission on IoT platform met data efficiency demands. However, data efficiency of
VLAN transmission mode was 2.64% higher than that of CN technology transmission on
IoT platform. Variance analysis of effective data showed that CN technology transmission
and VLAN technology transmission had data efficiency variance of 4.80% and 0.18%,
respectively. Further, VLAN technology transmission showed better data stability than CN
technology transmission on IoT platform.

3.2. Temperature Estimate Effect Analysis

The temperature interpolation estimate used data from seven consecutive days from
28 December 2021 to 3 January 2022, including typically sunny days and cloudy days.
The 15.0 m x 10.0 m area was divided into 60 x 60 grids using the interpolation estimate
module. Grid coordinates of the estimate points were determined according to physical
coordinates of the observation points. Linear fitting analysis was performed to determine
the difference between observed values and estimated values. The observed values were
the temperature data of M2 and M3. Before interpolation estimate, data were preprocessed,
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and all zero values were removed. To identify and remove abnormal data, the array was
tested with the following triple standard deviation method (the Laida criterion):

Xnormal value € (Y —30,X+ 30') (6)

In the formula, x and o are the average value standard deviation of this dataset.

After the data were preprocessed, linear fitting analysis was performed using data
points from 17,647 groups. The fitting results are shown in Figure 5. Results show that the
average relative error between estimated value and observed value, average absolute error,
root mean square error, and determination coefficient were 0.12 °C, 0.42 °C, 0.56 °C, and
0.9964, respectively.

450
40.0
350 F

U300 -

$250

E200 |

315.0 =
10.0 -
50 F

UU 1 1 | | 1 1 1 | 1
0.0 50 10.0 150 200 25.0 300 350 40.0 450
Observations/ °C

y =1.0273x - 0.5061
R?=0.9964
RMSE =0.56 °C

Figure 5. Linear fitting analysis chart of estimated and observed values. The observed data are the
temperature data of M2 and M3. The red curve is the linear fitting curve, and the black dots are the
observed and estimated values.

When original observed data values were analyzed during the test, it was found that
temperature accuracy of data changed significantly on sunny days than on rainy days
(Figure 6a). This indicated that the high accuracy and sensitivity of the Pt100 sensor could
not be fully reflected in relatively small temperature fluctuations. Combined with the
observation data acquisition module of other analog acquisition data condition analysis
(the changes of solar radiation and relative humidity of the DAM in rainy days), under
the condition of rainy weather, data change was not obvious due to the observation data
acquisition module own condition limit (long service life, module hardware aging, etc.),
resulting in the situation. Therefore, based on original observation points, we solved this
problem by replacing DAM and supplementing linear fitting analysis of estimated data and
measured data with M1 and M4 observation points (Figure 6b). The reason for the large
temperature difference between M4 and M1 was that the two temperature measuring points
were located on the east and west sides of the greenhouse. M2 and M3 were located near
the middle of the greenhouse, so the temperature difference was small. The distribution of
temperature measurement points is shown in Figure 2b.

The supplementary data were acquired from 8 February 2022 to 15 February 2022 at an
interval of 10 min. The acquisition interval was increased to reduce iteration steps for large
amounts of data and improve operational efficiency of the program. Linear fitting analysis
was performed on the 1987 group of data points collected within eight consecutive days.
Fitting results are shown in Figure 7. For this analysis, the average relative error between
the estimated value and the observed value, average absolute error, root mean square, and
error determination coefficient were —0.24 °C, 0.34 °C, 0.46 °C, and 0.9972, respectively.
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Figure 6. Temperature changes in greenhouses during rainy days on 16 February 2022. (a) Temper-
ature changes of M2 and M3 measuring points; (b) Temperature changes of M1 and M4 measur-

ing points.

y =1.0195x - 0.0212
R?=0.9972
RMSE =0.46 °C

50 100 15.0 20.0 250 30.0 350 400 450
Observations/ °C

Figure 7. Linear fitting analysis chart of estimated and observed values. The observed data are the
temperature data of M1 and M4.

For analysis of data from two consecutive acquisition cycles, the average relative error
between the estimated value and the observed value, average absolute error, root mean
square error, and R? were —0.18 °C, 0.38 °C, 0.51 °C, and >0.99, respectively. This method
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yielded ideal fitting results for temperature distribution in the solar greenhouse, including
large determination coefficient and small root mean square error. To some extent, the
results accurately reflect actual distribution of temperature in the greenhouse, hence they
are useful for real-time monitoring of greenhouse temperature.

3.3. Analysis of the Influence of Reducing Number of Sensors on the Accuracy of
Temperature Estimate

From the analysis in Section 3.2, it was determined that Ordinary Kriging interpolation
was feasible in temperature distribution estimate in solar greenhouse. Therefore, using
original 24 temperature measuring points, an optimal number of sensors was obtained by
reducing all sensors in the whole row or column regularly to reduce the cost of the system.

3.3.1. Reduction of Four Temperature Sensors

There were four ways to reduce four temperature measuring points, namely, removing
columns B, C, D, and E. After deleting the four data points, M2 and M3 data were analyzed
by linear fitting with estimated values. The results are shown in Figure A2 (The fitting
diagram is shown in Appendix A). The average relative error was —0.19 °C, the average
absolute error was 0.44 °C, and the average root mean square error was 0.58 °C. The
analysis data of the four ways are shown in Table 4.

Table 4. Linear correlation analysis results after reducing 4 sensors.

Number of Reduce Mean Mean Linear Fittin
Sensors/ Sensor Relative Absolute Curve & R? RMSE/°C
Piece Position * Error/°C Error/°C
20 B —0.30 0.48 y =0.9872x + 0.4734 0.9955 0.62
20 C —0.09 0.41 y = 0.9735x + 0.4665 0.9961 0.56
20 D -0.20 0.43 y = 0.9800x + 0.4773 0.9962 0.56
20 E —-0.18 0.42 y =0.9786x + 0.4817 0.9961 0.56

* Where B to E are column mark.

3.3.2. Reduction of Six Temperature Sensors

There were two ways to reduce six temperature measuring points, namely, removing
rows 2 and 3. After deleting the six data points, M2 and M3 data from two observa-
tion points and estimate value were analyzed by linear fitting. The results are shown in
Figure A3. The average relative error, average absolute error, and average root mean square
error were —0.03 °C, 0.46 °C, and 0.59 °C. Results of the analysis using the two ways are
shown in Table 5.

Table 5. Linear correlation analysis results after reducing 6 sensors.

Number of Reduce Mean Mean Linear Fittin
Sensors/ Sensor Relative Absolute Curve 8 R? RMSE/°C
Piece Position * Error/°C Error/°C
18 @ 0.17 0.40 y = 0.9815x + 0.4279 0.9962 0.54
18 [©) -0.22 0.51 y =0.9706x + 0.6345 0.9952 0.64

* Where ) to (3 are row marks.

3.3.3. Reduction of Eight Temperature Sensors

There were six ways to reduce the eight temperature measuring points, namely,
removing BC, BD, BE, CD, CE, and DE. After removing eight data points, M2 and M3 data
from two observation points and the estimate value were analyzed by linear fitting. The
results are shown in Figure A4. The average relative error, average absolute error, and
average root mean square error were —0.24 °C, 0.45 °C, and 0.57 °C, respectively. Results
of the analysis using the six ways are shown in Table 6.
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Table 6. Linear correlation analysis results after reducing 8 sensors.

Number of Reduce Mean Mean Linear Fittin
Sensors/ Sensor Relative Absolute Curve 8 R? RMSE/°C
Piece Position * Error/°C Error/°C
16 B,C —0.30 0.5 y =0.9980x + 0.3276 0.9943 0.68
16 B,D —0.33 0.48 y =0.9985x + 0.3547 0.9956 0.63
16 B,E —0.11 0.38 y = 0.9886x + 0.2807 0.9965 0.38
16 C,D -0.16 0.40 y = 0.9854x + 0.3635 0.9961 0.54
16 CE —0.18 0.40 y = 0.9852x + 0.3897 0.9963 0.53
16 D,E -0.37 0.51 y = 1.0016x + 0.3456 0.9949 0.68

* Where the letters represent column marks.

3.3.4. Reduction of Twelve Temperature Sensors

There were four ways to reduce 12 temperature measuring points, namely, removing
columns BCD, BCE, and CDE and rows 2 and 3. After removing 12 data points, M2 and M3
data from two observation points and the estimate value were analyzed by linear fitting.
The results are shown in Figure A5. The average relative error, average absolute error and
average root mean square error were —0.38 °C, 0.54 °C, and 0.73 °C, respectively. Analysis
results using the four ways are shown in Table 7.

Table 7. Linear correlation analysis results after reducing 12 sensors.

Number of Reduce Mean Mean Linear Fittin
Sensors/ Sensor Relative Absolute Curve 8 R? RMSE/°C
Piece Position * Error /°C Error /°C
12 2,3 —0.46 0.59 y = 0.9964x + 0.5047 0.9952 0.72
12 B,C,D —0.33 0.52 y =1.0143x + 0.1338 0.9931 0.76
12 B,CE —-0.33 0.54 y = 1.0015x + 0.3089 0.9932 0.74
12 C,DE —0.38 0.51 y =1.0135x + 0.3089 0.9945 0.71

* In the second column, letters represent column marks while numbers represent row marks.

3.3.5. Reduction of Sixteen Temperature Sensors

There was one way to reduce 16 temperature measuring points, namely, removing
columns B, C, D, and E. After deleting 16 data points, M2 and M3 data from two observation
points and the estimate value were analyzed by linear fitting. The results are shown in
Figure A6. The relative error, absolute error, and root mean square error were —0.57 °C,
0.67 °C, and 0.92 °C. Analysis results using the four ways are shown in Table 8.

Table 8. Linear correlation analysis results after reducing 16 sensors.

Number of Reduce Mean Mean Linear Fittin
Sensors/ Sensor Relative Absolute Curve & R? RMSE/°C
Piece Position * Error /°C Error /°C
8 B,C,D,E —0.57 0.67 y = 1.0413x + 0.0096 0.9936 0.92

* Where the letters represent column marks.

After reducing the number of sensors, the relationship between the relative error,
absolute error, root mean square error, and the number of sensors was analyzed. The
results are shown in Figure 8. The number of sensors decreased from 24 to 8, whereas
the absolute value of the average relative error gradually increased, suggesting that the
overall estimated value was smaller than the observed value. The average absolute error
and root mean square error gradually increased, but the difference in number of sensors
between 16 and 24 was not significant. As the number of sensors continued to decrease,
the average relative error, the average absolute error, and the average root mean square
error changed significantly. Therefore, we speculated that when the number of sensors
decreases to 12~16, the average absolute error, root mean square error, and determination
coefficient would be 0.40~0.60 °C, 0.60~0.80 °C, and R2 > 0.99, respectively. These values
meet the good estimate results of small root mean square error and large determination
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coefficient. Therefore, 12-16 sensors could meet the needs of estimate and provide uniform
sensor distribution that potentially yields better estimate effect.

—8— Root mean square error ~ —#— Mean relative error

10 —4— Mean absolute error
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el ‘\.\ﬂ’ﬂ—\‘s‘
04

02
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-02 +
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06 [

-08 L

Number of sensors/ piece

Figure 8. A is the average of the mean absolute error after reducing the same number of sensors in
different ways, M is the average of the mean relative error, and e is the average of the root mean
square error.

3.4. Spatiotemporal Variation of Temperature Distribution in Modular Earth Wall
Solar Greenhouse

Monitoring temperature in solar greenhouse using TDRMS showed that the distri-
bution of daytime temperature in greenhouse exhibited a strong spatial and temporal
distribution in sunny winter. Therefore, the relationship between indoor and outdoor
solar radiation, temperature, time, and space on typical sunny days was analyzed. The
temperature data on the east and west sides of the greenhouse (Figure 9a) were collected at
M2 and M3 temperature measuring points. The outdoor temperature and solar radiation
data were from meteorological stations. The indoor solar radiation data were collected
using indoor solar radiation sensors. In Figure 9b, the temperature data of the east and west
sides were collected with two temperature measuring points: M1 and M4. In both cases,
the parameters were the same. As shown in Figure 9a,b, the temperature on the east and
west sides started to rise after the insulation was opened at around 9:00. Since the west side
was first exposed to the sun, temporal and spatial temperature differences were observed
on the east and west sides. The temperature on the west side reached the maximum value
two hours earlier than that on the east side. In addition, the maximum temperature value
was reached in the west side one hour earlier than that in the interior and exterior solar
radiation. Finally, the maximum temperature value in the east was reached one hour later
than that in the interior and exterior solar radiation.
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Figure 9. Cont.
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Figure 9. Typical sunny indoor and outdoor temperature, solar radiation temperature changes.
(a) Data acquisition date is 9 February 2022; (b) Data acquisition date is 13 February 2022.

In Figure 10a,b, TDRMS was used to estimate temperature distributions at two time
points in two typical winter sunny days of 9 February 2022 and 13 February 2022 in
the greenhouse (More temperature distributions at time points are shown in Figure A7
of Appendix A). Temporal and spatial variations of temperature distributions begun to
rapidly rise from south and west sides of the greenhouse. Since solar radiation was first
received near the west wall, the temperature rapidly increased. With changes in solar
orientation, the rapid warming area of the greenhouse gradually moved eastwards and
northwards, and the increase in temperature on the east side was accelerated. During
changes in greenhouse temperatures, temperature changes at the position close to the north
wall in the greenhouse was always slow, which was attributed to heat preservation. In
the winter, heat preservation was not fully opened, thus heat preservation was blocked by
sunlight. Most of the north wall walls were unable to be irradiated, while heat preservation
and heat storage functions of the wall were weakened, resulting in a slow temperature rise
near the north wall.

Since the solar radiation sensor in the experimental greenhouse was located in the
center of the greenhouse length direction, variations in indoor solar radiation were basically
consistent with those of outdoor solar radiation. Analysis of the data showed that solar
radiation distribution in the greenhouse obeys the same law as temperature distribution
(Figure 9), according to temperature level distribution in the greenhouse and the relation-
ship between outdoor temperature and solar radiation. The planting area close to the east
and west walls was not exposed to sunlight for a long time. In winter, there was slow
warming on eastern and rapid cooling on western, and the temperature distribution in the
greenhouse was very uneven.

3.5. Calculation Speed Analysis of the Interpolation Estimate Program

To determine whether TDRMS can realize fast interpolation estimate of temperature
distribution in the greenhouse, a time-consuming analysis of interpolation estimate calcula-
tion part was performed. Running time of the program was represented by reading the
running time of multiple sets of data in the file. The time required for a single calculation
was found to be about 50 ms (Table 9). Then, when various single-group data calculations
were performed, the time was 50~150 ms, therefore, the time used to analyze the program
in the data calculation part was 50~150 ms. With increasing single calculation data, the
calculation time was bound to increase, but in estimate of greenhouse temperature demand,
the operation requirements were met.
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Figure 10. The horizontal temperature distribution of typical sunny days in winter was 9:30 and 15:30.
(a) Temperature distribution on 9 February 2022; (b) Temperature distribution on 13 February 2022.

Table 9. Time-consuming results of multi-group data estimate.

Total Data Total Calculation Aver.age .

Date Number/Piece Time/ms Computation Time

of Single Data/ms
2021-12-28 1420 53,079 37.38
2021-12-29 1438 51,279 35.66
2021-12-30 1374 53,103 38.65
2021-12-31 1437 53,250 37.06
2022-01-01 1438 50,429 35.07
2022-01-02 1439 53,816 37.40
2022-01-03 1440 51,781 35.96
2022-02-08 1439 55,404 38.50
2022-02-09 1422 53,505 37.63
2022-02-10 * 144 7818 54.29
2022-02-11 * 144 7443 51.69
2022-02-12 1440 57,597 40.00
2022-02-13 1440 57,894 40.20
2022-02-14 1438 55,324 38.47
2022-02-15 1433 55,366 38.64

* TDRMS do not run within two days of labeling, and the data are collected using the temperature data collected
by IoT. Collection time interval was 10 min, while the total amount of data was 144 per day.

4. Discussion
4.1. Application Effects Evaluation of Real-Time Monitoring Systems for Temperature
Distributions in Solar Greenhouse

Using the TDRMS data acquisition, it was found that interpolation accuracy and
interpolation speed have good operation results. In the transmission mode, the use of
virtual LAN technology to transmit data was less than the CN technology transmission
protocol conversion process, thus, the VLAN technology transmission speed is faster and
more stable; moreover, it can avoid errors in protocol conversion process, resulting in
inaccurate data, therefore, VLAN transmission is better in data efficiency. With regards to
the accuracy of interpolation, by analyzing the estimate results of 24 points of TDRMS, it is
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established that estimate results had larger determination coefficients and smaller root
mean square errors, which shows that estimate effects of TDRMS were good. In terms
of interpolation speed, the running speed of TDRMS met the actual needs. Interpolation
estimate results of TDRMS can quickly reflect temperature distributions of the correspond-
ing positions in the greenhouse, especially during winter cultivation, which can quickly
find the temperature anomaly area and reduce the risk of yield reduction to a certain
extent. However, in error analysis, estimate results of TDRMS were generally smaller than
the observed values, in contrast to findings from estimate results of Bojaca [21], which
were generally higher than observed results. This analysis may be due to partial differ-
ences between algorithms in the R statistical analysis software and those in TDRMS. After
data verification, observed and estimated values were collected for verification in this
paper. In contrast to the cross-validation method adopted by Bojacd [21] and Zhang [22],
the method used in this paper reduces the estimate error caused by deleting sensors at
different positions.

4.2. Advantages and Disadvantages of TDRMS Compared with the IoT Platform

The TDRMS design is more personalized, and personalized services can be customized
according to the needs of users; during data transmission, data is directly saved to the
personal computer, avoiding data leakage, which can provide favorable support for move-
ment or increase or decrease of relevant collection nodes, effectively reducing the amount
of communication and improving the efficiency of network communication [28]; however,
compared with the IoT platform, TDRMS has some limitations. The IoT platform has a
wide range of users, more convenient operation, and a more beautiful interactive interface.
However, the IoT platform is more inclined to data acquisition and storage platforms, has to
comply with platform requirements, and has a strong limit on data storage period; TDRMS
has more flexible access to data, has no format requirements, and has greater advantages in
data processing and analysis.

After obtaining data, TDRMS can perform more complex secondary analyses, which
can add or reduce system functionality according to requirements. For instance, TDRMS
increases diversified services, such as suitability analysis of greenhouse microclimate
and supplementary control of substances required for plant photosynthesis, such as
carbon dioxide.

4.3. TDRMS Improvement Scheme and Research Prospects

During interpolation estimate, TDRMS relies on a large number of temperature data.
In this experiment, the sensor optimization mainly considers the cost factor. The control
variable is mainly the number of sensors, through the whole row and the whole column to
reduce the number of sensors, to achieve a simple optimization effect. However, placing
a reasonable number of sensors in important locations that can reflect the environmental
characteristics can not only effectively reduce the cost of environmental monitoring, but
also improve the data processing efficiency of the monitoring system. In addition, the effect
of reducing the number of sensors on the accuracy of the results should be considered
when optimizing the number of sensors. Studies have shown that the temperature differ-
ences between different locations, although they may only be 1 °C at the same time, can
determine differential behaviours on plant growth and development [21]. The standard for
controlling the number of sensors in this test is that the average absolute error between the
estimated value and the real value is less than 0.80 °C. Compared with current clustering
analysis to identify eigenvalues [29], based on interval possibility model and clustering re-
gression distribution index to optimize sensor number and locations [30], there are various
limitations in this experiment, which cannot reduce the number of sensors to the minimum
number and find the most suitable measurement position. In the subsequent test process, it
may increase the monitoring of eigenvalues in the greenhouse, and then optimize sensor
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number and locations. Besides, TDRMS requires a high sensor accuracy, which entails both
high-precision sensors and supporting data acquisition modules. In the early stages of this
experiment, although data acquisition module types for M2 and M3 observations were
suitable for Pt100 temperature sensors, due to limitations of the module, it is difficult to
meet the demand for temperature data acquisition in cases of small temperature changes.
Therefore, special instruments with a higher accuracy are needed. When TDRMS is used
in large areas, it is necessary to increase the number of sensors and optimize the original
algorithm to improve the operation speed. Therefore, for TDRMS, optimizing the number
of sensors to select the appropriate sensor installation location to achieve better estimate
results and reduce system operating costs are key factors for determining the application of
the system to production.

In monitoring temperature distribution in the greenhouse, this system considers the
distribution of the canopy position of the temperature. However, in the actual production
process, the temperature above and below the plant canopy affects the temperature of the
canopy. Therefore, it is necessary to monitor temperature distribution at different heights
in real time.

The ordinary Kriging interpolation method can be used for interpolation estimate
of environmental temperature and for interpolation estimate of environmental variables,
such as precipitation. Distribution of humidity in the greenhouse is also uneven [31,32].
Therefore, this method can be extended to interpolation estimate of humidity in the green-
house to analyze temporal and spatial distribution law of humidity in the greenhouse.
Kriging interpolation plays an important role in spatial distribution analysis of soil nitrogen,
phosphorus, and potassium [33]. This method can be used to estimate interpolation of large
amounts of elements, such as nitrogen, phosphorus, and potassium, under soil cultivation
mode in the greenhouse, which can provide some guidance and suggestions for rational
planning of planting areas and rational fertilization.

In terms of ventilation, the existing research determines the ventilation mode and the
number of fan openings [34], according to the estimate of greenhouse temperature field by
the CFD software. Therefore, the visualization function of the real-time temperature moni-
toring system of solar greenhouses can provide some reference suggestions for formulation
of a suitable ventilation strategy. Based on temperature distribution in the greenhouse and
distribution positions of characteristic points, the appropriate number of ventilation fans
and appropriate positions can be selected to determine the ventilation time and sizes of
the natural vent. In the summer, the spray system plays an important role in cooling [35].
TDRMS was used to analyze correlations between humidity and temperature distributions
in the greenhouse, and to determine whether it is necessary to cool the greenhouse through
the spray system so as to avoid incorrect use of the spray system, leading to crop growth in
a high humidity environment and hindering plant growth.

Through the interpolation principle of TDRMS, interpolation estimate of various
environmental factors can be realized. According to interpolation estimate results of
different environmental factors, the distribution of various environmental factors in the
greenhouse can be analyzed, which can realize local regulation of indoor environmental
factors, reduce energy consumption of solar greenhouse production, improve the output
ratio, and reduce carbon emission of solar greenhouses.

5. Conclusions

TDRMS uses the virtual local area network technology to transmit temperature data
in the greenhouse, which ensures data security to a certain extent, and then uses the geo-
statistical interpolation estimate method to realize real-time monitoring of temperature
distribution in the greenhouse. Through preliminary verification of TDRMS in this experi-
ment, it can be considered that TDRMS can provide a stable, fast, and accurate approach
for real-time temperature monitoring of solar greenhouses. The following results were
obtained from experimental data analysis:



Agronomy 2022, 12, 1565

19 of 32

(1) Data transmission efficiency of the VLAN technology in TDRMS is 2.64% higher than
that of CN technology in the IoT platform, and the stability of VLAN transmission is
better; during data transmission, data directly enters the private database, reducing
the data leakage risk.

(2) Ininterpolation estimate using 24 temperature measuring points, the average relative
error between the estimated values and the observed values is —0.18 °C, the average
absolute error is 0.38 °C, the root mean square error is 0.51 °C, and the determi-
nation coefficient R? > 0.99, implying good estimate results. After optimizing the
number of sensors, when the number of sensors is reduced to 12~16, the average
absolute error is 0.40~0.60 °C, the root mean square error is 0.60~0.80 °C, and the
determination coefficient R? is more than 0.99, which can still meet the needs for
interpolation estimate.

(3) Combined with temperature distribution image analysis of TDRMS, temperature
distribution inside the solar greenhouse has strong temporal and spatial distributions,
and it increases from west to east and from south to north.

(4) TDRMS has a great advantage in estimate speed, and TDRMS realizes collection,
processing, and real-time monitoring of greenhouse temperature distribution. Unlike
computational fluid dynamics and neural network algorithms, TDRMS uses geostatis-
tical interpolation estimates. The temperature interpolation calculation part has a fast
calculation speed, and the time can be controlled in 50~150 ms, which realizes rapid
monitoring. TDRMS not only guarantees the fast estimate speed, but also guarantees
the good estimate effect, which meets the actual demand in production.
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Figure A1. On 13 February 2022, normal distribution Q-Q diagram of temperature data at different

observation points at different times.
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Figure A2. The linear fitting results of the observed and simulated values are reduced by 4 temper-
ature sensors. (a) Reduced column B; (b) Reduced column C; (¢) Reduced column D; (d) Reduced
column E.
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Figure A3. The linear fitting results of the observed and simulated values are reduced by 6 tempera-
ture sensors. (a) Reduced line 2); (b) Reduced line (3.
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Figure A7. The horizontal temperature distribution of typical sunny days in winter was 9:30, 10:30,
11:30, 12:30, 13:30, 14:30, 15:30, and 16:30. (a) Temperature distribution on 9 February 2022; (b) Tem-
perature distribution on 13 February 2022.
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