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Abstract: Drought has great negative impacts on crop growth and production. In order to select
appropriate drought indices to quantify drought influences on crops to minimize the risk of drought-
related crops as much as possible, climate and spring wheat yield-related data from eight sites in the
Qinghai Province of China were collected for selecting better drought index between standardized
precipitation evapotranspiration index (SPEI, denoting meteorological drought) and soil moisture
deficit index (SMDI, denoting agricultural drought) as well as the key parameters (timescale and
month) in denoting drought impacts on spring wheat yields. The spring wheat yields during
1961–2018 were simulated by the DSSAT–CERES–Wheat model. Pearson correlations were used to
investigate the relationship between SPEI and SMDI and between spring wheat yields and drought
indices at different timescales. The results showed that: (1) SMDI reflected more consistent dry/wet
conditions than SPEI when the timescales changed and (2) There were one- and two-month lags in
SMDI compared to SPEI (with the higher correlation coefficients values of 0.35–0.68) during May to
August and (3) May (the jointing period of spring wheat) and the two-month timescale of SMDI0–10

(with the higher correlation coefficients values of 0.21–0.37) were key parameters denoting drought
influences on spring wheat yield and (4) The correlations between the linear slopes of spring wheat
yield reduction rate and linear slopes of SMDI0–10 in May at the studied eight sites were considerable
between 1961–2018 (r = 0.85). This study provides helpful references for mitigating the drought risk
of spring wheat.

Keywords: soil moisture deficit index; standardized precipitation evapotranspiration index; Pearson
correlation; DSSAT–CERES–wheat model; spring wheat

1. Introduction

Ongoing climate change has exacerbated the occurrence of different forms of drought
dramatically [1,2], which is the largest climate-related threat to global agricultural produc-
tion, especially in areas where crops depend solely on precipitation [3]. When a drought
occurs without adequate irrigation, the shortage of water supply for crops occurs, which
may cause crop growth hindrance, and then results in reduced crop yields, threatening
food security [4,5]. Among different crops, wheat feeds about one-fifth of the population in
the world [6], but its growth and maintaining stable production are facing more risks from
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drought or other disasters [7]. Between 1980 and 2015, wheat yields reduced by 20.6% due
to drought on a global scale [8]. It is of great significance for minimizing drought-related
yield losses by studying the impact of drought on agriculture [9].

Drought represents an extended imbalance between water supply and demand [10].
Drought is commonly caused by insufficient precipitation and when soil moisture is insuf-
ficient to meet the needs of plant growth, which leads to agricultural drought following
meteorological drought [11,12]. Many scholars have tried to characterize agricultural
drought through disparate drought indices, including either meteorological or agricultural
indices. There are some commonly used meteorological drought indices, such as Percentage
of precipitation anomaly [13], Palmer drought severity index [14], Standardized precip-
itation index [15], Compound index, Relative humidity index, Reconnaissance drought
index [16], Standardized precipitation evapotranspiration index (SPEI) [17], etc. Among
them, SPEI not only has multi-timescale characteristics of a standardized precipitation
index but also reflects the effects of global temperature change on drought, which is not only
a good index for monitoring meteorological drought [18] but has also been widely used to
monitor agricultural drought and analyze the impacts of crops due to drought [10,19,20].
For example, Pena-Gallardo et al. [21] found that there were significant correlations be-
tween wheat yields and the SPEI at timescales ranging from 1 to 18, particularly over the
second half of the year in the counties of Eastern United States. Hamal et al. [1] discovered
that the most correlated crop growth period for summer maize and winter wheat with SPEI
was the sowing (February to May) and the growing period (November to February of the
next year) across Nepal, respectively, which was the sensitive period of water deficit.

In agricultural drought monitoring, soil water plays a vital role [22]. Changes in
soil water directly affect water availability, plant productivity, and crop yield [23,24]. The
drought indices constructed based on soil moisture content have proved suitable for
characterizing agricultural drought [25], which are Crop Moisture Index [26], Soil Moisture
Percentage [27], Normalized Soil Moisture [28], and Soil Moisture Anomaly [29], etc. They
have been widely used to identify and monitor agricultural droughts [30,31]. Higher-
precision soil data products have enabled more agricultural drought monitoring indices
to emerge [18,32,33]. Narasimhan and Srinivasan [34] developed a soil moisture deficit
index (SMDI) based on the soil moisture simulated by SWAT (Soil and Water Assessment
Tool) and found that wheat yield in the key growing period was highly correlated with
SMDI. This index could reflect the short-term drought conditions in the root zone of the
crop without seasonality, which has been used to monitor agricultural droughts in different
regions after being proposed [35–37]. For example, Nepal et al. [38] found that the SMDI
could reflect a better variation in drought conditions in the transboundary Koshi River
basin (KRB) in the central Himalayan region and would be useful for the agricultural sector
because it could provide a better understanding of soil moisture variation and agricultural
droughts. Chen et al. [31] found that SMDI at a 0–10 cm depth had a greater impact on
winter wheat yields from jointing to lactation. Wu and Li [39] pointed out that SMDI was
more sensitive in recognizing early agricultural drought and performed better correlations
between SMDI and winter and spring wheat yields variations across Russia during 1998–
2013. These studies demonstrated that SMDI performed well in monitoring agricultural
drought and could be used to indicate the effects of drought on crop yields.

Crop growth models can predict crop growth and yields by observing the phys-
iological processes during crop growth with comprehensive genetic characteristics in-
cluding crop varieties, climate, soil and management measures [40–42]. Some popularly
used wheat growth models include the Agricultural and Food Research Council wheat
model (AFRCWHEAT2) [43,44], General Large Area Model (GLAM–Wheat) [43], DSSAT–
CERES–Wheat [45], Universal Crop Growth Simulator for water-limited conditions (SU-
CROS2) [44,46], etc. Among them, the DSSAT–CERES–Wheat model has been widely used
to analyze the impact of the moisture deficit and climate variability on crop growth and
yield [47–49], which has proved appropriate in simulating or predicting high-precision
growth and yield of wheat in different regions or areas in the world [50,51]. The DSSAT–
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CERES–Wheat model describes in detail the growth process of wheat, from seedling
emergence to flowering, leaf emergence, grain filling, physiological maturity and harvest,
based on the growth period of wheat by day step. This model can respond to many factors
such as water stress, environment, crop genetic characteristics, pests and diseases, etc., and
has been mainly used for agricultural yield forecast, production risk assessment and impact
assessment of climate on agriculture [52].

China has suffered from drought hazards for a long history [18,53]. The average
agricultural drought-affected areas in China exceeded 24.43 million hm2, and the annual
food loss caused by drought reached 30 billion kg, accounting for more than 60% of the
total loss from natural disasters (www.mwr.gov.cn/, accessed on 8 December 2021). Wheat
is planted mostly in north China (colder than the south) and accounts for more than 20%
of China’s grain crops. However, most of the wheat-planting regions in China including
Qinghai have been threatened by drought disasters [54]. Spring wheat is an important
food crop with a planting area of 11.16 × 104 hm2 (tjj.qinghai.gov.cn/, accessed on 20 June
2020). The farmland in Qinghai is mostly rain-fed, so the natural precipitation directly
affects agricultural production to a great extent. There is a high risk of drought during
spring wheat growth. If drought occurs in spring or summer, it would be unfavorable
to wheat emergence and growth and affect the later stage of wheat grain production [55].
Therefore, it is significant to investigate drought impacts on spring wheat growth and
yields in Qinghai, China in order to reduce yield losses.

Previous studies combined different drought indices with crop growth or yield-related
indices to study the impact of drought on crop yields, but only a single meteorological or
agricultural drought index was applied. Few studies have compared different drought
indices and their appropriateness for monitoring drought conditions and drought impacts
on agriculture and crops. The objectives of this study were (1) to compare the differences
and connections between the meteorological drought index (SPEI) and the agricultural
drought index (SMDI) at 0–10 cm and 10–40 cm depths in monitoring the drought at
each growth stage of spring wheat in Qinghai province, China; (2) to identify the more
appropriate drought index, the key month on spring wheat growth, and the key timescale
of the selected better drought index that denote a closer relationship between spring wheat
growth yields and drought severity based on correlations between the spring wheat growth
and drought indices; and (3) to analyze the relationship between yield reduction rate
calculations based on selected drought index and wet and dry conditions at the key month
under the key timescale.

2. Data and Methodology
2.1. Study Area and Selected Sites

Qinghai province is located in the northwestern region of China, with an area of
approximately 720,000 km2, accounting for 7.5% of the total Chinese area. Qinghai is an
arid and semi-arid area with an annual average temperature of 2–9 ◦C, a frost-free period of
100–200 days, and annual average precipitation of 25–500 mm [56]. There is large variability
in precipitation, with higher precipitation in the southeast and lower precipitation in the
northwest. Spring wheat is one of the main food crops in Qinghai Province.

The 8 selected sites with spring wheat planting are located in the Qaidam Basin and
the eastern agricultural region of Qinghai province, China. These sites have suffered from
drought and flood hazards in the past which affected local agricultural production. The
distribution of the selected sites and elevation is mapped in Figure 1.

2.2. Collection of Climate, Soil, and Crop Data

The observed climate data were obtained from China meteorological administration
data network (data.cma.cn, accessed on 30 December 2019), including daily precipitation
(P), relative humidity (RH), daily maximum temperature (Tmax), daily minimum temper-
ature (Tmin), wind speed at 2 m height (U) and sunshine hours from 1961–2018 at the
8 studied sites.

www.mwr.gov.cn/
tjj.qinghai.gov.cn/
data.cma.cn
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Figure 1. Spatial distribution of elevation and spring wheat sites in Qinghai of China.

The soil property data including saturated moisture content (SAT), soil water content
at the permanent wilting point (WP), soil water content at the field capacity (FC) and
saturated hydraulic conductivity (SHC) were obtained from the Chinese soil moisture
dataset with a spatial resolution of 30 × 30 arc seconds [57]. The field capacity data have
7 depth ranges of 0–4.5, 4.5–9.1, 9.1–16.6, 16.6–28.9, 28.9–49.3, 49.3–82.9 and 82.9–138.3 cm,
respectively. The average layer soil moisture (at 4 layers of 0–10 cm, 10–40 cm, 40–100 cm
and 100–200 cm) from 1961–2018 were collected from Global land data assimilation system–
Noah–simulated (GLDAS–Noah) with a spatial resolution of 0.25◦ × 0.25◦, which has good
applicability in Qinghai through comparative analysis with observed data. The GLDAS
soil moisture was converted to volumetric values (m3 m−3).

The spring wheat growth period and yield data (2001–2013) for the 8 sites were col-
lected from Qinghai institute of meteorological science (qh.cma.gov.cn, accessed on 30 De-
cember 2020) and agricultural meteorological data on China meteorological administration
data network (data.cma.cn, accessed on 30 December 2019). The agricultural disaster data
were collected from National Qinghai–Tibet Plateau Data Center (data.tpdc.ac.cn, accessed
on 5 January 2021). According to the observed data, the whole growth period of spring
wheat is divided into 5 physiological stages, namely sowing–emergence stage, emergence–
jointing stage, jointing–earing stage, heading–milk maturity, and milk maturity–maturity
stage. The start and end dates of spring wheat growth period at the 8 sites are presented in
Table 1. The multi-year average of the growth period days is used to represent the local
general growth period. The full growth period of spring wheat is from March to August.

Table 1. Spring wheat growth period at 8 sites of Qinghai, China.

Site
Growth Period

Sowing Emergence Jointing Heading Milk Maturity Maturity

Minhe 28 Mar. 09 Apr. 17 May 12 Jun. 09 Jul. 26 Jul.
Ledu 11 Mar. 05 Apr. 19 May 10 Jun. 15 Jul. 30 Jul.

Huangyuan 31 Mar. 26 Apr. 07 May 02 Jul. 07 Jul. 03 Sep.
Huzhu 01 Apr. 23 Apr. 10 Jun. 05 Jul. 04 Aug. 02 Sep.
Guide 07 Mar. 02 Apr. 17 May 10 Jun. 15 Jul. 30 Jul.

Datong 28 Mar. 22 Apr. 05 Jun. 01 Jul. 05 Aug. 01 Sep.
Xunhua 28 Feb. 28 Mar. 14 May 30 May 30 Jun. 22 Jul.
Tongren 20 Mar. 13 Apr. 03 May 24 Jun. 24 Jul. 15 Aug.

2.3. Computation of Drought Indices
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI is calculated by the difference in precipitation (P) and reference crop evapo-
transpiration (ET0) for each site. The Penman–Monteith formula is recommended by the

qh.cma.gov.cn
data.cma.cn
data.tpdc.ac.cn
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Food and Agriculture Organization of the United Nations (FAO) and has proved to have
good performance in different parts of the world [58]. The procedure for SPEI computation
follows [17]:

To calculate the ET0 at the monthly timescale:

ET0 =
0.408∆ Rn − G + ∆ 900

T+273 U2(en − ea)

∆ + γ(1 + 0.34U2)
(1)

where Rn is the net radiation (MJ m−2 d−1); T is the daily average temperature (◦C); U2 is
the wind speed at 2 m (m s−1); es and ea are the saturated and actual water vapor pressure
(kPa); ∆ is the slope of the saturated water vapor pressure-temperature curve (kPa/◦C); γ
is the wet and dry meter constant (kPa/◦C).

To calculate the difference between P and ET0, namely D:

D = P − ET0 (2)

To normalize the data series D. Vicente-Serrano, et al. [17] compared the fitting effects
of Log-logistic, Pearson III, Lognormal, and generalized extreme values on the sequence.
The results showed that Log-logistic distribution showed better performance:

F(x) =

[
1 +

(
α

x − γ

)β
]−1

(3)

where F(x) is the cumulative probability distribution function for a given time scale; α is the
scale parameter; β is the shape parameter; γ is the origin parameter, which can be obtained
by fitting the linear moment. The parameters are calculated as follows:

α =
(ω0 − 2ω1)β

Γ(1 + 1/β)Γ(1 − 1/β)
(4)

β =
2ω1 − ω0

6ω1 − ω0 − 6ω2
(5)

γ = ω0 − αΓ(1 + 1/β)Γ(1 − 1/β) (6)

where Γ is the factorial function; ω0, ω1, ω2 is the probability-weighted distance of the
original data sequence D, the calculation method is:

ωi =
1
N

N

∑
i=0

(1 − Fi)

s

Di (7)

Fi =
i − 0.35

N
(8)

where N is the number of months involved in the calculation.
To standardize the cumulative probability density:

P(D) = 1 − F(x) (9)

When P(D) ≤ 0.5:

W =
√
−2 ln P(D) (10)

SPEI = W − c0 + c1W + c2W
2

1 + d1W + d2W2 + d3W3 (11)

When P(D) > 0.5, P(D) is replaced by 1 − P(D). Here c0 = 2.515517, c1 = 0.802853,
c2 = 0.010328, d1 = 1.432788, d2 = 0.189269 and d3 = 0.001308.
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2.3.2. Soil Moisture Deficit Index (SMDI)

SMDI is calculated at two soil depths of 0–10 cm and 10–40 cm by using soil moisture
content data at 1- to 6-timescales from 1961 to 2018 [34]. The calculation procedure is as
follows: (1) Using the long-term median, maximum and minimum soil moisture at a certain
timescale to calculate the percentage soil moisture deficit, as follows:

SDi,j =


SWi,j−MSWj

MSWj−minSWj
× 100, SWi,j ≤ MSWj

SWi,j−MSWj
maxSWj−MSWj

× 100, SWi,j > MSWj
(12)

where SDi, j is the soil moisture deficit in the jth month of the ith year (%); SWi, j is the
mean soil moisture content at a certain timescale in the soil profile (mm); MSWj is the
long-term median soil moisture content in the soil profile (mm); maxSWj is the long-term
maximum soil moisture content in the soil profile (mm); minSWj is the long-term minimum
soil moisture content in the soil profile (mm) (i =1, 2, . . . , 58, and j = 1, 2, . . . , 12).

(2) By using formula (13), the seasonality inherent in soil moisture is removed. Hence,
SD is compared across seasons. To determine drought severity, the main challenge is to
choose the time step over which the dryness values are accumulated [22]. Thus, the drought
index is calculated on an incremental basis as suggested by Palmer [14]:

SMDIi,j =

{ SDi,j
50 , j = 1

0.5SMDIi,j−1 +
SDi,j

50 , j > 1
(13)

In order to compare SMDI and SPEI, the step is modified to 2 during calculation, and
the range of SMDI is re-adjusted from (−4 to 4) to (−2 to 2) to be consistent with the SPEI
value. The value of SPEI or SMDI in a certain month (or a certain timescale) is the average
value of the previous months till the current month. For example, the SPEI or SMDI in May
at the 2-month timescale is an average value of SPEI or SMDI from April to May. The dry
or wet conditions classification using SPEI and SMDI are shown in Table 2.

Table 2. Dry/wet condition classification based on SPEI and SMDI.

Dry/Wet Severity Level Range of SPEI Range of SMDI

Extreme wet 2 ≤ SPEI 2≤ SMDI
Severe wet 1.5 ≤ SPEI < 2 1.5 ≤ SMDI < 2

Moderate wet 1 ≤ SPEI < 1.5 1≤ SMDI < 1.5
Mild wet 0.5 ≤ SPEI < 1 0.5 ≤ SMDI < 1
Normal −0.5 < SPEI < 0.5 −0.5 < SMDI < 0.5

Mild dry −1 < SPEI ≤ −0.5 −1 < SMDI ≤ −0.5

Moderate dry −1.5 < SPEI ≤ −1 −1.5 < SMDI ≤ −1
Severe dry −2 < SPEI≤ −1.5 −2< SMDI ≤ −1.5

Extreme dry SPEI≤ −2 SMDI ≤ −2

2.4. Crop Growth and Yield Simulation Using the DSSAT–CERES–Wheat Model

Since the observed crop yield data at the 8 studied sites are only for 2 to 13 years
(2001–2013), in order to study the long-term effects of drought on spring wheat yield, The
DSSAT–CERES–Wheat model is used to extend the growth and yield sequence to 1961–2018,
which is a sub-module in DSSAT–CERES–wheat used for simulating the growth process of
spring wheat. The input data include four modules: meteorology, soil parameters, yield
management, and crop genetic coefficient. The input meteorological data mainly include
solar radiation, Tmax, Tmin, P, U and sunshine hours. The input soil parameters include
SAT, WP, FC, SHC, and field management data include sowing period, fertilization amount,
irrigation method and irrigation amount, etc.

In DSSAT–CERES–wheat, the generalized likelihood uncertainty estimation (GLUE)
is used to debug the genetic coefficients of spring wheat, which include P1V, P1D, P5, G1,
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G2, G3 and PHINT. The debugging process of crop genetic parameters is divided into two
rounds, each 6000 times. In the first round, the crop phenological parameters are adjusted
and in the second round, the growth parameters of crops are estimated.

The debugging results of spring wheat genetic parameters at the 8 selected sites are
shown in Table 3. Then, the anthesis date, maturity date and yield data of the first 6 years
(2001–2006) are used to correct the genetic coefficients, and the genetic coefficients are
validated with the data of the next 7 years (2006–2013). After assessing the calibration
and validation performance of DSSAT–CERES–wheat, the corrected genetic coefficients are
used to simulate the crop’s leaf area index (LAI) and meteorological yields of spring wheat
from 1961 to 2018.

Table 3. Genetic coefficients of spring wheat at the selected 8 sites.

Site
Spring Wheat Parameter

P1V P1D P5 G1 G2 G3 PHINT

Deling 19.72 38.59 783.8 16.76 37.68 1.764 72.56
Geer 19.70 33.76 799.9 17.06 45.98 1.731 61.30

Dulan 19.12 39.65 789.8 19.88 23.22 1.570 95.08
Gonghe 19.57 37.65 796.4 17.87 21.58 1.205 63.25
Minhe 19.91 38.34 798.8 24.15 26.96 1.616 69.65

Nuomu 19.90 34.61 773.0 19.04 23.20 1.820 63.35
Huangyuan 19.67 38.67 786.1 19.74 20.89 1.942 61.40

Huzhu 19.79 38.66 792.8 15.97 20.46 1.488 67.25

Mean 19.67 37.49 790.08 18.81 27.50 1.64 69.23
Standard
deviation 0.25 2.12 9.00 2.59 9.34 0.23 11.20

Coefficient of
variation/% 1.28 5.67 1.14 13.75 33.97 13.91 16.18

The coefficient of determination (R2) and relative root mean square error (RRMSE) are
used to evaluate the performance of DSSAT–CERES–wheat during calibration, validation
and simulation processes. The equations of R2 and RRMSE are as follows:

R2 =


n
∑

m=1
(om − o)(sm − s)√√√√ n

∑
m=1

(om − o)2

√
n
∑

m=1
(sm − s)

2

 (14)

RRMSE =

√
1
n

n
∑

m=1
(sm − om)

2

o
(15)

where om is the observed value in the mth year (m = 1, 2, . . . , 13), o is the mean value of om,
sm is the simulated value in the mth year, s is the mean value of sm, and n is the number of
samples. Generally, the higher the R2 values, or the lower the RRMSE values, the better
performance of DSSAT–CERES–wheat.

2.5. Correlations between Yields and Drought Indices

The Pearson correlation coefficient (r) is used to evaluate the relationships between
(i) SPEI and SMDI in current month or lagged for 1 to 2 months; and (ii) SPEI (or SMDI)
and yields (or LAImax) at the 1- to 6- month timescales during the entire growth period of
spring wheat. The range of r is between −1 and 1. The larger the absolute value of r, the
closer the relationship between two variables.
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2.6. Yield Reduction Rate of Spring Wheat

When SPEI (or SMDI) is between −0.5 and 0.5, it is regarded as a normal year without
drought or waterlogging, and the average yield of the normal year is considered the
reference yield. The reference yield is calculated as follows:

Yieldk,normal =
Yieldk,1 + Yieldk,2 + · · ·Yieldk,n

n
(16)

where Yieldk,normal represents the reference yield of spring wheat at the kth site (k = 1, 2, . . . ,
8), and n is the number of normal years at the site.

The annual reduction rate is calculated as follows:

YRRk,i =
Yieldk,i − Yieldk,normal

Yieldk,normal
× 100% (17)

where YRRk,i represents the yield reduction rate of spring wheat at the kth site, and i is the
number of years (i = 1, 2, . . . , 58). Yieldk,i represents the actual yield in the ith year. When
YRRk, i is negative, it means that production has been reduced in the ith year.

Python (version 3.3.9) is applied to analyze data and draw figures.
The flow chart which illustrates the main methodology and idea of this research is

shown in Figure 2.

Figure 2. The overall technology roadmap of the research.

3. Results
3.1. The Drought Variations Indicated by SPEI and SMDI

A total of eight sites were selected for this research. However, there was a great
amount of data and the characteristics of the studied variables were similar; therefore, here
the Gonghe site is taken as the example for it is representative of the selected 8 sites. The
temporal variations of monthly P, ET0, P − ET0 and soil moisture deficit in 1961–2018 are
compared in Figure 3. The results showed that P and ET0 have relatively similar patterns
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of variation within years, P (or ET0) increased from April or May and reached peaks in
July or August. Monthly P − ET0 ranged between −75 mm to 50 mm and were largely
negative, indicating Gonghe suffers long-term drought. Soil moisture deficit varied more
randomly than P and ET0, but the values were generally higher from May to August
than the other months. The other 7 sites showed similar annual patterns, but there were
some regional differences in precipitation (Figure S1), with sites located in the west of
Qinghai province (Deling, Geer, Nuomu, Geer) having less rainfall than the eastern sites
(Huangyuan, Gonghe, Huzhu, Minhe).

Figure 3. Variations of monthly P, ET0, P − ET0 and soil moisture over 1961–2018 at Gonghe site.

The temporal variations of SPEI, SMDI0–10, and SMDI10–40 at the 1- to 6-month
timescales during the spring wheat growing season of 1961 to 2018 at Gonghe site are
illustrated in Figure 4 (The other 7 sites are shown in Figure S2).

Figure 4. Temporal variations of the monthly SPEI, SMDI0–10 and SMDI10–40 at the 1- to 6-month
timescales during the growing seasons of spring wheat at the Gonghe site.

The results in Figure 4 showed that (1) SPEI varied more randomly than SMDI over
1961–2018, with a wetter period over 1980–1989. From SMDI0–10, there was a long drier
period from 1970–1996 but a short wetter period from 2010–2018. Variations of SMDI10–40
were generally similar to SMDI0–10 but looked wetter over the entire studied period,
with a typically different short drier period of 2011–2016, and (2) at the 1- to 6-month
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timescales, SMDI (0–10 and 10–40 cm) during the growth stage of spring wheat varied
similarly, reflecting generally consistent dry or wet conditions. Variations in SPEI at
different timescales were less similar than those in SMDI and (3) in different years and
months, the drought levels identified by SPEI and SMDI (0–10 cm and 10–40 cm) were not
consistent. For example, the year 2001 was identified as a severe drought by SPEI, but a
normal year according to SMDI (both at 0–10 cm and 10–40 cm depth), while 1991 was
identified as a normal year by SPEI but a moderate drought year by SMDI (0–10 cm and
10–40 cm).

In fact, different types of drought originate from meteorological drought but, due to
the different processes of drought formation, there is a phase difference in time. In order to
investigate the relationship between meteorological drought and agricultural drought, the
r values between SPEI and SMDI0–10 with a lagged time of 0–5 months during the spring
wheat growth period were calculated on the 1- to 6- month timescales (Similar to SMDI0–10
vs. SMDI10–40 with a lagged time of 0–5 months and SPEI vs. SMDI0–10 with a lagged time
of 0–5 months). The result showed that SPEI was more closely related to SMDI0–10 than
SMDI10–40 on each timescale, indicating that the surface soil moisture was easily affected by
precipitation, temperature and other factors (Figure 5). From March to April (the sowing–
emergence period of spring wheat), there is no obvious correlation (−0.23–0.27) between
SPEI and SMDI0-10 SMDI10–40 in the current month or time lag of 1–5 months from March
to April, suggesting that the source of soil moisture is not dependent on atmospheric
precipitation at this time and that alpine snowmelt may also have a partial influence. While
during May to June (the jointing—heading period of spring wheat), SPEI generally had a
higher r value with 1 and 2 months lagged SMDI0–10 (0.3–0.59) and SMDI10–40 (0.31–0.45).
In July (the milking maturity period of spring wheat), SPEI showed a higher correlation
with a 1-month lag between SMDI0–10 and SMDI10–40. The results indicated that there is a
certain hysteresis agricultural drought (indicated by SMDI) compared with meteorological
drought (indicated by SPEI) when precipitation increases, and the correlation between
surface soil moisture and SPEI was higher than deep.

Figure 5. The r values between SPEI and SMDI0–10 (a–c) or SPEI and SMDI10–40 (d–f) at the 1, 3 and
6-month timescales with lagged time of 0 to 5 months during growth period of spring wheat (March
to August).
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The coincidence between drought events indicated by SPEI and SMDI compared with
the actual drought events is identified by Huangyuan, Huzhu and Minhe, where historical
data are relatively complete (Figure 6). The results showed that SMDI0–10 among the three
indices had the highest agreement with actual drought conditions (43–82%), followed by
SMDI10–40 (39–60%) and SPEI (29–43%), respectively. This may be due to the fact that most
of the actual drought records were related to rainfall deficits, damage to farmland, and
reduced grain production.

Figure 6. Coincidence degrees of identified drought events based on the selected drought indices.

3.2. Spring Wheat LAI and Yield Simulated by DSSAT-CERES-Wheat Model
3.2.1. Performance of DSSAT–CERES–Wheat Model

The performance of the DSSAT–CERES–wheat model has been evaluated by plotting
the simulated and observed anthesis date, maturity date, and yield values of spring wheat
for both calibration and validation processes (Figure 7), and the R2 and RRMSE were used
to verify whether the simulated value is consistent with the observed value. The results
showed that the higher R2 (0.70 < R2 < 0.85) and lower RRMSE (0.04 < RRMSE < 0.18)
between simulated and observed values during the calibration and verification process
indicated a better accuracy of the model simulation. Therefore, the calibrated genetic
parameters of spring wheat could be further used for the simulation of crop growth and
yield over the period 1961–2018 at the eight studied sites.

3.2.2. Annual Variations of Spring Yields

The annual variations of simulated (climatic) yields in 1961–2018 for the eight sites are
shown in Figure 8. There were generally random fluctuations of actual yields at the eight
sites over 1961 to 2018, and there was a relatively large fluctuation between 2001 and 2011.
The yields of spring wheat ranged from 2050 to 12540 kg ha−1, and higher yields from 2005
to 2010 were shown. There was a site rank of mean trend yield: Geer > Deling > Minhe >
Nuomu > Huangyuan > Gonghe > Dulan > Huzhu.

3.3. The Effects of Drought on Spring Wheat Growth and Yields

Values of r for drought indices (SPEI or SMDI0–10) vs. spring wheat growth indices
(LAImax or climatic yield) are illustrated for the site Gonghe in Table 4 (The r values
between drought indices and spring wheat growth indices of the other 7 sites are shown
in Table S1 and Table S2 respectively). The correlation between SPEI and spring wheat
climatic yield was generally low (−0.11 < r < 0.17), while there was mostly a negative
correlation with LAImax (−0.26 < r < 0.11). However, SMDI0–10 was positively correlated
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with LAImax and climatic yields (−0.01 < r < 0.37), indicating different and complicated
effects of meteorological and agricultural droughts on spring wheat growth and yields.

Figure 7. Comparison of the observed and simulated values of anthesis date, maturity date and yield
for spring wheat for calibrated and validated processes.

Figure 8. The annual variations of simulated (climatic) yields over 1961–2018 for the 8 selected sites.
((a) The 4 sites in the figure are located in the Qaidam Basin, and (b) the 4 sites in the figure are
located in eastern Qinghai Province).
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Table 4. The correlation coefficient values between spring wheat yield (LAImax) vs. multi-scalar
SPEI and SMDI0–10, The numbers 1–6 indicate the timescale of drought index from 1 to 6 months,
respectively. (** represents p-value ≤ 0.05, and * represents p-value ≤ 0.1).

Growth
Index

Index SPEI SMDI0–10

Month
Timescale

1 2 3 4 5 6 1 2 3 4 5 6

LAImax

Mar. −0.21 −0.26 −0.21 −0.20 −0.22 −0.25 0.25 ** 0.21 * 0.17 0.12 0.04 −0.01
Apr. −0.14 −0.21 −0.25 −0.22 −0.22 −0.24 0.32 ** 0.32 ** 0.27 ** 0.23 * 0.18 0.10
May 0.00 −0.07 −0.13 −0.16 −0.15 −0.15 0.35 ** 0.36 ** 0.35 ** 0.32 ** 0.28 ** 0.22 *
Jun. −0.03 0.00 −0.05 −0.10 −0.12 −0.11 0.24 * 0.31 ** 0.32 ** 0.32 ** 0.29 ** 0.26 **
Jul. 0.11 0.05 0.04 0.01 −0.02 −0.04 0.09 0.21 * 0.25 ** 0.27 ** 0.27 ** 0.26 **

Aug. −0.20 −0.06 −0.05 −0.02 −0.04 −0.07 0.01 0.06 0.14 0.20 0.22 * 0.23 *

Yield

Mar. 0.07 0.05 0.11 0.16 0.12 0.06 0.22 * 0.19 0.17 0.16 0.12 0.09
Apr. 0.04 0.02 0.00 0.02 0.03 0.00 0.30 ** 0.26 ** 0.24 * 0.22 * 0.20 0.15
May 0.16 0.13 0.11 0.10 0.12 0.12 0.37 ** 0.36 ** 0.33 ** 0.32 ** 0.30 ** 0.26 **
Jun. −0.11 0.04 0.03 0.03 0.03 0.05 0.30 ** 0.32 ** 0.32 ** 0.30 ** 0.29 ** 0.27 **
Jul. 0.17 0.05 0.09 0.10 0.09 0.09 0.14 0.25 ** 0.27 ** 0.28 ** 0.27 ** 0.26 **

Aug. 0.02 0.12 0.04 0.10 0.11 0.11 0.07 0.11 0.20 0.22 * 0.23 * 0.23 *

In order to better describe the correlations between drought indices and spring wheat
growth-yield characteristics, a threshold value of r = 0.21 was selected, which represents a
p-value ≤ 0.05, below which it was assumed that there were no close connections between
drought indices and crop growth. Since correlations between (LAImax or climatic yield)
of spring wheat and SMDI10–40 were mostly negative; therefore, the further analysis is
meaningless.

The number of sites with r > 0.21 for SPEI and SMDI0–10 at the 1- to 6-month timescales
vs. spring wheat (LAImax) climatic yield are presented in Table 5. It showed that (1) From
SPEI, there were more sites with r > 0.21 from June to August (heading to maturity periods
of spring wheat) (8/48) and the total number of sites with r > 0.21 between SPEI and spring
wheat (LAImax) climatic yield at the 1- to 6-month timescale during spring wheat growth
period was minor (0 to 6 out of 48); (2) From SMDI, there were more sites with r > 0.21
from April to June (seedling emergence to heading period of spring wheat) (LAImax, 6–11,
climatic yield, 24–29). At the 2-month timescale, there was the largest correlation for LAImax
(23/48) or climatic yield (13/48) vs. SMDI0–10; (3) By comparison, the total site number of
r > 0.21 correlations between (LAImax) climatic yield and SMDI0–10 were much larger than
for SPEI, indicating better connections between spring wheat growth yield and SMDI0–10.
Therefore, SMDI0–10 was a better index for denoting drought effects on spring wheat yields
than SPEI and SMDI10–40; and (4) Based on the site number between correlations of climatic
yield and SMDI0–10 with r > 0.21, there was the largest number of sites in May (11/48) and
at the 2-month timescale (10/48); therefore, May was the key month and 2 months was
the key timescale of SMDI for denoting the key parameters of preventing drought during
spring wheat growth periods.

3.4. Variations of Yield Reduction Rate

From the above results, the 2-month SMDI0–10 timescale in May is a key parameter to
investigate the impacts of droughts on spring wheat yields; therefore, the data for specific
parameters (SMDI0–10, lagged by 2 months in May) are used for identifying normal and
drought years, the average yield of normal years is used as the reference yield to further
calculate the yield reduction rate in drought years.

The annual variations of the yield reduction rate and SMDI0–10 in May for the eight
sites are shown in Figure 9. In the severe drought years recorded in 1961, 1976, 1980, 1995,
and 1999, all eight sites showed severe yield reduction rates (−4% to −31%). The variations
of SMDI0–10 were generally more consistent with the spring wheat yield reduction rate
before 2001 for the r-values between production reduction rate and SMDI0–10 in May over
1961–2000 were higher than that in 1961–2018 (0.21–0.40, except the Geer site). However,
the consistent extent of yield reduction rate with SMDI0–10 decreased after 2000 because
Qinghai province has suffered extreme drought since its meteorological record, and al-
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though after 2000, the drought was relieved and tended to be wetter, the yield did not
increase accordingly.

Table 5. The number of stations with r > 0.21 between pairs of spring wheat growth indices (LAImax
or climatic yields) and drought indices (SPEI and SMDI0–10 at the 1- to 6-month timescales) over
1961–2018. (The sum of the unconditional counts for each row or column is 48). Growth index.

Index SPEI SMDI0–10

Month
Timescale 1 2 3 4 5 6 Sum 1 2 3 4 5 6 Sum

LAImax

Mar. 0 0 1 0 1 1 3 4 5 3 2 2 2 18
Apr. 0 0 0 0 0 1 1 5 5 5 4 3 2 24
May 0 0 0 0 1 0 1 4 5 5 5 5 5 29
Jun. 0 0 0 0 0 0 0 4 4 5 5 5 5 28
Jul. 0 0 1 0 1 1 3 1 2 2 4 4 5 18

Aug. 1 0 0 1 0 1 3 0 2 1 2 3 3 11
Total 1 0 3 3 4 5 18 23 21 22 22 22

Yield

Mar. 1 0 0 0 0 0 1 2 2 0 0 0 0 4
Apr. 0 0 0 0 0 0 0 4 2 2 1 0 0 9
May 0 0 0 0 0 0 0 2 4 1 2 1 1 11
Jun. 1 1 1 1 1 1 6 1 1 1 1 1 1 6
Jul. 0 1 1 1 1 1 5 0 1 1 1 1 1 5

Aug. 1 0 1 1 1 1 5 0 0 0 1 1 1 3
Sum 3 2 3 3 3 3 9 10 5 6 4 4

Figure 9. Annual Variations of yield reduction rate vs. 2-month-timescale SMDI0–10 in May at
the selected 8 sites over 1961–2018. r1 and r2 mean the Pearson correlation coefficients between
production reduction rate and SMDI0–10 in May in 1961–2000 and 1961–2018.
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The relationships between linear slopes of 2-month SMDI0–10 in May and the yield
reduction rate at the eight selected sites are illustrated in Figure 10. The linear slopes of
2-month SMDI0–10 in May and yield reduction rate ranged from −0.04/a to 0.05/a and
from −0.001 kg/a to 0.005 kg/a, respectively. Additionally, the linear slopes of 2-month
SMDI0–10 in May in seven out of eight sites were positive, indicating that the climate
conditions have a tendency to become wet from 1961 to 2018. Moreover, there was a
considerable linear relationship between them with r = 0.85, suggesting that the trend of
SMDI0–10 in May was greatly consistent with the trend of spring wheat yield reduction rate
from 1961–2018.

Figure 10. Variations in the linear slopes of spring wheat yield reduction rate vs. the 2-month
SMDI0–10 in May. (The shaded area represents 95 confidence interval).

4. Discussions
4.1. The Relationship between SPEI and SMDI

Meteorological drought is usually the first stage of a drought event, acting as starting
point or driver of agricultural drought, and the different types of drought are interrelated,
but with some spatial variability and temporal phase differences. Wang and Duan [59]
pointed out that the degree of meteorological drought was more severe than agricultural
in terms of degree, and agricultural drought lagged behind meteorological drought. Sims
et al. [60] proved that there was a correlation between meteorological drought indices (PDSI
and SPI) and soil moisture. SMDI takes into account more variables (such as evapotranspi-
ration, soil properties, and root depth) than SPEI. Yared et al. [61] found that SPEI-3 showed
a higher correlation with the agricultural drought index SMDI, and SMDI showed a delay
compared to SPEI when comparing the drought start dates indicated by historical droughts.
Fan et al. [62] pointed out that less precipitation in arid areas was almost the only source
of surface soil moisture, and higher evapotranspiration would quickly evaporate it. The
correlations between meteorological drought indices and soil moisture were only reflected
in the shallow soil that can receive precipitation. This study similarly indicated that SPEI
generally had higher correlations with SMDI0–10, which lagged 1 or 2 months from May to
August, but the correlations in March–April were not significant because the rainfall at the
eight sites was concentrated in May–August but less in March–April, which may be not
enough to supplement groundwater. The relationship between different drought indices
has spatial–temporal variability and should be investigated for specific soil, climate and
region conditions.

4.2. Better Drought Index for Monitoring Drought during Spring Wheat Growth

A number of drought indices could be applied to investigate drought conditions
during the spring wheat growth period. Among them, soil moisture-related indices may
be the more reliable index than the others. Previous research has shown that soil moisture
(SM) variations (deficits or excesses) were the key factor affecting crop yield in rain-fed
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agriculture [63,64]. Roots are vital organs for plants, and the effective use of resources from
the soil was important for yield stability [65]. Our research showed that the correlations
between spring wheat LAImax/yields and SMDI0–10 were better than with SPEI, indicating
high spring wheat growth sensitivity to soil moisture deficiency to provide the necessary
water and nutrients for crop growth, which will affect the morphogenesis, physiological
processes and yield formation of the aboveground parts [66].

However, the performance of SMDI in revealing crops’ drought responses varied with
different depths. Zhang et al. [67] found that the root system of spring wheat in the dry
land farming areas of central Gansu, China was the most at 0–10 cm in the seedling stage
and the most at 10–30 cm in the flowering and maturity stages. Liao et al. [68] indicated
that soil moisture could affect the growth of the root system and the planting area with
lower soil moisture had smaller amounts of roots in the 0–20 cm soil layer. Sun et al. [69]
found that the root system of spring wheat in the Southern Xinjiang was mainly distributed
in the 0–40 cm soil layer and the root mass density and root length density decreased with
depth. Jing et al. [70] suggested that 20 cm of irrigation could best overcome drought
stress and that 40 cm of total water (precipitation and irrigation) was sufficient to maximize
spring wheat production in the Canadian prairies. This research showed that SMDI0–10
was closely related to the growth of spring wheat and should be paid more attention to,
but the correlations between LAImax/yield of spring wheat and SMDI10–40 were not as
good as SMDI0–10. Although this research and others have found better performance of
SMDI at 0–10 cm than SMDI at deeper depths and SPEI, how it performs for the other
crops is unknown. Further studies are needed in furtherance to validate drought index
performance in more conditions.

4.3. The Key Month and Timescales Reflecting Crop Responses to Drought

The impact of drought on spring wheat yields varied greatly due to the different
drought levels in each growth period [71,72]. Kamali et al. [73] found a larger correlation
between monthly SMDI and spring wheat yields from May to August. This period coin-
cided with the reproductive stage of spring wheat development and was more susceptible
to water stress. Wang et al. [74] pointed out that May to June were the heading and milking
stages of spring wheat in the arid region and water availability had a very important influ-
ence on the growth of crops and the formation of grain yield. Yang et al. [75] indicated that
wheat plant height growth was more sensitive in the jointing stage because the drought that
occurred in the early stage of growth would force limited water and nutrients to the root
system, promote root growth, and slow the growth of the shoots. Din et al. [76] pointed out
that drought at the jointing stage significantly reduced the number of grains and decreased
ear weight, which may be the main reason for the decline in yield. In this study, we found
that the SMDI0–10 in May (the jointing period of spring wheat) had the best correlation with
the spring wheat yields, indicating that the soil moisture deficit at the jointing stage had a
more adverse effect on spring wheat yield.

In addition, previous studies of drought on crops focused primarily on single-year
events [77] but not on whether the multi-year drought affects crop growth in subsequent
years. Peck and Adams [78] demonstrated the importance of analyzing individual years
of drought in the context of previous years of drought. Continued soil drought would
reduce wheat plant yield and marked changes in quality. Our research results showed that
in normal years after successive droughts, yields would also be reduced, indicating that
the drought was a slow accumulation process; therefore, a perennial drought would have
certain impacts on crop yields in the subsequent years.

Yields may also be affected by other factors such as climate ones (frost, floods, etc.) and
management ones (sowing, fertilization, and irrigation) but were not taken into account in
this research. Studies on the multi-factor impacts on crop yield reduction are still needed in
the future.
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5. Conclusions

The temporal variations of SMDI and SPEI at different timescales (which reflect dry or
wet conditions) during the growth period of spring wheat between 1961 and 2018 were
investigated for the eight selected sites in Qinghai, China. SPEI varied more randomly than
SMDI. The variations of SPEI were not so consistent as SMDI0–10 and SMDI10–40. SPEI had
higher correlations with SMDI0–10 at the lagged times of 1 and 2 months between May and
August, with an increase in rainfall (0.35–0.68). SMDI0–10 reflected actual drought events
better (coincidence degree 43–82%) than SPEI (29–44%) and SMDI10-40 (39–60%).

The DSSAT–CERES–Wheat model performed accurately in simulating the anthesis dates,
maturation dates and meteorological yields of spring wheat. Through the correlation analysis
of spring wheat yield vs. drought indices, SMDI0–10 better reflected drought events during
the spring wheat growth period (0.21 < r < 0.37), and 2-month (among six timescales) was the
key timescale that best identified the relationship between spring wheat yields and SMDI0–10.
In addition, the drought in May had a severe impact on spring wheat growth and yields.

There were considerable correlations between the linear slopes of spring wheat yield
reduction rate and linear slopes of SMDI0–10 in May at the studied eight sites (r = 0.85).
However, the correlation between production reduction rate and SMDI0–10 was not as good
as 1961–2000 (0.20 < r< 0.40) in 1961–2018 (0.09 < r < 0.37) due to the extreme drought in
2000. This study provides useful references for drought–resistance management.
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