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Abstract: As a key functional trait, leaf photosynthetic pigment content (LPPC) plays an important
role in the health status monitoring and yield estimation of apples. Hyperspectral features includ-
ing vegetation indices (VIs) and derivatives are widely used in retrieving vegetation biophysical
parameters. The fractional derivative spectral method shows great potential in retrieving LPPC.
However, the performance of fractional derivatives and machine learning (ML) for retrieving apple
LPPC still needs to be explored. The objective of this study is to test the capacity of using fractional
derivative and ML methods to retrieve apple LPPC. Here, the hyperspectral data in the 400–2500 nm
domains was used to calculate the fractional derivative order of 0.2–2, and then the sensitive bands
were screened through feature dimensionality reduction to train ML to build the LPPC estimation
model. Additionally, VIs-based ML methods and empirical regression models were developed to
compare with the fractional derivative methods. The results showed that fractional derivative-driven
ML methods have higher accuracy than the ML methods driven by the original spectra or vegetation
index. The results also showed that the ML methods perform better than empirical regression models.
Specifically, the best estimates of chlorophyll content and carotenoid content were achieved using
support vector regression (SVR) at the derivative order of 0.2 (R2 = 0.78) and 0.4 (R2 = 0.75), respec-
tively. The fractional derivative maintained a good universality in retrieving the LPPC of multiple
phenological periods. Therefore, this study highlights that the fractional derivative and ML improved
the estimation of apple LPPC.

Keywords: apple leaf; photosynthetic pigment content; fractional derivative; machine learning;
hyperspectral data

1. Introduction

Apples represent one of the most nutritional foods in a healthy diet for their content
of water, sugars, organic acids, vitamins, minerals, and dietary fibers [1]. China is the
largest apple producer worldwide, producing around 48% of the world’s total production.
However, the quality of apples produced in different regions of China varies greatly [2].
Photosynthetic pigments are vital for conserving the energy harnessed by leaf photosyn-
thesis and for growing quality apples. Chlorophyll content (Cab) correlates strongly with
the photosynthesis parameters (i.e., the maximum rate of carboxylation measured at a
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reference temperature (Vcmax25) and the maximum electron transport at a reference temper-
ature (Jmax25)), while carotenoid has several functions in photosynthesis, including photon
reception and photoprotection [3–6]. The surface color as an evaluation index of apple
quality is determined by the combination of anthocyanins, chlorophyll, and carotenoid
(background color) [7].

Optical remote sensing is a reliable method for monitoring the growth status of
forests and crops [8–10]. Accurate retrieval of structural and biochemical parameters is
critical for plant phenotyping. The modeling data sources for the inversion model include
hyperspectral, multispectral, and digital data. In recent decades, hyperspectral remote
sensing has become a powerful tool for the monitoring of apple leaf photosynthetic pigment
content (LPPC, a collective term for Cab and carotenoid content (Cxc) in this paper). For
instance, Ta et al. [11] used machine learning to enhance the estimation of apple leaf
chlorophyll content from the original hyperspectral data. In addition, Cheng Li et al. [12]
developed a vegetation index-based support vector regression (SVR) method to retrieve
apple tree canopy chlorophyll content from Sentinel-2A images. Nonetheless, only a few
studies have used hyperspectral remote sensing to estimate apple LPPC, and most of the
methods have been constructed based on original reflectance or vegetation indices (VIs),
which is insufficient for the widely planted apple orchards. Therefore, new methods for
retrieving apple LPPC still need to be developed.

There are two typical methods developed to retrieve LPPC, namely physical methods
and data-driven methods [13]. Physical methods use the inverse strategies and look-up
table generated by radiative transfer models (RTMs) to estimate vegetation parameters. The
cost function strategies and the addition of spectral noise both affect the performance of the
physical methods [14]. PROSPECT is a widely used leaf optical model in remote sensing
inversion and several versions have been developed (i.e., PROSPECT-4, PROSPECT-5,
PROSPECT-D) [15]. In addition, other leaf optical models, such as the stochastic model of
leaf optical properties (SLOP) [16] and dorsiventral leaf model (DLM) [17], have also been
used for the estimation of leaf parameters.

Data-driven methods include empirical regression models and machine learning
methods. Empirical regression models based on VIs are widely used due to their simplicity
and robustness. A common practice is modeling from the field vegetation parameters (e.g.,
Cab or leaf area index) and the remote sensing data (e.g., VIs or reflectance) [18]. Most
VIs are calculated from the visible, red-edge, and near-infrared spectral domains, such
as the widely used normalized difference vegetation index (NDVI), modified chlorophyll
absorption ratio index (MCARI), and the double-peak canopy nitrogen index (DCNI) [19].
To monitor the health status, water status, or yield estimate of horticultural crops, numerous
studies have been devoted to the application of empirical models based on VIs to the
inversion of biophysical parameters. For instance, VIs based on multispectral data from
unmanned aerial vehicles were used to estimate tree height and canopy diameter in a pine
clonal orchard [20]; the LST-NDVI vegetation index served to estimate tree water status
in apple orchards, further informing irrigation strategies [21]; and WorldView satellite
imagery was used to map yield in avocado orchards [22]. In addition, multi-platform
data has also been used to monitor orchards, for instance, rapid detection of chlorophyll
content and distribution in citrus orchards based on low-altitude remote sensing [23], and
estimating nitrogen status using canopy and leaf reflectance of red-blush pears [24].

Existing studies show that ML algorithms can accurately estimate the water con-
tent, nutritional status, chlorophyll content, and structural parameters of the vegeta-
tion [11,25,26]. By training variables and spectral features, the ML methods construct
regression models for estimating biophysical parameters [27]. The large number of bands
in hyperspectral data may lead to the redundancy of features [28]. To select sensitive
features and reduce the dimensionality of the training data, several methods are used,
including principal component analysis, Pearson’s correlation coefficient, mean decrease
impurity, and variable importance in the projection [29–31]. For the training set of ML
methods, the VIs, fractional derivative, original spectra, and combinations thereof improve
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the accuracy of inversion models [32–34]. The fractional derivative has been applied to
the monitoring of the soil organic matter content [35], nitrogen concentration [34,36], and
chlorophyll content [37] of crops due to its ability to enhance spectral properties. How-
ever, the performance of fractional derivative-driven ML methods to estimate apple LPPC
has not been mentioned, and the transferability of the methods in different phenological
periods is also inconclusive.

Therefore, the purposes of this paper are (1) exploring whether the fractional derivative
can highlight more detailed features of spectral data, (2) analyzing and filtering sensitive
bands with apple LPPC, (3) establishing apple LPPC estimation models and analyzing the
performance of different orders and ML methods, and (4) using the most accurate model to
retrieve the LPPC of different phenological periods.

2. Materials and Methods
2.1. Study Area

The experiments were carried out in typical Fuji apple orchards in Chaoquan and
Guanli towns in Shandong Province, China. The observed data were acquired from the
orchards under normal water and fertilizer management. The study areas fall between
36.23–37.27◦ N and 116.50–120.76◦ E (Figure 1). The study area has a semi-humid conti-
nental monsoon climate, with a mean annual temperature of 11.3 ◦C and a mean annual
precipitation of 650 mm. Moreover, the maximum temperature and rainfall occur in July
and August. In addition, the soil in this area is rich in nutrients. Furthermore, during the
key phenological periods (from March to October) of apple trees, there is ample sunlight,
which greatly improves the energy exchange between the canopy and the environment.
Therefore, this area provides abundant water and suitable climatic conditions for the whole
growth period of apple trees. The average age of apple orchards is 15 to 25 years, and each
tree is separated by 3–5 m.
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Figure 1. Location of study areas and schematic of drone digital images of the apple orchards. The
blue and black triangles in the figure are the ground sampling points in 2013 and 2019, respectively.

2.2. Data Acquisition and Preprocessing

The sampling scheme consisted of sampling trees at random in eight orchards of the
study district. Field experiments were carried out in five key phenological stages (from
April to October in 2013 and 2019), including the flowering stage, fruiting stage, fruit expan-
sion stage, fruit coloring growth stage, and fruit ripening stage. Nine ground observations
were carried out and a total of 379 leaf samples were collected from the orchards. The dates
and data distribution of the field experiments are shown in Table 1. A stratified random
sampling strategy was used for trees selection and leaf samples collection; apple leaves
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were picked at random from the east, south, west, and north of different trees and frozen in
a cooler. A single leaf represents a sample for measuring spectral data and LPPC. We took
the samples back to the laboratory as soon as possible to prevent a loss of pigment and
water content.

Table 1. Introduction of field experiment dates and the distribution of samples.

Month Number of Leaves in 2013 Number of Leaves in 2019 Total

April 36 47 83
May 36 97 133
June 36 17 53

September 36 38 74
October 36 - 36

All 180 199 379

2.2.1. Hyperspectral Data Measurements and Preprocessing

The spectral reflectance of the apple leaves was collected by using a Field Spec Pro
FR2500 (Analytical Spectral Devices, Boulder, CO, USA). While measuring leaf spectral
reflectance, the ASD spectrometer was calibrated using a white reference panel (99%,
R value) made of spectral material every half hour. Each leaf sample was scanned ten
times using the leaf clip of the ASD spectrometer with a self-contained light source, and the
average spectrum was defined as the final value of the leaf sample. This process reduces the
impact of noise due to the operation or equipment. The 350–400 nm spectral bands were
abandoned because they had considerable signal noise. The reflectance of 2101 bands from
400 to 2500 nm was selected as the spectral data for further study. Although the features in
the 350–399 nm bands were abandoned, significant redundant information is available in
the 400–2500 nm band that interferes with LPPC inversion.

2.2.2. LPPC Measurements

LPPC was measured chemically in the laboratory by using a Shimadzu UV-2600
spectrophotometer (Shimadzu UV-2600, Kyoto, Japan). During the sampling process,
sections of leaves were taken from each leaf sample and then ground and soaked in 80 mL
of 95% alcohol until the leaf was white. The spectrophotometer was used to obtain the
absorbance at 440, 649, and 665 nm. The following equations were used to calculate
the LPPC:

chlorophylla = (13.70× A665 − 5.76× A649)×Vml /La (1)

chlorophyllb = (25.80× A649 − 7.60× A665)×Vml /La (2)

chlorophylla+b = chlorophylla + chlorophyllb (3)

carotenoid = 4.70× A440 ×Vml /La − 0.27× chlorophylla+b (4)

where chlorophylla is the chlorophyll-a content, chlorophyllb is the chlorophyll-b content,
carotenoid is the carotenoid content (all in units of µg/cm2), Vml is 95% of the volume of
alcohol, La is the leaf area of each sample, and Aα is the absorbance at the wavelength
α (nm).

2.3. Vegetation Indices

In the last decades, simple empirical models based on VI regressions have been
pre-dominantly used to estimate Cab and Cxc from hyperspectral data for agricultural
monitoring via remote sensing. These approaches are by far the most applied and provide
accurate estimates of vegetation biophysical parameters. For this study, 15 common VIs
were selected to estimate LPPC (Table 2). The indices included simple ratio indices (e.g.,
pigment-specific simple ratio chlorophyll b (PSSRb)), normalized difference ratios (e.g.,
NDVI, and normalized difference red edge (NDRE)), and modified vegetation indices based
on the existing vegetation indices (e.g., modified chlorophyll absorption in reflectance
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index 2 (MCARI2)). The 15 VIs used here were not only used to build empirical regression
models but were also combined with Cab and Cxc as data sets for ML training.

Table 2. Hyperspectral optical indices used in this study (R in the formula indicates reflectance,
numerical values are wavelengths in nm).

VIs Equation Reference

Transformed Chlorophyll Absorption in Reflectance
Index (TCARI) 3× [(R710− R670)− 0.2× (R700− R550)(R710/R670)] [19]

Second Modified Triangular Vegetation Index (MTVI2)
1.5×[1.2×(R800−R550)−2.5×(R670−R550)]√

(2×R800+1)2−(6×R800−5
√

R670)−0.5
[38]

Double-Peak Canopy Nitrogen Index (DCNI) (R720− R700)/(R700− R670)/(R720− R670 + 0.03) [39]

TCARI/Optimized Soil-adjusted Vegetation Index
(TCARI/OSAVI) TCARI/[(1 + 0.16)× (R800− R670)/(R800 + R670 + 0.16)] [19]

Modified Chlorophyll Absorption Ratio Index (MCARI) (R700− R670)− 0.2× (R700− R550)(R700/R670) [19]

Modified Chlorophyll Absorption in Reflectance Index 2
(MCARI2) ((R750− R705)− 0.2× (R750− R550))× (R750/R705) [40]

MCARI/MTVI2 MCARI/MTVI2 [41]

MERIS Terrestrial Chlorophyll Index (MTCI) (R750− R710)/(R750− R680) [42]

Normalized Difference Vegetation Index (NDVI) (R800− R670)/(R800 + R670) [19]

Green Normalized Difference Vegetation Index (GNDVI) (R780− R550)/(R780 + R550) [43]

Normalized Difference Red Edge (NDRE) (R790− R720)/(R790 + R720) [44]

Red Edge Chlorophyll Index (CIred_edge) R800/R700− 1 [45]

Green Chlorophyll Index (CIgreen) R800/R550− 1 [45]

Pigment Specific Simple Ratio Chlorophyll b (PSSRb) R800/R650 [43]

Modified Simple Ratio (MSR) R800/R670−1√
R800/R670+1

[19]

2.4. Basic Theory of Fractional Derivatives

Fractional derivatives are an effective tool to mine characteristic variables in remote
sensing data and are more beneficial to remote sensing modeling than integer deriva-
tives [35]. Grünwald–Letnikov (GL), Riemann–Liouville (RL), and Caputo defined three
classical forms of fractional derivative, respectively [46]. Here, we adopt the simple and flex-
ible fractional derivative defined by Grünwald–Letnikov (GL) for spectral transformation,
and the formula is as follows:

dα f (x) =
lim

h→ 0
1
hα

b−a
h

∑
m=0

(−1)m Γ(α + 1)
m!Γ(α−m + 1)

f (x−mh) (5)

where α is the order, h is the step length and is set to 1, and b and a are the maximum and
minimum of the fractional derivative, respectively. Γ(α) denotes the Gamma function and
the formula is as follows:

Γ(α) =
∫ ∞

0
exp(−u)uα−1du = (α− 1)!. (6)

Then, Formula (5) can be converted to following formula:

dα f (x)
dxα

≈ f (x) + (−α) f (x− 1) +
(−α)(−α + 1)

2
f (x− 2) + · · · · · ·+ Γ(−α + 1)

n!Γ(−α + n + 1)
f (x− n) (7)

In this study, to test how the ML methods work with the fractional derivative, we
calculated fractional derivative orders starting from 0.2 to 2.0 in increments of 0.2 to explore
the accuracy of apple LPPC estimates.
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2.5. Selection of Sensitive Features

For any inversion of vegetation biophysical parameters, sensitive features selection of
hyperspectral data with a large number of wavelengths is a very important step before using
ML methods [1]. Features selection was required before using ML for LPPC inversion [37].
The dimensionality was ideally reduced by using VIs and the sensitive band was selected
based on Pearson’s correlation coefficient. A significance level over 0.01 for the relationship
between the spectral features and LPPC was defined as a sensitive feature, and then the
sensitive features were extracted as training datasets for the ML methods.

2.6. Machine Learning Methods

By analyzing the characteristics of the variables in training datasets, ML methods build
relationships between the input variables (e.g., VIs and reflectance) and the biophysical pa-
rameters of vegetation (e.g., LAI and Cab). ML algorithms, including SVR, neural networks
regression (NNR), partial least squares regression (PLSR), random forest regression (RFR),
and K-nearest-neighbor regression (KNNR), were thus applied to estimate apple LPPC
from the fractional derivative, VIs, and original reflectance. SVR is a powerful regression
tool that is widely used for processing and analyzing remote-sensing data [47]. SVR can
handle high and non-normal variables and avoid overfitting the training model [48]. Its main
advantage is that it accurately expresses the correlation between variables based on a small
sample of data [49]. NNR is a common method for developing nonparametric and nonlin-
ear regression models [50]. NNR imitates the neurons of biological neural networks. Each
neuron receives and processes one or more inputs and generates a single output. Training
a neural network requires that the characteristics of the network structure (i.e., the number
of hidden layers and nodes per layer) be determined and imposes the initial values of
parameters and regularization rules to prevent overfitting. Many studies have shown that
NNR is useful for retrieving biochemical parameters of crops or forest vegetation [51,52]. In
this work, we selected just one hidden layer of neurons and optimized the NNR structure
by using the Levenberg–Marquardt learning algorithm with a squared loss function. NNR
weights were initialized randomly according to the Nguyen–Widrow method [53]. PLSR
builds the regression model on projections obtained by using the partial least squares
(PLS) approach. PLSR is often chosen to map vegetation properties. For instance, PLSR is
relatively mature for estimating Cab and Cxc based on hyperspectral data and performs
well for monitoring the nutrients (e.g., nitrogen, phosphorus, potassium) of fruit trees
and other plants [54–56]. Some researchers have applied PLSR to map forest structure
variables and spatial characteristics (e.g., tree height, canopy diameter, canopy area, and
canopy coverage) [26,57,58]. RFR is an ensemble learning technique that uses a set of
classification and regression trees (CARTs) to predict unknown variables based on known
variables [59]. Two basic parameters need to be determined to use the RFR algorithm:
(1) the number of decision trees to be generated (Ntree) and (2) the number of variables
to be selected and tested for the best split when growing the trees (Mtry) [60]. KNNR is a
multivariate, nonparametric approach to estimation. Implementation of nearest-neighbor
techniques requires choices for three parameters: (1) a value for k, the number of nearest
neighbors; (2) a scheme for weighting neighbors when calculating predictions; and (3) a
distance or similarity metric. The choices are often guided by assessments of results ob-
tained for various combinations of parameters which, in turn, rely on diagnostics related
to the quality of predictions, analysis of residuals, extrapolations, inferences, and ease of
implementation [61].

2.7. Model Validation and Accuracy Evaluation

In this study, k-fold was used to validate the estimation models. The basic idea of
k-fold is to first divide the dataset into n parts, and then use n−1 parts as the training dataset
in turn, and the remaining part as the validation dataset [62]. Here, 10-fold operations were
performed, and then the average of the results was calculated as the final estimate of the
model. The model performance was evaluated by the root mean squared error (RMSE),
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coefficient of determination (R2), and normalized RMSE (nRMSE) between the estimated
and measured LPPC. The equations are as follows:

R2 = 1− ∑n
i=1 (yi−ŷi)

2

(yi−yi)
2 (8)

RMSE =

√
∑n

i=1 (yi−ŷi)
2

n
(9)

nRMSE = RMSE
yi

(10)

where i = 1, 2, 3, . . . , n is the validation sample, ŷi and yi represent the estimated and
measured LPPC values, respectively, and yi is the average of each measured variable.

3. Results
3.1. Descriptive Statistics for the LPPC of Apple Trees

The apple LPPC collected from the field experiments showed great variation. Figure 2
shows the distribution of LPPC over the five growth periods. Cab increased from April
to September and suddenly decreased in October; Cxc increased from April to June and
kept the same level as June in September and October. Table 3 summarizes the statistics of
the field data. The range of Cab was from 35.68 to 119.87 µg/cm2, while the range of Cxc
was from 7.17 to 23.29 µg/cm2. We also found that the changes of Cab and Cxc obviously
varied with the seasons.
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Table 3. Basic statistics of the apple LPPC.

Parameters Sample Size Maximum Minimum Mean Standard Deviation Coefficient of Variation (%)

Cab (µg/cm2) 379 119.87 35.68 80.00 20.39 25.49
Cxc (µg/cm2) 379 23.29 7.17 14.23 2.64 18.55

3.2. Spectral Feature of Fractional Derivative

The spectral curves of the measured leaf samples followed similar forms. Figure 3
depicts the original reflectance and fractional derivative for three representative samples.
For orders 0.2–1.4, two reflection features appeared near 550 and 730 nm, and three ab-
sorption features appeared near 680, 1400, and 1900 nm. Other reflection peaks became
sharper in orders 1.6–2.0. Spectral derivative technology not only separated absorption
peaks but also magnified weak absorption peaks. With the continuous increase of the
differential order, the gap between the maximum value and the minimum value of the
differential derivative gradually stabilized from a relatively large dispersion to near zero.
Compared with a simple first-order or second-order derivative, the fractional derivative
offered richer information. Especially in the visible and red-edge spectral domains, the
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orders 0.2–1.0 highlighted the number of absorption peaks and reflection peaks, which will
be more helpful for us to extract sensitive bands.
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Figure 3. Features of the minimum, median, and maximum LPPC samples produced by fractional
derivation of the original spectra. Panel (a) shows the original spectra, and the remaining panels
(b–k) show the fractional derivative orders 0.2–2.

3.3. Sensitive Features Selection

Figure 4 plots Pearson’s correlations for LPPC and VIs, the original spectra, and the
fractional derivative orders 0.2–2. The correlation coefficients were tested at the significance
level of 0.01. Of the 15 VIs, 6 VIs (TCARI, TCARI/OSAVI, MCARI/MTVI2, MCARI,
MTVI2, MCARI2) were negatively correlated and 9 VIs (MSR, NDVI, PSSRb, GNDVI,
NDRE, CIred_edge, CIgreen, MTCI, DCNI) were positively correlated. The correlation
of each VI to Cab and Cxc was consistent, which means that the correlation of a VI to
Cab and Cxc was similar. The LPPC curve from the original spectra or from the fractional
derivative orders 0.2–2.0 were consistent. All original spectra were negatively correlated
with LPPC, which was particularly strong near 555 and 715 nm (at the 0.01 significance
level). Compared with the original spectra, there were multiple positive and negative
peaks in the spectral features from orders 0.2 to 1.0, which made it possible to remove the
insensitive bands while extracting the sensitive bands, so as to avoid the uncertainty of
modeling. For orders 1.2 to 2.0, only a small number of bands in the visible and red-edge
spectral domains passed the significance test.
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The spectral features that passed the significance test are shown in Table 4. Upon in-
creasing the fractional derivative order from 0.2 to 2.0, the general rule was that the number
of bands passing the significance test gradually decreased. For orders 0.2–1.0, the number
of bands passing the significance test of Cab and Cxc was greater than 300, and a large
number of characteristic variables could be obtained; while the number of bands in 1.2–2.0
was less than 200, so some characteristic variables may have been lost. In addition, almost
all orders showed that the sensitive bands of LPPC appeared in the visible and red-edge
spectral domains. For Cab, the maximum correlation coefficient at 704 nm was 0.75; while
for Cxc at 546 nm, the maximum correlation coefficient was 0.75. In addition, the correlation
coefficients of order 1.2–2.0 were drastically reduced. Therefore, we extracted more spectral
features with higher correlation coefficients in orders 0.2–1.0 than orders 1.2–2.0.
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Table 4. Statistical analysis of spectral features passing the significance test.

Orders or VIs

Cab Cxc

Number of Passing
Significance Test

Maximum Value of
the Correlation

Coefficient

Corresponding VIs
or Bands

Number of Passing
Significance Tests

Maximum Value of
the Correlation

Coefficient

Corresponding VIs
or Bands

VIs 15 0.76 DCNI 15 0.74 TCARI/OSAVI
Original 1297 0.75 718 nm 1375 0.73 710 nm

0.2 1257 0.74 714 nm 1369 0.73 646 nm
0.4 1304 0.74 714 nm 1366 0.74 546 nm
0.6 1056 0.74 540 nm 1131 0.75 546 nm
0.8 633 0.74 704 nm 681 0.73 700 nm
1.0 327 0.75 704 nm 331 0.73 700 nm
1.2 146 0.68 695 nm 205 0.71 700 nm
1.4 146 0.68 695 nm 145 0.66 694 nm
1.6 96 0.58 697 nm 105 0.56 694 nm
1.8 70 0.43 695 nm 71 0.42 694 nm
2.0 38 0.36 1801 nm 50 0.34 707 nm

Notes: Original denotes the original reflectance.

3.4. Performance of Fractional Derivative-Driven ML Methods

Figure 5 shows the R2, RMSE, and nRMSE (%) of apple LPPC estimation. For the Cab esti-
mation (Figure 5a–c), SVR, RFR, and PLSR produced the most accurate estimates for fractional
derivative orders 0.2–1.0 (R2 = 0.64–0.78 and RMSE = 9.33–11.29 µg/cm2). The estimates
produced by SVR based on fractional derivative order 0.2 (R2 = 0.78, RMSE = 9.33 µg/cm2,
and nRMSE = 11.66%) was better than those of the other four ML methods. Due to the spec-
tral features becoming subtle and decreasing in number, the models produced inaccurate
estimates of LPPC after fractional derivative order 1.0. The results for Cxc (Figure 5d–f)
differed slightly from those for Cab. The fractional derivative order 0.4 produced accurate
estimates with five ML methods, where SVR obtained the highest precision (R2 = 0.75,
RMSE = 1.34 µg/cm2, nRMSE = 9.42%). The performance of almost all ML methods im-
proved as the order increased to a certain stage, for instance, the SVR estimate of Cxc at the
original spectra had R2 = 0.56, whereas the most accurate estimate at fractional derivative
order 0.4 had R2 = 0.75. Overall, the use of the fractional derivative effectively improved
the estimation accuracy of LPPC relative to VIs and original reflectance.
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To assess the universality of the fractional derivative in different phenological periods
and regions, the best models were used to estimate Cab and Cxc (i.e., SVR models of order
0.2 and 0.4), respectively. Since the field trials of the same phenological period in 2013 and
2019 were very close, April, May, June, and September were combined for analysis. The
results are shown in Figure 6. Overall, the fractional derivative model estimated Cab and
Cxc with good accuracy (R2 = 0.78 and 0.75, respectively, Figure 6a,b). For annual validation,
the overall accuracy in 2013 was higher than in 2019 (Figure 6c–f). In addition, the model
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showed a large difference in the robustness of different seasons, and the accuracy was lower
than the overall and annual validation, specifically. The model obtained a higher accuracy
in May, June, September, and October (R2 = 0.43–0.72), while the estimation accuracy of Cxc
in April was unsatisfactory (R2 = 0.17). The drop in the accuracy of independent validation
for seasonality and interannually was mainly caused by the training set, that is, the training
of the model did not include interseason and interannual features, resulting in a large gap
between the modeling and validation data.
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3.5. Comparison with the Empirical Models

In this section, several empirical models developed from VIs were compared with
fractional derivative-driven ML methods. Table 5 shows the inversion results for empirical
models based on VIs. Overall, empirical models produced relatively accurate estimates of
LPPC. Eleven VIs (i.e., TCARI/OSAVI, NDRE, DCNI, TCARI, MCARI, MCARI/MTVI2,
MTVI2, MTCI, CIred_edge, CIgreen, GNDVI) produced accurate estimates of Cab, with R2

= 0.56–0.69 and RMSE = 11.08 to 15.48 µg/cm2 and, for the accurate estimates of Cxc, with
R2 = 0.50–0.71 and nRMSE = 1.57–1.97 µg/cm2. The remaining models produced inaccurate
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estimates (R2 < 0.4). The linear regression based on TCARI/OSAVI produced the most accu-
rate estimates of all the empirical models for LPPC (Cab: R2 = 0.69, RMSE = 11.08 µg/cm2;
Cxc: R2 = 0.71, RMSE = 1.57 µg/cm2). Overall, it also highlighted the higher accuracy of
fractional derivative-driven ML methods compared to empirical models.

Table 5. Results of validation of empirical models for estimating LPPC.

VIs
Cab (µg/cm2) Cxc (µg/cm2)

R2 RMSE R2 RMSE

TCARI/OSAVI 0.69 11.08 0.71 1.57
NDRE 0.67 12.04 0.66 1.65
DCNI 0.67 11.92 0.68 1.55
TCARI 0.66 12.83 0.65 1.69
MCARI 0.62 12.35 0.56 1.56

MCARI/MTVI2 0.63 12.49 0.56 1.57
MTVI2 0.62 12.55 0.61 1.61
MTCI 0.59 14.79 0.51 1.74

CIred_edge 0.57 14.56 0.50 1.81
CIgreen 0.56 15.29 0.52 1.94
GNDVI 0.56 15.48 0.51 1.97

MCARI2 0.37 17.54 0.29 2.91
PSSRb 0.25 16.34 0.26 2.36
NDVI 0.14 19.68 0.09 4.19
MSR 0.18 22.74 0.12 3.37

4. Discussion
4.1. The Fractional Derivative Improves the Accuracy of LPPC Estimates

Derivative techniques have been widely used for monitoring vegetation parame-
ters [36]. While we used the fractional derivative to enhance the original spectra to obtain
more features in this study, the excellent performance of fractional derivative-driven ML
was highlighted in the retrieval of LPPC in apple orchards. In addition to using fractional
derivatives, VIs were also used as a contrastive strategy to extract feature variables from
hyperspectral data. The results showed that it was reasonable to use VIs to build an in-
version model, but the accuracy was not significantly improved over the original spectra
(Figure 5). Compared to using the integer derivative and VIs as the training data set for ML,
using appropriate fractional derivative orders effectively improved the accuracy of LPPC
estimation (Figure 5). The main reason for this result was that derivation highlights the
subtle features of hyperspectral data and considerably facilitates multiple collinearity prob-
lems, so more spectral features were screened, and they contained more information [37].
Fractional differentiation was thus better than integer derivation for processing spectral
data. Fractional differentiation of spectral data made better use of the subtle differences
between fractional orders to extract features, thereby improving the inversion model [34,35].
For the estimation of Cab and Cxc, the best performing models were at orders 0.2 and 0.4,
respectively, which also means that the order of the fractional derivative must be carefully
chosen when using this method.

4.2. Universality of the Fractional Derivative

The universality is an important indicator for evaluating the quality of a model. Re-
gional differences pose great challenges to the stability of a model. Although the fractional
derivative provided good estimation results, further research should be conducted to evalu-
ate the transferability of the method. The results in Figure 6 showed that in addition to the
improved estimation accuracy in 2013, the performance in 2019 and sub-seasons decreased
compared to the overall validation. The reason may be that ML methods originated from
training datasets that did not fully represent various natural variations, so their perfor-
mance was inherently limited by the differences of environmental factors [63,64]. Figure 6
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clearly showed that the estimation accuracy of LPPC had obvious seasonal variation, which
was consistent with the results of Ta et al. [11].

In addition, to further verify the annual transferability, an independent validation was also
carried out. Data from 2013 were used for modeling and then validating using data from 2019.
The same operation was conducted by swapping the datasets of 2013 and 2019. These results
are shown in Table 6. Compared to cross-validation, the estimation accuracy of both Cab and
Cxc decreased. The estimation accuracy of Cab (R2 = 0.56–0.70, RMSE = 12.86–15.52 µg/cm2)
was higher than that of Cxc (R2 = 0.45–0.48, RMSE = 1.83–2.07 µg/cm2). A possible reason
was that the training samples from a certain period (2013 or 2019) cannot represent the
characteristics of the validation data. Every certain period might have its unique dominant
disturbing factors. Differences in regional factors (e.g., soil conditions, weather characteris-
tics, or agricultural management) will directly affect the biochemical parameters of apple
leaves [65]. In particular, the equivalent water thickness and dry matter content have a
very large effect on the spectrum of leaves [13]. Therefore, the instability of environmental
factors posed a great challenge to the robustness and transferability of the models. If one
wants to improve the estimative ability of the model, the calibration subset data must cover
a wide range of samples (e.g., representing multiple stages, temperature characteristics,
and soil factors) [64].

Table 6. Interannual validation of LPPC estimates using fractional derivative and ML.

Parameters
2013 Train 2019 Train

R2 RMSE (µg/cm2) R2 RMSE (µg/cm2)

Cab (µg/cm2) 0.56 15.52 0.70 12.86
Cxc (µg/cm2) 0.45 2.07 0.48 1.83

4.3. Performance of Different Machine Learning Methods

This paper tested the performance of five ML methods for LPPC estimation and
compared them with empirical models based on VIs. ML methods are nonlinear and
nonparametric, which allows a relationship model to be built between variables based on
the internal characteristics of the data. The ML methods gave more accurate estimate of
LPPC than empirical regression models based on VIs. This may have resulted from ML
methods using richer spectral features than VI-based empirical models [34–37]. However,
ML methods also required significant preprocessing to estimate LPPC. For instance, the
spectrum must be fractionally differentiated to a given order, VIs must be selected, the
sensitive features of different fractional reciprocals must be treated, and appropriate training
parameters for the ML methods must be selected.

In addition, SVR had outstanding performance in the entire 0.2 to 1.0 orders. This
conclusion was also supported by the study of Bhadra et al. [37]. In addition, after order 1.4,
the accuracy of almost all models decreased rapidly due to the abrupt reduction of feature
variables. Whether it was the estimation of Cab or Cxc, there was difference in performance
between multiple ML methods at a certain fractional order. For example, when estimating
Cab at order 0.2, the R2 of SVR was 0.23 higher than that of KNNR (Figure 5a); when
estimating Cxc at order 0.2, the R2 of SVR was 0.14 higher than that of KNNR (Figure 5d).
Therefore, we recommend carefully screening out high-performance ML methods before
implementing this method.

5. Conclusions

In this study, we tested the capacity of using the fractional derivative and ML algo-
rithms to retrieve apple LPPC. We evaluated the universality of the fractional derivative
on different phenological periods and the performance of five ML methods on different
fractional derivatives. In addition, we also analyzed the accuracy produced by VI-based
empirical models and ML methods. In general, fractional derivative-driven ML methods
produced more accurate estimates of LPPC than empirical models. Applying appropriate
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fractional differentiation to spectra improved the performance of the ML methods, with
the best being 0.2-order SVR and 0.4-order SVR for estimating Cab and Cxc. The fractional
derivative improved the utilization of spectral data, although there were some limitations
in different seasons and years, but also maintained a good versatility. In addition, ML had
advantages in estimating LPPC, SVR especially provided more accurate LPPC estimation
on the orders 0.2–1.0.

This paper highlights the excellent performance of fractional derivative-driven ML
methods for LPPC estimation in apple orchards. This method has the potential to map
the photosynthetic capacity of crop canopies over large areas. Canopy photosynthetic
capacity is key to understanding crop productivity and can be measured by biochemical
parameters such as photosynthetic pigments (chlorophyll and carotenoid). Furthermore,
photosynthetic pigments are closely related to plant nitrogen content, so they can help
growers to dynamically monitor the nutritional status of apple trees to optimize the precise
management of orchards and increase fruit productivity.
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