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Abstract: Water is a limited resource in arid and semi-arid regions, as is the case in the Mediterranean
Basin, where demographic and climatic conditions make it ideal for growing fruits and vegetables,
but a greater volume of water is required. Deficit irrigation strategies have proven to be successful in
optimizing available water without pernicious impact on yield and harvest quality, but it is essential
to control the water stress of the crop. The direct measurement of crop water status is currently
performed using midday stem water potential, which is costly in terms of time and labor; therefore,
indirect methods are needed for automatic monitoring of crop water stress. In this study, we present
a novel approach to indirectly estimate the water stress of 15-year-old mature sweet cherry trees from
a time series of soil water status and meteorological variables by using Machine Learning methods
(Random Forest and Support Vector Machine). Time information was accounted for by integrating
soil and meteorological measurements within arbitrary periods of 3, 6 and 10 days. Supervised binary
classification and regression approaches were applied. The binary classification approach allowed for
the definition of a model that alerts the farmer when a dangerous crop water stress episode is about
to happen a day in advance. Performance metrics F2 and recall of up to 0.735 and 0.769, respectively,
were obtained. With the regression approach a R2 of up to 0.817 was achieved.

Keywords: crop water stress; stem water potential; machine learning; time series; random forest;
deficit irrigation; soil water content; soil matric potential

1. Introduction

Water scarcity is a generalized issue that becomes particularly acute under arid and
semi-arid climate conditions. The FAO (Food and Agriculture Organization of the United
Nations) report “Climate Smart Agriculture Sourcebook” [1] estimates a world population
increase of 30% (an increase of two billion people) by 2050, which will require a 60% increase
in agricultural production to meet the growing demand for food and to establish certain
food security. This increase in agricultural food production will be significantly affected
by adverse effects of climate change that may worsen the situation, such as increased
temperature and reduced precipitation and available water resources [2]. In much of the
Mediterranean Basin, a region characterized by a semi-arid climate, the agricultural sector
is the main water-demanding sector and has to cope with water scarcity [3], often facing
significant reductions in available water allocations for irrigation. Specifically, the Segura
Basin faces an average annual water deficit of 400 hm3 that affects 3865 km2 of irrigated
agricultural land, according to 2021 horizon estimations [4].

These water imbalances have led to the search for new solutions that maintain and even
increase the efficiency of water use and yields with the modernization of irrigation systems.
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Consequently, it is globally assumed that solutions must promote a more efficient use of
water and energy, for which deficit irrigation strategies have proved to be a very useful
tool [5], together with precision irrigation based on monitoring the soil–plant–atmosphere
continuum with sensors [6].

In order to reduce water consumption and use water more efficiently, efforts should
focus on maximizing water productivity rather than increasing production [7], as it is not
possible to meet the maximum water requirements of crops in most cases. In fact, many
Spanish farmers’ communities have an irrigation endowment for the whole season that
is far below the theoretical requirements. Under these conditions, irrigation scheduling
throughout the crop cycle must be carried out in such a way that it is effective in alleviating
stress during the most sensitive phenological stages [8,9]. This is the objective of Regulated
Deficit Irrigation (RDI) strategies, which consist of providing a volume of water lower than
the full crop water requirements and reducing irrigation only in periods of the crop cycle
where the effect on yield and quality of the harvest is minimal or even null (non-critical
periods). In this regard, it is essential to know the level of water stress to which the crop is
subjected and that which it can withstand in each phenological stage. Blaya-Ros et al. [10]
studied the main adaptive mechanisms developed by sweet cherry to cope with drought.
The authors emphasized that the knowledge of these mechanisms is of great interest to
the design of regulated deficit irrigation strategies in sweet cherry trees. Independently
of this, several works studied the influence of crop water stress on productivity and yield
quality in fruit trees under RDI, demonstrating that it is a feasible practice [11–13]. In early
cherry trees, it is considered that pre-harvest and a short period after harvest, during which
floral differentiation takes place, are very sensitive to water deficits. For this reason, water
stress should not be imposed during flowering, during any of the fruit growth stages (I, II
and III), or 15−20 days after harvest [14]. In “Prime Giant” under our growing conditions,
flowering takes place in early April and harvesting is completed in early-mid June.

The most widely accepted method for determining the water status of crops is the
measurement of the midday stem water potential, Ψstem, with a pressure chamber [15].
However, this method is destructive and costly in terms of time and associated labor, as
well as non-automatable for irrigation purposes. Alternatively, several authors tried to
find indirect estimations of Ψstem from other agro-climatic variables whose measurement is
easily automatable. The relationships of air temperature, solar radiation, Vapor Pressure
Deficit (VDP) and reference evapotranspiration (ETo) with Ψstem was studied in [16,17],
obtaining a limited correlation. Intrigliolo and Castel [16] also investigated a relationship
between Ψstem and soil matric potential, Ψm, measured with Watermark sensors (Irrometer
Company, Inc., Riverside, CA, USA), finding some correlation between the two variables,
but with high scatter, especially for Ψm > −45 kPa. The soil matric potential represents
the force with which water is attracted to the surface of solid soil particles, as well as
the force of attraction between the water molecules themselves. The use of ML (Machine
Learning) techniques to predict irrigation need based on soil and climate parameters with
decision support systems was introduced over the last decade in the field of irrigation
management [18], making comparisons among different backward modeling methodolo-
gies for better performance [19]. However, the use of these techniques to estimate the
value of Ψstem opens new perspectives on the application of RDI in crops through an
automatic procedure. Martí et al. [20] used MLR (Multiple Linear Regression) and ANN
(Artificial Neural Networks) to estimate the value of Ψstem from meteorological variables
and soil water content. However, the data set only covered 15 months, making use of
46 examples, thus compromising the robustness of the model. Using the same variables,
Valdés-Vela et al. [21] established a different approach by applying fuzzy rules, which
allowed for discretizing the input variables of the system into qualitative classes, making
their interpretation more accessible.

All the approaches found in the literature to estimate Ψstem make use of one-time
predictor variables, either measured at the same time as the Ψstem, or just a daily aver-
age [22]. In this study, we propose two different approaches to predict water stress episodes
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in sweet cherry trees from temporal data of soil and climate variables in order to define
an alarm system that prevents farmers from meeting these water stress conditions in their
crops. Using temporal data from periods previous to the day of estimation, we provide
models with much more relevant information than can be supplied with one-time single
measurements, considering that the plants’ interaction with soil and the atmosphere, as
well as the proper dynamics of these interactions, is not immediate. In addition, the dataset
we used encompasses a total of three years of measurements under a wide variety of
irrigation treatments, providing the models with a fair diversity of water status condition
examples. In a first approach, we categorized crop water stress into two classes: ‘no stress’
and ‘warning stress’, based on the empirically measured Ψstem and the harvest period,
and defined a ML model to perform a binary classification based on temporal soil and
weather data. In a second approach, we defined a ML regression model to estimate Ψstem
from temporal soil and weather data, additionally evaluating its discriminatory capability
between ‘no stress’ and ‘warning stress’ conditions through ROC (Receiver Operating
Characteristic) curves.

We also explored other aspects of interest, such as the influence that the time period
considered for temporal soil and weather data could have on crop water status estimates,
the effect of omitting soil moisture sensors from the analysis if soil matric potential sensors
are available and vice versa, or if the VDP could stand in for the rest of the climate variables
as a crop water stress estimator.

2. Materials and Methods
2.1. Experimental Site and Irrigation Treatments

The experiment was conducted on a 0.5 ha commercial orchard located in Jumilla,
Murcia, Spain (38◦8′ N; 1◦22′ W, altitude 670 m) during growing seasons from May 2015
to August 2018. The crop under study was 15-year-old mature cherry trees (P. avium L. cv
Prime Giant), grafted on SL64 rootstock and with the varieties ‘Early Lory’ and ‘Brooks’ as
pollinators. For further information regarding the experimental site, the reader is referred
to [22].

Drip irrigation was applied, with one dripline per tree row and three pressure-
compensated emitters of 4 L h−1 per tree. Irrigation treatments started each season in
March, before flowering at the beginning of the dry period, and interrupted at the end of
November, the end of the dry period [22]. Five different irrigation treatments were applied,
with two replications each: (i) the control treatment (CTL), irrigated to meet the maximum
crop evapotranspiration (ETc) and ensure non-limiting soil water conditions throughout
the growing season (110% ETc); (ii) sustained deficit treatment (DS), irrigated at 85% of ETc
during pre-harvest and post-harvest, except for 15–20 days after the first harvest (flower
differentiation), where irrigation corresponded to 100% of ETc; (iii, iv) two regulated deficit
irrigation treatments: RDC-1 and RDC-2 irrigated at 90 and 100% during pre-harvest, 100%
at flower differentiation and 65 and 55% of ETc during post-harvest, respectively; and (v)
farmer treatment (FMR), irrigated according to the normal practice of the local farmers,
which consisted of irrigating above the crop’s water requirements during pre-harvest and
applying a water deficit based on each farmer’s own experience during post-harvest.

Crop water requirements were calculated using the following equation:
ETc = ET0 × Kc × Kr, where ET0 is the average reference evapotranspiration during
the 3–5 days prior to applying a new irrigation schedulr and was calculated according to
the Penman-Monteith equation [23]; Kc is a crop-specific coefficient whose monthly average
values were 0.30, 0.50, 0.90, 0.96, 0.96, 0.91, 0.69, 0.36 and 0.30 from March to November,
respectively [14]; and Kr is a location factor [24] related to the percentage of ground covered
by the crop, whose value was set to Kr = 0.90.

During the period 2015–2018, the mean yield at harvest was 22.7 t ha−1 and there
was no significant effect of irrigation treatment on tree yield and quality. Thus, a water
reduction of 39% with RDC did not penalize total fruit yield or quality. DS treatment
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saved 28% of supplied water in comparison with CTL treatment, providing similar yields.
However, DS trees tended to produce smaller fruits [12,25].

2.2. Crop Water Status Measurement

Crop water status was measured approximately every 10–15 days at 12:00–13:30 h
(solar time) by determining midday Ψstem with a Scholander pressure chamber (Model
3000, Soil Moisture Equipment, Santa Barbara, CA, USA), according to the methodology
proposed by McCutchan and Shackel [26] on six trees per treatment, as described in [22].
To measure Ψstem, healthy mature leaves close to the trunk were chosen from the north
quadrant in order to avoid solar exposure. The leaves were covered with aluminum foil
and wrapped into small black polyethylene bags at least 2 h prior to measurement.

2.3. Soil Water and Meteorological Variables Measurement

The soil of the study site was moderately stony and had a sandy loam texture, with a
particle size distribution of 67.5% sand, 17.5% silt and 15% clay, high organic matter content
(6.3%) in the surface layer (5–35 cm depth), and acceptable active limestone (2.7%), high
assimilable phosphorus (108.67 mg kg−1) and adequate exchangeable potassium (0.32 meq
100 g−1) contents. The irrigation water came from a well and presented an average EC
(Electrical Conductivity) of 0.8 dS m−1 at 25 ◦C.

Soil volumetric water content, θV, was determined with Enviroscan (Sentek Pty. Ltd.,
Adelaide, Australia) capacitance-based profile sensors at 20 and 40 cm depths. One En-
viroscan access tube was installed for each replicate, located 0.23 m from the irrigation
emitter and 1.5 m from the tree trunk. Soil matric potential, Ψm, was also measured
at 25 and 50 cm depths using Decagon MPS6 granular matrix sensors (Decagon Devices
Inc., Pullman, WA, USA) per depth and replicate, likewise located 0.23 m from the irrigation
emitter. Both, θv and Ψm, were recorded with a Campbell Scientific CR1000 datalogger
(Campbell Scientific Inc., Logan, UT, USA), programmed to measure every 30 s and provide
the mean value every 10 min.

Meteorological data on air RH (Relative Humidity), cumulative rainfall, solar radiation,
air temperature and wind speed were provided hourly by a weather station close to the
experimental site owned by the integral consulting service in agriculture SIAR (Sistema de
Información Agroclimático para Regadío) [27]. In the case of solar radiation, wind speed,
air RH and air temperature, we used hourly mean values, whereas the rainfall was the total
accumulated every hour. From air temperature and RH data, we computed VPD according
to [23].

2.4. Dataset Arrangement

The dataset used to train and test the crop water stress prediction models was built
from the soil, plant and weather variables described above and recorded throughout
2015–2018 for the different irrigation treatments. The input variables were: soil water
content at 20 (θv20) and 40 cm depth (θv40); soil matric potential at 25 (Ψm25) and 50 cm
depth (Ψm50); air RH (air_RH); solar radiation (φ); air temperature (air_Temp); wind speed
(WS); VPD; rainfall; DOY (Day Of the Year) and harvest period. The output variable
was crop water stress, either expressed as a numerical pressure Ψstem value in MPa, or as
categorical stress levels defined on the basis of the Ψstem value and the phenological stage,
depending on the modeling approach used. For the classification approach, we defined a
binary problem with two crop water stress classes: ‘no stress’ and ‘warning stress’. The
categorization was based on the Ψstem value and the phenological stage according to the
rule defined in Table 1.

The sampling frequency of soil and weather variables and Ψstem was uneven due to
the limitations associated with the measurement of the latter, as described above. Thus,
while soil variables were recorded every 10 min, weather variables were obtained every
hour and Ψstem was measured, approximately, every 10–15 days. Taking into account that
the dynamics of the soil–plant–atmosphere continuum involve dilated transient times and
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that a time series of soil and meteorological data is available before every measurement
of Ψstem, we considered whether the time evolution of the physical input variables of
the system, and more specifically the energy stored by these variables over a period of
time, could be a relevant indicator for determination of the crop water stress. To compute
the energy stored by the physical variables, the area under the curve described by these
variables over a period of time, T, was calculated using a discrete integration method based
on the calculation of trapezoidal areas, implemented in Matlab (version 2018a, MathWorks,
Natick, MA, USA) with the trapz function. Thus, the disparity of the sampling frequency
was also removed.

Table 1. Defined rule for binary categorization of crop water stress.

Harvest Period Rule Category

Pre-harvest
Ψstem > −0.9 MPa ‘no stress’
Ψstem < −0.9 MPa ‘warning stress’

Post-harvest
Ψstem > −1.2 MPa ‘no stress’
Ψstem < −1.2 MPa ‘warning stress’

Intuitively, the time period considered in the integration of the input variables was a
factor to take into account, since a priori the influence that these variables might have on
Ψstem in the short and long term was unknown. We set days as the time unit. Considering
D as the day for which an estimation of the tree water status was desired, we arbitrarily
defined three time periods immediately prior to that day D: T = 3, 6 and 10 days. We defined
the inputs of the models as the daily integrals of each soil and weather variable for each T
(one variable per day), hereinafter called daily dynamics, and also added their cumulative
values over the entire T period, hereinafter called accumulated dynamics. Therefore, three
different datasets were defined. Therefore, for instance, for the dataset associated with
T = 3 days, the model input variables defined from θv20 were θv20_D1, θv20_D2, θv20_D3
and θv20_ACCUM (T = 3), which refer to the integral of θv20 over the day before D, the
second-to-last day before D, the third-to-last day before D and the cumulative value of
these, respectively.

Due to occasional sensor failure and breakdowns in the data acquisition system,
several periods of soil data were lost unevenly among the different irrigation treatments,
making the Ψstem data obtained throughout these periods unusable for the purpose of this
study. In addition, no data were available for one of the replications of the FMR treatment.
In summary, the number of Ψstem measurements used in this study and, consequently,
the number of examples in the datasets for either value of T, was 389. A summary of the
different models’ inputs considered in the study is presented in Table 2.

Table 2. List of models’ inputs considered in the study.

Soil Variables Weather Variables Calendar Variables

θv20_Di, i = 1, . . . , T air_RHDi, i = 1, . . . , T DOY
θv20_ACCUM(T) air_RHACCUM(T)

θv40_Di, i = 1, . . . , T φDi, i = 1, . . . , T Harvest period
θv40_ACCUM(T) φACCUM(T)

Ψm25_Di, i = 1, . . . , T air_TempDi, i = 1, . . . , T
Ψm25_ACCUM(T) air_TempACCUM(T)

Ψm50_Di, i = 1, . . . , T WSDi, i = 1, . . . , T
Ψm50_ACCUM(T) WSACCUM(T)

VPDDi, i = 1, . . . , T
VPDACCUM(T)

rainfallDi, i = 1, . . . , T
rainfallACCUM(T)

T = 3, 6 or 10 days.
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2.5. Modeling Approaches

In order to estimate tree water status from soil, weather and calendar data, analysis
was carried out using two different approaches.

2.5.1. Binary Supervised Classification of Tree Water Status

From an agronomic point of view, it is of interest to determine whether a tree un-
dergoes strong variations in its water status and reaches extreme stress conditions that
can have transformative effects on the harvest in the current year or even the following
year, especially when it is subjected to deficit irrigation. That is to say, the interest lies in
creating an alarm system to determine whether the tree will reach a severe state of water
stress than can endanger the eventual integrity of the crop, without giving importance to
the magnitude of the stress. A priori, a binary classification approach can be considered
to be less stringent than a precise estimation of the value of Ψstem per se. Therefore, we
considered it appropriate to assess predictive binary classification models and defined the
two classes as ‘no stress’ and ‘warning stress’ water stress states.

Within this approach, it should be noted that the available data give rise to an imbal-
anced binary classification problem, since only 26 out of the 389 total examples correspond
to the ‘warning stress’ class, whereas the rest correspond to the ‘no stress’ class. In order to
tackle this, the analysis was carried out in two different scenarios:

1. By directly applying a ML classification technique, i.e., without taking into account
the problem of imbalanced classes.

2. By previously applying an oversampling technique to compensate for the sample
size of both classes. Specifically, we applied MWMOTE (Majority Weighted Minority
Oversampling Technique for imbalance dataset learning) [28], which is included in the
R ‘imbalance’ package [29]. MWMOTE is a modification of the SMOTE technique [30],
which overcomes some of its limitations when there are noisy instances, in which case
SMOTE would generate additional noisy instances from them.

In turn, we applied two ML classification algorithms whose effectiveness is well-
known [31–34]: RF (Random Forest) and SVM (Support Vector Machine). RF was imple-
mented with R packages caret [35] and random Forest [36], whereas for SVM, we used R
packages caret and kernlab [37]. We applied 10-fold CV (Cross Validation) throughout the
whole dataset with 389 examples, obtaining the average of three repetitions, for the tuning
of the hyperparameters mtry in RF and C (Cost) in SVM, applying Radial Basis Kernel in
the latter. The hyperparameters were optimized to maximize the accuracy of the models,
as set by default in the R packages used. In order to test the models, once the optimized
hyperparameter was set, we applied LOO (Leave One Out) and computed the following
performance metrics:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Recall (sensitivity) =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F1 score = 2× Precision× Recall
Precision + Recall

(5)

F2 score = 5× Precision× Recall
4× Precision + Recall

(6)

where TP, FP, TN and FN are True Positives, False Positives, True Negatives and False
Negatives, respectively.
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It should be noted that in this context of imbalanced classes, the accuracy metric is
not sufficiently representative of the actual performance of the models, as its own value is
biased towards the majority class. Therefore, when having imbalanced classes, with the
minority class being the one of greatest agronomic interest in this case, it is essential to
give special attention to metrics such as recall and F2 score. Recall is a metric that provides
relevant information when there is a high cost associated with FN [38], as in the case of this
study. Therefore, considering that the objective of the model is to detect ‘warning stress’
episodes, ‘warning stress’ would be the positive class and ‘no stress’ the negative class.
Thus, FN would imply that a ‘warning stress’ episode would be classified as ‘no stress’.
Precision is also a metric that focuses on the minority class, but should be preferred when
FP are critical [38]. In the case of this study, having FP to a moderate extent should not be
an issue, since the model would err on the side of security. F1 provides a balance between
recall and precision, whereas F2 acts similarly, but putting more attention on minimizing
FN [39], which is more relevant for the case of the study.

2.5.2. Ψstem Estimation with Regression Techniques

Alternatively, the water status of the tree can be assessed from its Ψstem, which is a
continuous variable. The estimation of Ψstem using a regression problem, although more
informative, may be more difficult to achieve. This approach, if successful, allows for
estimation of the tree’s water condition, as well as the magnitude of water stress and its
evolution over time. For this reason, it is opportune to assess predictive regression models.

In this case, we applied the same two ML techniques (RF and SVM), but for regression
problems, optimizing the hyperparameters to minimize the RMSE. We evaluated the models
using the following performance metrics:

ME(Mean Error) =
1
N

N

∑
i=1

(
Ψ̂stem,i −Ψstem,i

)
(7)

RMSE(Root Mean Square Error) =

√√√√ 1
N

N

∑
i=1

(
Ψ̂stem,i −Ψstem,i

)2 (8)

R2 =
∑N

i=1
(
Ψ̂stem,i −Ψstem

)2

∑N
i=1
(
Ψstem,i −Ψstem

)2 (9)

MAPE(Mean Absolute Percentage Error) =
100
N

N

∑
i=1

∣∣∣∣ Ψ̂stem,i −Ψstem,i

Ψstem,i

∣∣∣∣ (10)

where Ψstem,i and Ψ̂stem,i are the measured and estimated Ψstem values of the ith example,
respectively, Ψstem is the mean value of Ψstem in the dataset and N is the number of examples
in the dataset, i.e., N = 389.

Additionally, we explored the discriminatory ability of the models obtained with
the regression approach to distinguish between ‘no stress’ and ‘warning stress’ classes
by establishing specific thresholds. We evaluated this ability using ROC curves and the
AUC (Area Under the Curve). From estimations of the stem water potential with the
regression models, we defined several threshold values of stem water potential, such that
below the threshold we considered the class to be ‘warning stress’ and above the threshold
‘no stress’. Thus, we performed a binary classification based on the estimated stem water
potential (Ψstem) values obtained with the regression models. By sweeping the values of
the threshold, we computed the classification metrics recall and specificity based on the
estimated and actual crop water stress classes. The ROC curves were then obtained from
the pairs of recall and specificity values.
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2.6. Summary of Data Configurations Analyzed in the Study

In order to explore the influence that some of the input variables and the temporal
format they are presented in can have on the estimation capabilities of the models, we
defined several configurations. The study of these configurations allowed us to evaluate
whether we could dispense with using either only soil moisture sensors or only soil
matric potential sensors to account for relevant information regarding soil water; how
determinant it would be to take into account both the daily and accumulated dynamics
for the input variables; or if the VPD was representative of the other weather variables.
The different configurations studied are presented in Table 3 and the inputs referred to are
those in Table 2.

Table 3. Model input configurations analyzed.

Configuration Input Variables N. of Inputs

1 All the inputs 22
2 All inputs but the daily dynamics 12
3 All inputs but θv dynamics 18
4 All inputs but the daily dynamics and θv dynamics 10
5 All inputs but Ψm dynamics 18
6 All inputs but the daily dynamics and Ψm dynamics 10
7 DOY, harvest period and Ψm and VPD dynamics 8

8 DOY, harvest period and Ψm and VPD
accumulated dynamics 5

9 DOY, harvest period and θv and VPD dynamics 8

10 DOY, harvest period and θv and VPD
accumulated dynamics 5

3. Results and Discussion
3.1. Binary Supervised Classification Approach

In Tables 4 and 5, we present a selection of the classification metrics of the RF model
obtained with the imbalanced and MWMOTE-oversampling-balanced datasets, respec-
tively. The different input configurations specified in Table 3, as well as the three time
integration periods defined in Section 2.4, were evaluated. In order to provide a graphical
overview of the metrics presented in Tables 4 and 5 and to facilitate easier comparison
among the different input configurations, input time integration periods and balanced and
imbalanced datasets, in Figure 1 we graphically present the value of the most relevant
metrics for the case of this study.

In all cases, except for Configuration 1 and T = 6 days, it is shown that the models
trained with oversampled datasets resulted in a clear improvement in recall compared to the
imbalanced-dataset-based models, at the cost of a very small loss of accuracy. This suggests
that the oversampling method employed allowed the imbalanced binary classification
problem to be solved. In Figure 1 it is also shown that, generally, the models trained with
oversampled datasets improved over those trained with imbalanced ones on F1 and F2
metrics, especially the latter. Furthermore, the models trained with oversampled datasets
showed less variability in F1 and F2, with T = 10 days being the most stable case for all
input configurations.

For the RF model trained on the oversampled dataset for T = 10 days, we obtained
an accuracy of 95% and recall of approximately 70% for several configurations. Even
though the highest recall was obtained for T = 3 days in Configurations 3 and 8, T = 10
days performed better on average considering all configurations. In general, with the
oversampled dataset, the difference in classification metrics between simpler models that
include only accumulated dynamics and their corresponding complex versions, which also
include daily dynamics, was not significant, especially for T = 10 days.

When weather variables were omitted, the use of the matric potential and DPV dynam-
ics (configurations 7 and 8) yielded classification metrics that were among the highest, in
many cases even higher than those of configurations that did include all weather variables.
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Table 4. RF model classification performance metrics with the imbalanced dataset.

T Metric Input Configuration

1 2 3 4 5 6 7 8 9 10

3 days

Accuracy 0.954 0.956 0.959 0.956 0.941 0.938 0.959 0.961 0.938 0.936
Precision 0.750 0.800 0.727 0.696 0.600 0.625 0.727 0.720 0.571 0.538

Recall 0.462 0.462 0.615 0.615 0.346 0.192 0.615 0.692 0.308 0.269
Specificity 0.989 0.992 0.983 0.981 0.983 0.992 0.983 0.981 0.983 0.983

F1 0.571 0.585 0.667 0.653 0.439 0.294 0.667 0.706 0.400 0.359
F2 0.500 0.504 0.635 0.630 0.378 0.223 0.635 0.698 0.339 0.299
TP 12 12 16 16 9 5 16 18 8 7
FP 4 3 6 7 6 3 6 7 6 6
TN 359 360 357 356 357 360 357 356 357 357
FN 14 14 10 10 17 21 10 8 18 19

6 days

Accuracy 0.959 0.959 0.956 0.946 0.938 0.949 0.961 0.954 0.931 0.943
Precision 0.778 0.857 0.737 0.647 0.625 0.650 0.789 0.722 0.400 0.643

Recall 0.538 0.462 0.538 0.423 0.192 0.500 0.577 0.500 0.077 0.346
Specificity 0.989 0.994 0.986 0.983 0.992 0.981 0.989 0.986 0.992 0.986

F1 0.636 0.600 0.622 0.512 0.294 0.565 0.667 0.591 0.129 0.450
F2 0.574 0.508 0.569 0.455 0.223 0.524 0.610 0.533 0.092 0.381
TP 14 12 14 11 5 13 15 13 2 9
FP 4 2 5 6 3 7 4 5 3 5
TN 359 361 358 357 360 356 359 358 360 358
FN 12 14 12 15 21 13 11 13 24 17

10 days

Accuracy 0.961 0.959 0.954 0.954 0.949 0.946 0.956 0.956 0.943 0.936
Precision 0.789 0.778 0.700 0.682 0.750 0.647 0.737 0.696 0.700 0.529

Recall 0.577 0.538 0.538 0.577 0.346 0.423 0.538 0.615 0.269 0.346
Specificity 0.989 0.989 0.983 0.981 0.992 0.983 0.986 0.981 0.992 0.978

F1 0.667 0.636 0.609 0.625 0.474 0.512 0.622 0.653 0.389 0.419
F2 0.610 0.574 0.565 0.595 0.388 0.455 0.569 0.630 0.307 0.372
TP 15 14 14 15 9 11 14 16 7 9
FP 4 4 6 7 3 6 5 7 3 8
TN 359 359 357 356 360 357 358 356 360 355
FN 11 12 12 11 17 15 12 10 19 17

Table 5. RF model classification performance metrics with the MWMOTE-balanced dataset.

T Metric Input Configuration

1 2 3 4 5 6 7 8 9 10

3 days

Accuracy 0.938 0.941 0.954 0.931 0.923 0.928 0.931 0.920 0.900 0.907
Precision 0.531 0.552 0.625 0.486 0.433 0.467 0.486 0.444 0.303 0.368

Recall 0.654 0.615 0.769 0.654 0.500 0.538 0.692 0.769 0.385 0.538
Specificity 0.959 0.964 0.967 0.950 0.953 0.956 0.948 0.931 0.937 0.934

F1 0.586 0.582 0.690 0.557 0.464 0.500 0.571 0.563 0.339 0.438
F2 0.625 0.602 0.735 0.612 0.485 0.522 0.638 0.671 0.365 0.493
TP 17 16 20 17 13 14 18 20 10 14
FP 15 13 12 18 17 16 19 25 23 24
TN 348 350 351 345 346 347 344 338 340 339
FN 9 10 6 9 13 12 8 6 16 12
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Table 5. Cont.

T Metric Input Configuration

1 2 3 4 5 6 7 8 9 10

6 days

Accuracy 0.931 0.951 0.949 0.946 0.920 0.933 0.941 0.918 0.915 0.918
Precision 0.480 0.621 0.615 0.581 0.407 0.500 0.552 0.417 0.394 0.406

Recall 0.462 0.692 0.615 0.692 0.423 0.538 0.615 0.577 0.500 0.500
Specificity 0.964 0.970 0.972 0.964 0.956 0.961 0.964 0.942 0.945 0.948

F1 0.471 0.655 0.615 0.632 0.415 0.519 0.582 0.484 0.441 0.448
F2 0.465 0.677 0.615 0.667 0.420 0.530 0.602 0.536 0.474 0.478
TP 12 18 16 18 11 14 16 15 13 13
FP 13 11 10 13 16 14 13 21 20 19
TN 350 352 353 350 347 349 350 342 343 344
FN 14 8 10 8 15 12 10 11 13 13

10 days

Accuracy 0.949 0.949 0.954 0.941 0.938 0.943 0.951 0.920 0.946 0.936
Precision 0.600 0.600 0.667 0.552 0.536 0.571 0.630 0.442 0.581 0.515

Recall 0.692 0.692 0.615 0.615 0.577 0.615 0.654 0.731 0.692 0.654
Specificity 0.967 0.967 0.978 0.964 0.964 0.967 0.972 0.934 0.964 0.956

F1 0.643 0.643 0.640 0.582 0.556 0.593 0.642 0.551 0.632 0.576
F2 0.672 0.672 0.625 0.602 0.568 0.606 0.649 0.646 0.667 0.620
TP 18 18 16 16 15 16 17 19 18 17
FP 12 12 8 13 13 12 10 24 13 16
TN 351 351 355 350 350 351 353 339 350 347
FN 8 8 10 10 11 10 9 7 8 9

3.1.1. Influence of Soil Matric Potential and Soil Water Content on the Performance of
the Models

Input Configurations 3 through 10 allowed us to evaluate the influence of using either
soil moisture or soil matric potential sensors for tree water stress estimation. There is a wide
variety of commercial and experimental soil moisture sensors and several measurement
techniques, whereas only a few models of soil matric potential sensors can be found, the
vast majority of them having limited pressure ranges. Generally, soil moisture sensors are
available at a lower cost, yet soil matric potential offers a range of measurement of the
water in soil that is available for the plant, which is a priori more relevant when studying
soil–plant water interaction, as is the case here.

As shown in Tables 4 and 5 and Figure 1, better classification metrics were found for
configurations including Ψm instead of θv, even though the differences were dramatically
reduced for T = 10 days. This suggests that the measured θv provides misleading infor-
mation to the model in the short term in comparison with Ψm. Several factors, or even a
combination of them, could be contributing to this, such as the proper heterogeneity of the
soil, magnified by its stony nature; the way the Enviroscan sensor was installed in the soil,
inside an access tube, which could produce considerable soil disturbance around the tube
wall, altering the hydraulic conductivity of the soil; or a mismatch between the Enviroscan’s
default calibration and the actual relationship between the dielectric properties of the soil
and its water content, which is proven to be very dependent on soil texture, electromagnetic
frequency and soil EC [40–42] and is not linear.

3.1.2. Comparison between RF and SVM Models

In Table 6, we present a representative example of the classification metrics for the
SVM model with the MWMOTE-balanced dataset and T = 10 days, and in Figure 2 the
most descriptive metrics are compared to those obtained with the RF model under the
same conditions. The accuracy was similar with both models for every input configuration.
Likewise, recall, F1 and F2 were similar for both models with most of the input configu-
rations, with marked differences shown only for Configurations 6, 8 and 9, for which RF
proved to be a better option. In this regard, it should be noted that SVM was applied with
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radial kernel, a technique which involves non-trivial tuning of several hyperparamaters
with a high influence on the results obtained.

Table 6. SVM model performance metrics with the MWMOTE-balanced dataset.

T Metric Input Configuration

1 2 3 4 5 6 7 8 9 10

10 days

Accuracy 0.969 0.946 0.951 0.943 0.931 0.920 0.951 0.905 0.923 0.925
Precision 0.818 0.600 0.630 0.563 0.481 0.414 0.640 0.351 0.430 0.459

Recall 0.692 0.580 0.61 0.654 0.692 0.462 0.615 0.500 0.462 0.654
Specificity 0.989 0.972 0.972 0.961 0.961 0.953 0.975 0.934 0.956 0.945

F1 0.750 0.588 0.642 0.621 0.491 0.436 0.627 0.413 0.444 0.540
F2 0.714 0.581 0.649 0.662 0.496 0.451 0.620 0.461 0.455 0.603
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3.2. Regression Approach

For the regression approach, a higher performance was again observed with RF against
SVM models. In Table 7, the regression performance metrics are summarized for RF with
the different input configurations and T = 3, 6 and 10 days. In this regression approach, no
oversampling was applied. The best goodness of fit was obtained for Configurations 1, 2, 3
and 4 for all T values, which again evidences the relevance of the information provided
by the soil matric potential sensors together with the rest of the weather variables in the
model, to the detriment of the less accurate information provided by the soil moisture
sensors. The regression metrics obtained for T = 10 days were higher than those obtained
with the rest of the integration periods, which suggests that the soil and meteorological
states of up to at least 10 previous days have influence on the tree’s water status. As shown
in Figure 3, generally, the use of both daily and accumulated dynamics provided slightly
higher performance than using only the accumulated dynamics.
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Table 7. RF model regression performance metrics.

T Metric Input Configuration

1 2 3 4 5 6 7 8 9 10

3 days

ME −0.004 −0.002 −0.004 −0.002 −0.002 −0.001 −0.005 −0.002 −0.002 −0.002
RMSE 0.122 0.120 0.123 0.122 0.131 0.131 0.130 0.132 0.137 0.139

R2 0.791 0.799 0.790 0.792 0.760 0.762 0.765 0.756 0.738 0.731
MAPE 12.458 12.080 12.265 11.928 13.052 12.808 12.745 12.876 13.317 13.683

6 days

ME −0.004 −0.002 −0.003 −0.001 −0.001 −0.002 −0.003 −0.002 −0.001 −0.002
RMSE 0.118 0.121 0.119 0.120 0.127 0.130 0.126 0.131 0.138 0.135

R2 0.804 0.797 0.801 0.798 0.773 0.763 0.780 0.761 0.736 0.745
MAPE 12.223 12.005 12.159 11.883 12.865 12.843 12.554 12.705 13.533 13.493

10 days

ME −0.003 −0.001 −0.003 −0.002 −0.002 0.000 −0.006 −0.002 −0.001 −0.001
RMSE 0.114 0.118 0.115 0.119 0.123 0.128 0.122 0.125 0.131 0.136

R2 0.817 0.805 0.816 0.802 0.788 0.771 0.792 0.782 0.761 0.742
MAPE 11.691 11.914 11.600 11.768 12.507 12.722 12.105 12.287 13.222 13.454
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A coefficient of determination (R2) of up to 0.817 was obtained with Configuration 1
and T = 10 days. Intrigliolo and Castel [16] obtained an R2 of 0.62 when correlating Ψm
and Ψstem in plum trees, but no other soil or weather variables were considered in the
model and the operating range of the Ψm sensors used was considerably more reduced
than that of the ones used in the present study. Martí et al. [20] obtained higher R2 of
up to 0.926 in ‘Navelina’ citrus trees by using soil volumetric water content and weather
data, but the dataset was limited to only 46 examples and only one RDI strategy was
applied, thus demonstrating an outstanding performance in a specific reduced case, but
more generalized models are expected when broadening the experimental conditions, as
in the case of this study. Valdés-Vela et al. [21] evaluated the approach proposed by Martí
et al. [20], in addition to a novel fuzzy rule based approach, on data from five different
irrigation treatments with four replications each during five growing seasons, obtaining a
RMSE of 0.141 in the best case, whereas with Configuration 1 and T = 10 days we managed
to considerably reduce it to 0.114.

To evaluate the capability for discrimination between ‘no stress’ and ‘warning stress’
states by applying a threshold from estimations of Ψstem obtained with RF regression
models, we obtained the ROC curves for T = 3, 6 and 10 days and the different input
configurations. In Figure 4, the ROC curves for T = 10 days are presented as a representative
example. Generally, from the ROC curves, the objective is to maximize the AUC. In Table 8,
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the AUCs for T = 3, 6 and 10 days and the different input configurations are presented. For
all T values, Configurations 1, 2 and 3 were the ones providing the highest discriminatory
ability, i.e., the greatest AUCs. However, these differences in discriminatory ability were
not statistically significant, as indicated by the confidence intervals for the AUC presented
in Table 8, i.e., for the same T value, since the intersection of all input configurations
asymptotic confidence intervals is not an empty set, it could not be affirmed that there were
differences between the AUCs of the different input configurations.
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all input configurations and T = 10 days.

Table 8. AUC metrics for ROC curves obtained from binary classification applied using thresholds
on the regression-estimated Ψstem.

T Metric Input Configuration

1 2 3 4 5 6 7 8 9 10

3 days

AUC 0.974 0.971 0.970 0.966 0.952 0.951 0.964 0.958 0.938 0.937
Deviation error 1 0.008 0.009 0.009 0.010 0.012 0.013 0.010 0.011 0.014 0.013

Asymptotic signification 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

95%
asymptotic
confidence

interval

Lower bound 0.958 0.954 0.952 0.947 0.928 0.926 0.944 0.936 0.910 0.910

Upper bound 0.990 0.988 0.988 0.985 0.976 0.976 0.985 0.980 0.965 0.963

6 days

AUC 0.972 0.965 0.970 0.960 0.955 0.952 0.964 0.954 0.936 0.945
Deviation error 1 0.009 0.010 0.009 0.010 0.012 0.012 0.011 0.012 0.014 0.013

Asymptotic signification 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

95%
asymptotic
confidence

interval

Lower bound 0.954 0.944 0.953 0.940 0.932 0.928 0.943 0.931 0.908 0.918

Upper bound 0.990 0.985 0.988 0.981 0.978 0.976 0.985 0.978 0.964 0.971

10 days

AUC 0.974 0.968 0.972 0.960 0.962 0.956 0.966 0.951 0.963 0.944
Deviation error 1 0.009 0.011 0.009 0.010 0.010 0.011 0.010 0.012 0.010 0.013

Asymptotic signification 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

95%
asymptotic
confidence

interval

Lower bound 0.957 0.947 0.955 0.940 0.941 0.934 0.946 0.927 0.943 0.918

Upper bound 0.992 0.989 0.989 0.981 0.983 0.978 0.985 0.975 0.984 0.970

1 Under the non-parametric assumption. 2 Null hypothesis: true area = 0.5.
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As an example application of this combined regression classification approach, from
the ROC curve corresponding to T = 10 days and Configuration 2, two interesting thresholds
could be found in terms of obtaining convenient recall and specificity. If the threshold
was set at Ψstem = −1.102 MPa, so that an estimated Ψstem lower than that would be
considered ‘warning stress’ and a higher one ‘no stress’, a recall of 88.5% and a specificity
of 96.1% would be obtained. In this case, the specificity would indicate the likeliness of
correctly predicting a ‘no stress’ case. Both recall and specificity were substantially high,
but considering that avoiding ‘warning stress’ episodes is critical, a more conservative
threshold, set at Ψstem = −0.845 MPa, would lead to a recall of 100% and a specificity of
82.9%. Therefore, this would avoid the risk of subjecting the tree to extreme stress by
detecting all cases of potentially harmful stress, but at the same time it would generate
an alert on a larger number of cases that were not really threatening, thus being on the
side of safety. This would lead to the application of a slightly higher irrigation amount
than needed by the crop in these cases in exchange for reducing the risk of unsafe water
conditions for the tree.

3.3. Classification Model Test

To assess classification model performance in predicting the water stress status of
the crop during an arbitrary time period, we selected the RF model trained with the over-
sampled dataset and Configuration 2 for T = 10 days. The models were tested and their
performance metrics obtained by means of the LOO method in Section 3.1. Here, we graph-
ically evaluated the predictions of the model for days for which no Ψstem measurements
were obtained, i.e., days from which the model was not trained. Thus, even though no
objective metrics could be derived from this analysis, it did allow for observation of the
consistency of predictions over time. In Figure 5, we present ‘no stress’ and ‘warning stress’
estimations (pink scatters) together with a reference four-level categorical stress defined
by an agronomist (blue scatters) for irrigation treatments FMR (Figure 5a) and RDC-2
(Figure 5b) during 2015, as an example. These four categories of crop water stress were
defined by an expert agronomist in a previous work [43] based on Ψstem measurements,
harvest period and soil and weather time series data observations from the same dataset
used in this study. These four stress categories corresponded to: 0, absence of stress; 1, light
stress; 2, moderate stress; and 3, severe stress. In this study, we unified the stress categories
0, 1 and 2 into ‘no stress’, whereas stress category 3 corresponded to ‘warning stress’.
Showing the reference stress divided into four categories in Figure 5 instead of the binary
reference values provides information regarding how the crop water stress level evolves
during the transition between ‘no stress’ and ‘warning stress’. The binary predictions were
generally consistent with the reference data. The model kept the estimation at ‘no stress’
while the reference crop water stress level defined by the expert was 0 or 1. The model
‘alerted’ of ‘warning stress’ in the transition from expert-defined levels 1 to 2 and slightly
fluctuated between ‘no stress’ and ‘warning stress’ during August, when the reference
stress level was mainly 2 with a single case of level 3. However, in both cases presented,
the model predicted ‘warning stress’ several days before level 3 was reached.
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Figure 5. Comparison of crop water stress level estimated with the classification RF model trained
with Configuration 2 and T = 10 days and the reference crop water stress level defined by an expert
agronomist in [43] for FMR (a) and RDC-2 (b) irrigation treatments during 2015.

3.4. Regression Model Test

A similar approach to that in the previous section was adopted with the regression
model. Likewise, we selected the RF model trained with Configuration 2 and T = 10 days
as the best model and predicted Ψstem for those days that it had not been empirically
measured. In Figure 6, the estimated and measured Ψstem are presented for the same
irrigation treatments and times as in Figure 5. It can be noted that the predictions on
the days when there were no Ψstem measurements follow the patterns and trends of the
measured Ψstem fairly. At the lower and upper bounds of the Ψstem range presented
in Figure 6a for the FMR irrigation treatment, i.e., when water was barely and highly
available for the crop, respectively, the regression model tended to slightly underestimate
the measured Ψstem values. Even though this behavior is not shown in the example
presented for RDC-2 in Figure 6b, it was generally observed across the dataset. This means
that the model would often predict slightly worse conditions than in the worst-case scenario
for the crop water status, thus remaining on the side of security to manage crop health
and productivity.
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4. Conclusions

In this study we evaluated the performance of ML techniques to estimate the crop
water stress of fruit trees, focusing the analysis on 15-year-old sweet cherry trees. We posed
a novel model input format consisting of integrating the curve described by the input
physical variables for a time period immediately before the day the estimation was going
to be made. Two modeling approaches were tested: (i) a binary classification approach
to determine whether the crop was subjected to tolerable (‘no stress’) or severe (‘warning
stress’) water stress conditions and (ii) a regression approach to predict the numerical
value of the tree stem water potential. As an alternative, this second approach was turned
into a binary classification approach by defining a stem water potential threshold. The
ML algorithms used were RF and SVM. We generally obtained higher performance with
the former.

Modeling the crop water stress with the classification approach was challenging
when using the original dataset due to its imbalanced condition, which provided limited
examples of the minority class. The use of the MWMOTE oversampling method was
critical to enhancing the performance of the model, increasing the recall and F1 and F2
scores and giving rise to more homogenous performance metrics among the different
input configurations tested. The importance of the input configuration selected for the
classification model was reduced as the inputs integration time increased, so that for
T = 10 days, the performance of the model was leveled for all input configurations. This
meant that the longer the input integration time, the lower the number of input variables
needed to reach a similar classification performance. For the classification approach, the
RF model trained with the oversampled dataset and Configuration 3 for T = 3 days and
Configuration 2 for T = 10 days were the options which showed the highest performance
in terms of accuracy, recall, and F1 and F2 scores. Generally, avoidance of soil water
matric potential as an input to the classification model resulted in worse classification
metrics, especially for reduced integration times (T = 3 and 6 days), and this was even
more pronounced when the model was trained with the imbalanced dataset. Thus, soil
matric potential sensors proved more accurate than soil moisture sensors in the estimation
of crop water stress in the short term. Nevertheless, there is no evidence to confirm this
in a generalized way. Further research is required with other sensors with different probe
geometries and ways of installation, as well as with soil-specific calibration.

In the case of the regression approach, the input configurations including all soil
and weather variables and those not including the soil moisture variables were the ones
showing the best goodness of fit, revealing again the limited information provided by
the soil moisture sensors used. It was also demonstrated that the longer the model input
integration time, the better the model fit, at least up to 10 days, obtaining a R2 of up to 0.817
with input Configuration 1; and that considering both daily and accumulated dynamics for
the model inputs resulted in better estimations than using only accumulated dynamics. We
also evidenced that from the crop stem water potential predicted with the regression model,
an alarm system based on a Ψstem threshold could be set to inform the farmer of a potential
crop water stress risk. Setting the threshold at Ψstem = −0.845 MPa for the RF regression
model, with input Configuration 2 and T = 10 days, would detect every potential severe
crop water stress episode.

Once the crop water stress estimation models developed in this study prove successful
for preventive deficit irrigation management in sweet cherry trees, future work should
be focused on extending this method and these models to other crops. Hypothetically,
different crops and different soil conditions would change the parameters of the models.
Additionally, the use of different soil moisture sensors would allow for clarification of the
actual importance of this variable in the models.
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