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Abstract: Water is a limited resource in arid and semi-arid regions, as is the case in the Mediterra-

nean Basin, where demographic and climatic conditions make it ideal for growing fruits and vege-

tables, but a greater volume of water is required. Deficit irrigation strategies have proven to be suc-

cessful in optimizing available water without pernicious impact on yield and harvest quality, but it 

is essential to control the water stress of the crop. The direct measurement of crop water status is 

currently performed using midday stem water potential, which is costly in terms of time and labor; 

therefore, indirect methods are needed for automatic monitoring of crop water stress. In this study, 

we present a novel approach to indirectly estimate the water stress of 15-year-old mature sweet 

cherry trees from a time series of soil water status and meteorological variables by using Machine 

Learning methods (Random Forest and Support Vector Machine). Time information was accounted 

for by integrating soil and meteorological measurements within arbitrary periods of 3, 6 and 10 

days. Supervised binary classification and regression approaches were applied. The binary classifi-

cation approach allowed for the definition of a model that alerts the farmer when a dangerous crop 

water stress episode is about to happen a day in advance. Performance metrics F2 and recall of up 

to 0.735 and 0.769, respectively, were obtained. With the regression approach a R2 of up to 0.817 was 

achieved. 
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1. Introduction 

Water scarcity is a generalized issue that becomes particularly acute under arid and 

semi-arid climate conditions. The FAO (Food and Agriculture Organization of the United 

Nations) report “Climate Smart Agriculture Sourcebook” [1] estimates a world popula-

tion increase of 30% (an increase of two billion people) by 2050, which will require a 60% 

increase in agricultural production to meet the growing demand for food and to establish 

certain food security. This increase in agricultural food production will be significantly 

affected by adverse effects of climate change that may worsen the situation, such as in-

creased temperature and reduced precipitation and available water resources [2]. In much 

of the Mediterranean Basin, a region characterized by a semi-arid climate, the agricultural 

sector is the main water-demanding sector and has to cope with water scarcity [3], often 

facing significant reductions in available water allocations for irrigation. Specifically, the 

Segura Basin faces an average annual water deficit of 400 hm3 that affects 3865 km2 of 

irrigated agricultural land, according to 2021 horizon estimations [4]. 
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These water imbalances have led to the search for new solutions that maintain and 

even increase the efficiency of water use and yields with the modernization of irrigation 

systems. Consequently, it is globally assumed that solutions must promote a more effi-

cient use of water and energy, for which deficit irrigation strategies have proved to be a 

very useful tool [5], together with precision irrigation based on monitoring the soil–plant–

atmosphere continuum with sensors [6]. 

In order to reduce water consumption and use water more efficiently, efforts should 

focus on maximizing water productivity rather than increasing production [7], as it is not 

possible to meet the maximum water requirements of crops in most cases. In fact, many 

Spanish farmers’ communities have an irrigation endowment for the whole season that is 

far below the theoretical requirements. Under these conditions, irrigation scheduling 

throughout the crop cycle must be carried out in such a way that it is effective in alleviat-

ing stress during the most sensitive phenological stages [8,9]. This is the objective of Reg-

ulated Deficit Irrigation (RDI) strategies, which consist of providing a volume of water 

lower than the full crop water requirements and reducing irrigation only in periods of the 

crop cycle where the effect on yield and quality of the harvest is minimal or even null 

(non-critical periods). In this regard, it is essential to know the level of water stress to 

which the crop is subjected and that which it can withstand in each phenological stage. 

Blaya-Ros et al. [10] studied the main adaptive mechanisms developed by sweet cherry to 

cope with drought. The authors emphasized that the knowledge of these mechanisms is 

of great interest to the design of regulated deficit irrigation strategies in sweet cherry trees. 

Independently of this, several works studied the influence of crop water stress on produc-

tivity and yield quality in fruit trees under RDI, demonstrating that it is a feasible practice 

[11–13]. In early cherry trees, it is considered that pre-harvest, floral differentiation and a 

short period after harvest are very sensitive to water deficits. For this reason, water stress 

should not be imposed during flowering, during any of the fruit growth stages (I, II and 

III), or 15−20 days after harvest [14]. In “Prime Giant” under our growing conditions, flow-

ering takes place in early April and harvesting is completed in early-mid June. 

The most widely accepted method for determining the water status of crops is the 

measurement of the midday stem water potential, Ψstem, with a pressure chamber [15]. 

However, this method is destructive and costly in terms of time and associated labor, as 

well as non-automatable for irrigation purposes. Alternatively, several authors tried to 

find indirect estimations of Ψstem from other agro-climatic variables whose measurement 

is easily automatable. The relationships of air temperature, solar radiation, Vapor Pressure 

Deficit (VDP) and reference evapotranspiration (ETo) with Ψstem was studied in [16,17], 

obtaining a limited correlation. Intrigliolo and Castel [16] also investigated a relationship 

between Ψstem and soil matric potential, Ψm, measured with Watermark sensors (Irrometer 

Company, Inc., Riverside, CA, USA), finding some correlation between the two variables, 

but with high scatter, especially for Ψm > −45 kPa. The soil matric potential represents the 

force with which water is attracted to the surface of solid soil particles, as well as the force 

of attraction between the water molecules themselves. The use of ML (Machine Learning) 

techniques to predict irrigation need based on soil and climate parameters with decision 

support systems was introduced over the last decade in the field of irrigation management 

[18], making comparisons among different backward modeling methodologies for better 

performance [19]. However, the use of these techniques to estimate the value of Ψstem 

opens new perspectives on the application of RDI in crops through an automatic proce-

dure. Martí et al. [20] used MLR (Multiple Linear Regression) and ANN (Artificial Neural 

Networks) to estimate the value of Ψstem from meteorological variables and soil water con-

tent. However, the data set only covered 15 months, making use of 46 examples, thus 

compromising the robustness of the model. Using the same variables, Valdés-Vela et al. 

[21] established a different approach by applying fuzzy rules, which allowed for discre-

tizing the input variables of the system into qualitative classes, making their interpretation 

more accessible. 
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All the approaches found in the literature to estimate Ψstem make use of one-time pre-

dictor variables, either measured at the same time as the Ψstem, or just a daily average [22]. 

In this study, we propose two different approaches to predict water stress episodes in 

sweet cherry trees from temporal data of soil and climate variables in order to define an 

alarm system that prevents farmers from meeting these water stress conditions in their 

crops. Using temporal data from periods previous to the day of estimation, we provide 

models with much more relevant information than can be supplied with one-time single 

measurements, considering that the plants’ interaction with soil and the atmosphere, as 

well as the proper dynamics of these interactions, is not immediate. In addition, the da-

taset we used encompasses a total of three years of measurements under a wide variety 

of irrigation treatments, providing the models with a fair diversity of water status condi-

tion examples. In a first approach, we categorized crop water stress into two classes: ‘no 

stress’ and ‘warning stress’, based on the empirically measured Ψstem and the harvest pe-

riod, and defined a ML model to perform a binary classification based on temporal soil 

and weather data. In a second approach, we defined a ML regression model to estimate 

Ψstem from temporal soil and weather data, additionally evaluating its discriminatory ca-

pability between ‘no stress’ and ‘warning stress’ conditions through ROC (Receiver Op-

erating Characteristic) curves. 

We also explored other aspects of interest, such as the influence that the time period 

considered for temporal soil and weather data could have on crop water status estimates, 

the effect of omitting soil moisture sensors from the analysis if soil matric potential sensors 

are available and vice versa, or if the VDP could stand in for the rest of the climate varia-

bles as a crop water stress estimator. 

2. Materials and Methods 

2.1. Experimental Site and Irrigation Treatments 

The experiment was conducted on a 0.5 ha commercial orchard located in Jumilla, 

Murcia, Spain (38°8′ N; 1°22′ W, altitude 670 m) during growing seasons from May 2015 

to August 2018. The crop under study was 15-year-old mature cherry trees (P. avium L. cv 

Prime Giant), grafted on SL64 rootstock and with the varieties ‘Early Lory’ and ‘Brooks’ 

as pollinators. For further information regarding the experimental site, the reader is re-

ferred to [22]. 

Drip irrigation was applied, with one dripline per tree row and three pressure-com-

pensated emitters of 4 L h−1 per tree. Irrigation treatments started each season in March, 

before flowering at the beginning of the dry period, and interrupted at the end of Novem-

ber, the end of the dry period [22]. Five different irrigation treatments were applied, with 

two replications each: (i) the control treatment (CTL), irrigated to meet the maximum crop 

evapotranspiration (ETc) and ensure non-limiting soil water conditions throughout the 

growing season (110% ETc); (ii) sustained deficit treatment (DS), irrigated at 85% of ETc 

during pre-harvest and post-harvest, except for 15–20 days after the first harvest (flower 

differentiation), where irrigation corresponded to 100% of ETc; (iii, iv) two regulated def-

icit irrigation treatments: RDC-1 and RDC-2 irrigated at 90 and 100% during pre-harvest, 

100% at flower differentiation and 65 and 55% of ETc during post-harvest, respectively; 

and (v) farmer treatment (FMR), irrigated according to the normal practice of the local 

farmers, which consisted of irrigating above the crop’s water requirements during pre-

harvest and applying a water deficit based on each farmer’s own experience during post-

harvest. 

Crop water requirements were calculated using the following equation: ETc = ET0 × 

Kc × Kr, where ET0 is the average reference evapotranspiration during the 3–5 days prior 

to applying a new irrigation schedulr and was calculated according to the Penman-Mon-

teith equation [23]; Kc is a crop-specific coefficient whose monthly average values were 

0.30, 0.50, 0.90, 0.96, 0.96, 0.91, 0.69, 0.36 and 0.30 from March to November, respectively 
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[14]; and Kr is a location factor [24] related to the percentage of ground covered by the 

crop, whose value was set to Kr = 0.90. 

During the period 2015–2018, the mean yield at harvest was 22.7 t ha−1 and there was 

no significant effect of irrigation treatment on tree yield and quality. Thus, a water reduc-

tion of 39% with RDC did not penalize total fruit yield or quality. DS treatment saved 28% 

of supplied water in comparison with CTL treatment, providing similar yields. However, 

DS trees tended to produce smaller fruits [12,25]. 

2.2. Crop Water Status Measurement 

Crop water status was measured approximately every 10–15 days at 12:00–13:30 h 

(solar time) by determining midday Ψstem with a Scholander pressure chamber (Model 

3000, Soil Moisture Equipment, Santa Barbara, CA, USA), according to the methodology 

proposed by McCutchan and Shackel [26] on six trees per treatment, as described in [22]. 

To measure Ψstem, healthy mature leaves close to the trunk were chosen from the north 

quadrant in order to avoid solar exposure. The leaves were covered with aluminum foil 

and wrapped into small black polyethylene bags at least 2 h prior to measurement. 

2.3. Soil Water and Meteorological Variables Measurement 

The soil of the study site was moderately stony and had a sandy loam texture, with 

a particle size distribution of 67.5% sand, 17.5% silt and 15% clay, high organic matter 

content (6.3%) in the surface layer (5–35 cm depth), and acceptable active limestone (2.7%), 

high assimilable phosphorus (108.67 mg kg−1) and adequate exchangeable potassium (0.32 

meq 100 g−1) contents. The irrigation water came from a well and presented an average EC 

(Electrical Conductivity) of 0.8 dS m−1 at 25 °C. 

Soil volumetric water content, θV, was determined with Enviroscan (Sentek Pty. Ltd., 

Adelaide, Australia) capacitance-based profile sensors at 20 and 40 cm depths. One Envi-

roscan access tube was installed for each replicate, located 0.23 m from the irrigation emit-

ter and 1.5 m from the tree trunk. Soil matric potential, Ψm, was also measured at 25 and 

50 cm depths using Decagon MPS6 granular matrix sensors (Decagon Devices Inc., Pull-

man, WA, USA) per depth and replicate, likewise located 0.23 m from the irrigation emit-

ter. Both, θv and Ψm, were recorded with a Campbell Scientific CR1000 datalogger (Camp-

bell Scientific Inc., Logan, UT, USA), programmed to measure every 30 s and provide the 

mean value every 10 min. 

Meteorological data on air RH (Relative Humidity), cumulative rainfall, solar radia-

tion, air temperature and wind speed were provided hourly by a weather station close to 

the experimental site owned by the integral consulting service in agriculture SIAR 

(Sistema de Información Agroclimático para Regadío) [27]. In the case of solar radiation, 

wind speed, air RH and air temperature, we used hourly mean values, whereas the rain-

fall was the total accumulated every hour. From air temperature and RH data, we com-

puted VPD according to [23]. 

2.4. Dataset Arrangement 

The dataset used to train and test the crop water stress prediction models was built 

from the soil, plant and weather variables described above and recorded throughout 

2015–2018 for the different irrigation treatments. The input variables were: soil water con-

tent at 20 (θv20) and 40 cm depth (θv40); soil matric potential at 25 (Ψm25) and 50 cm depth 

(Ψm50); air RH (air_RH); solar radiation (ϕ); air temperature (air_Temp); wind speed (WS); 

VPD; rainfall; DOY (Day Of the Year) and harvest period. The output variable was crop 

water stress, either expressed as a numerical pressure Ψstem value in MPa, or as categorical 

stress levels defined on the basis of the Ψstem value and the phenological stage, depending 

on the modeling approach used. For the classification approach, we defined a binary prob-

lem with two crop water stress classes: ‘no stress’ and ‘warning stress’. The categorization 
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was based on the Ψstem value and the phenological stage according to the rule defined in 

Table 1. 

Table 1. Defined rule for binary categorization of crop water stress. 

Harvest Period Rule Category 

Pre-harvest 
Ψstem > −0.9 MPa ‘no stress’ 

Ψstem < −0.9 MPa ‘warning stress’ 

Post-harvest 
Ψstem > −1.2 MPa ‘no stress’ 

Ψstem < −1.2 MPa ‘warning stress’ 

The sampling frequency of soil and weather variables and Ψstem was uneven due to 

the limitations associated with the measurement of the latter, as described above. Thus, 

while soil variables were recorded every 10 min, weather variables were obtained every 

hour and Ψstem was measured, approximately, every 10–15 days. Taking into account that 

the dynamics of the soil–plant–atmosphere continuum involve dilated transient times and 

that a time series of soil and meteorological data is available before every measurement 

of Ψstem, we considered whether the time evolution of the physical input variables of the 

system, and more specifically the energy stored by these variables over a period of time, 

could be a relevant indicator for determination of the crop water stress. To compute the 

energy stored by the physical variables, the area under the curve described by these vari-

ables over a period of time, T, was calculated using a discrete integration method based 

on the calculation of trapezoidal areas, implemented in Matlab (version 2018a, Math-

Works, Natick, MA, USA) with the trapz function. Thus, the disparity of the sampling 

frequency was also removed. 

Intuitively, the time period considered in the integration of the input variables was a 

factor to take into account, since a priori the influence that these variables might have on 

Ψstem in the short and long term was unknown. We set days as the time unit. Considering 

D as the day for which an estimation of the tree water status was desired, we arbitrarily 

defined three time periods immediately prior to that day D: T = 3, 6 and 10 days. We de-

fined the inputs of the models as the daily integrals of each soil and weather variable for 

each T (one variable per day), hereinafter called daily dynamics, and also added their cu-

mulative values over the entire T period, hereinafter called accumulated dynamics. There-

fore, three different datasets were defined. Therefore, for instance, for the dataset associ-

ated with T = 3 days, the model input variables defined from θv20 were θv20_D1, θv20_D2, θv20_D3 

and θv20_ACCUM (T = 3), which refer to the integral of θv20 over the day before D, the second-

to-last day before D, the third-to-last day before D and the cumulative value of these, re-

spectively. 

Due to occasional sensor failure and breakdowns in the data acquisition system, sev-

eral periods of soil data were lost unevenly among the different irrigation treatments, 

making the Ψstem data obtained throughout these periods unusable for the purpose of this 

study. In addition, no data were available for one of the replications of the FMR treatment. 

In summary, the number of Ψstem measurements used in this study and, consequently, the 

number of examples in the datasets for either value of T, was 389. A summary of the dif-

ferent models’ inputs considered in the study is presented in Table 2. 

Table 2. List of models’ inputs considered in the study. 

Soil Variables Weather Variables Calendar Variables 

θv20_Di, i = 1, …, T air_RHDi, i = 1, …, T  DOY 

θv20_ACCUM(T) air_RHACCUM(T)  

θv40_Di, i = 1, …, T ϕDi, i = 1, …, T  Harvest period 

θv40_ACCUM(T) ϕACCUM(T)  

Ψm25_Di, i = 1, …, T air_TempDi, i = 1, …, T   
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Ψm25_ACCUM(T) air_TempACCUM(T)  

Ψm50_Di, i = 1, …, T WSDi, i = 1, …, T   

Ψm50_ACCUM(T) WSACCUM(T)  

 VPDDi, i = 1, …, T   

 VPDACCUM(T)  

 rainfallDi, i = 1, …, T   

 rainfallACCUM(T)  

T = 3, 6 or 10 days. 

2.5. Modeling Approaches 

In order to estimate tree water status from soil, weather and calendar data, analysis 

was carried out using two different approaches. 

2.5.1. Binary Supervised Classification of Tree Water Status 

From an agronomic point of view, it is of interest to determine whether a tree under-

goes strong variations in its water status and reaches extreme stress conditions that can 

have transformative effects on the harvest in the current year or even the following year, 

especially when it is subjected to deficit irrigation. That is to say, the interest lies in creat-

ing an alarm system to determine whether the tree will reach a severe state of water stress 

than can endanger the eventual integrity of the crop, without giving importance to the 

magnitude of the stress. A priori, a binary classification approach can be considered to be 

less stringent than a precise estimation of the value of Ψstem per se. Therefore, we consid-

ered it appropriate to assess predictive binary classification models and defined the two 

classes as ‘no stress’ and ‘warning stress’ water stress states. 

Within this approach, it should be noted that the available data give rise to an imbal-

anced binary classification problem, since only 26 out of the 389 total examples correspond 

to the ‘warning stress’ class, whereas the rest correspond to the ‘no stress’ class. In order 

to tackle this, the analysis was carried out in two different scenarios: 

1. By directly applying a ML classification technique, i.e., without taking into account 

the problem of imbalanced classes. 

2. By previously applying an oversampling technique to compensate for the sample 

size of both classes. Specifically, we applied MWMOTE (Majority Weighted Minority 

Oversampling Technique for imbalance dataset learning) [28], which is included in 

the R ‘imbalance’ package [29]. MWMOTE is a modification of the SMOTE technique 

[30], which overcomes some of its limitations when there are noisy instances, in 

which case SMOTE would generate additional noisy instances from them. 

In turn, we applied two ML classification algorithms whose effectiveness is well-

known [31–34]: RF (Random Forest) and SVM (Support Vector Machine). RF was imple-

mented with R packages caret [35] and random Forest [36], whereas for SVM, we used R 

packages caret and kernlab [37]. We applied 10-fold CV (Cross Validation) throughout the 

whole dataset with 389 examples, obtaining the average of three repetitions, for the tuning 

of the hyperparameters mtry in RF and C (Cost) in SVM, applying Radial Basis Kernel in 

the latter. The hyperparameters were optimized to maximize the accuracy of the models, 

as set by default in the R packages used. In order to test the models, once the optimized 

hyperparameter was set, we applied LOO (Leave One Out) and computed the following 

performance metrics: 

�������� =  
�� + ��

�� + �� + �� + ��
 (1) 

������ (�����������)  =  
��

�� + ��
 (2) 
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����������� =  
��

�� + ��
 (3) 

��������� =  
��

�� + ��
 (4) 

�1 ����� =  2 ×
��������� × ������

��������� + ������
 (5) 

�2 ����� =  5 ×
��������� × ������

4 × ��������� + ������
 (6) 

where TP, FP, TN and FN are True Positives, False Positives, True Negatives and False 

Negatives, respectively. 

It should be noted that in this context of imbalanced classes, the accuracy metric is 

not sufficiently representative of the actual performance of the models, as its own value is 

biased towards the majority class. Therefore, when having imbalanced classes, with the 

minority class being the one of greatest agronomic interest in this case, it is essential to 

give special attention to metrics such as recall and F2 score. Recall is a metric that provides 

relevant information when there is a high cost associated with FN [38], as in the case of 

this study. Therefore, considering that the objective of the model is to detect ‘warning 

stress’ episodes, ‘warning stress’ would be the positive class and ‘no stress’ the negative 

class. Thus, FN would imply that a ‘warning stress’ episode would be classified as ‘no 

stress’. Precision is also a metric that focuses on the minority class, but should be preferred 

when FP are critical [38]. In the case of this study, having FP to a moderate extent should 

not be an issue, since the model would err on the side of security. F1 provides a balance 

between recall and precision, whereas F2 acts similarly, but putting more attention on 

minimizing FN [39], which is more relevant for the case of the study. 

2.5.2. Ψstem Estimation with Regression Techniques 

Alternatively, the water status of the tree can be assessed from its Ψstem, which is a 

continuous variable. The estimation of Ψstem using a regression problem, although more 

informative, may be more difficult to achieve. This approach, if successful, allows for es-

timation of the tree’s water condition, as well as the magnitude of water stress and its 

evolution over time. For this reason, it is opportune to assess predictive regression mod-

els. 

In this case, we applied the same two ML techniques (RF and SVM), but for regres-

sion problems, optimizing the hyperparameters to minimize the RMSE. We evaluated the 

models using the following performance metrics: 

��(���� �����)  =  
1

�
��Ψ�����,� − Ψ����,��

�

���

 (7) 

����(���� ���� ������ �����)  =  �
1

�
��Ψ�����,� − Ψ����,��

�
�

���

 (8) 

��  =  
∑ �Ψ�����,� − Ψ������

��
���

∑ �Ψ����,� − Ψ������
��

���

 (9) 

����(���� �������� ���������� �����)  =  
100

�
� �

Ψ�����,� − Ψ����,�

Ψ����,�
�

�

���

 (10) 
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where Ψ����,� and Ψ�����,� are the measured and estimated Ψstem values of the ith exam-

ple, respectively, Ψ����� is the mean value of Ψstem in the dataset and N is the number of 

examples in the dataset, i.e., N = 389. 

Additionally, we explored the discriminatory ability of the models obtained with the 

regression approach to distinguish between ‘no stress’ and ‘warning stress’ classes by es-

tablishing specific thresholds. We evaluated this ability using ROC curves and the AUC 

(Area Under the Curve). From estimations of the stem water potential with the regression 

models, we defined several threshold values of stem water potential, such that below the 

threshold we considered the class to be ‘warning stress’ and above the threshold ‘no 

stress’. Thus, we performed a binary classification based on the estimated stem water po-

tential (Ψstem) values obtained with the regression models. By sweeping the values of the 

threshold, we computed the classification metrics recall and specificity based on the esti-

mated and actual crop water stress classes. The ROC curves were then obtained from the 

pairs of recall and specificity values. 

2.6. Summary of Data Configurations Analyzed in the Study 

In order to explore the influence that some of the input variables and the temporal 

format they are presented in can have on the estimation capabilities of the models, we 

defined several configurations. The study of these configurations allowed us to evaluate 

whether we could dispense with using either only soil moisture sensors or only soil matric 

potential sensors to account for relevant information regarding soil water; how determi-

nant it would be to take into account both the daily and accumulated dynamics for the 

input variables; or if the VPD was representative of the other weather variables. The dif-

ferent configurations studied are presented in Table 3 and the inputs referred to are those 

in Table 2. 

Table 3. Model input configurations analyzed. 

Configuration Input Variables N. of Inputs 

1 All the inputs 22 

2 All inputs but the daily dynamics 12 

3 All inputs but θv dynamics 18 

4 All inputs but the daily dynamics and θv dynamics 10 

5 All inputs but Ψm dynamics 18 

6 All inputs but the daily dynamics and Ψm dynamics 10 

7 DOY, harvest period and Ψm and VPD dynamics 8 

8 
DOY, harvest period and Ψm and VPD accumulated dy-

namics 
5 

9 DOY, harvest period and θv and VPD dynamics 8 

10 
DOY, harvest period and θv and VPD accumulated dy-

namics 
5 

3. Results and Discussion 

3.1. Binary Supervised Classification Approach 

In Tables 4 and 5, we present a selection of the classification metrics of the RF model 

obtained with the imbalanced and MWMOTE-oversampling-balanced datasets, respec-

tively. The different input configurations specified in Table 3, as well as the three time 

integration periods defined in Section 2.4, were evaluated. In order to provide a graphical 

overview of the metrics presented in Tables 4 and 5 and to facilitate easier comparison 

among the different input configurations, input time integration periods and balanced 

and imbalanced datasets, in Figure 1 we graphically present the value of the most relevant 

metrics for the case of this study. 
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Table 4. RF model classification performance metrics with the imbalanced dataset. 

T Metric Input Configuration 

  1 2 3 4 5 6 7 8 9 10 

3 days 

Accuracy 0.954 0.956 0.959 0.956 0.941 0.938 0.959 0.961 0.938 0.936 

Precision 0.750 0.800 0.727 0.696 0.600 0.625 0.727 0.720 0.571 0.538 

Recall 0.462 0.462 0.615 0.615 0.346 0.192 0.615 0.692 0.308 0.269 

Specificity 0.989 0.992 0.983 0.981 0.983 0.992 0.983 0.981 0.983 0.983 

F1 0.571 0.585 0.667 0.653 0.439 0.294 0.667 0.706 0.400 0.359 

F2 0.500 0.504 0.635 0.630 0.378 0.223 0.635 0.698 0.339 0.299 

TP 12 12 16 16 9 5 16 18 8 7 

FP 4 3 6 7 6 3 6 7 6 6 

TN 359 360 357 356 357 360 357 356 357 357 

FN 14 14 10 10 17 21 10 8 18 19 

6 days 

Accuracy 0.959 0.959 0.956 0.946 0.938 0.949 0.961 0.954 0.931 0.943 

Precision 0.778 0.857 0.737 0.647 0.625 0.650 0.789 0.722 0.400 0.643 

Recall 0.538 0.462 0.538 0.423 0.192 0.500 0.577 0.500 0.077 0.346 

Specificity 0.989 0.994 0.986 0.983 0.992 0.981 0.989 0.986 0.992 0.986 

F1 0.636 0.600 0.622 0.512 0.294 0.565 0.667 0.591 0.129 0.450 

F2 0.574 0.508 0.569 0.455 0.223 0.524 0.610 0.533 0.092 0.381 

TP 14 12 14 11 5 13 15 13 2 9 

FP 4 2 5 6 3 7 4 5 3 5 

TN 359 361 358 357 360 356 359 358 360 358 

FN 12 14 12 15 21 13 11 13 24 17 

10 days 

Accuracy 0.961 0.959 0.954 0.954 0.949 0.946 0.956 0.956 0.943 0.936 

Precision 0.789 0.778 0.700 0.682 0.750 0.647 0.737 0.696 0.700 0.529 

Recall 0.577 0.538 0.538 0.577 0.346 0.423 0.538 0.615 0.269 0.346 

Specificity 0.989 0.989 0.983 0.981 0.992 0.983 0.986 0.981 0.992 0.978 

F1 0.667 0.636 0.609 0.625 0.474 0.512 0.622 0.653 0.389 0.419 

F2 0.610 0.574 0.565 0.595 0.388 0.455 0.569 0.630 0.307 0.372 

TP 15 14 14 15 9 11 14 16 7 9 

FP 4 4 6 7 3 6 5 7 3 8 

TN 359 359 357 356 360 357 358 356 360 355 

FN 11 12 12 11 17 15 12 10 19 17 

Table 5. RF model classification performance metrics with the MWMOTE-balanced dataset. 

T Metric Input Configuration 

  1 2 3 4 5 6 7 8 9 10 

3 days 

Accuracy 0.938 0.941 0.954 0.931 0.923 0.928 0.931 0.920 0.900 0.907 

Precision 0.531 0.552 0.625 0.486 0.433 0.467 0.486 0.444 0.303 0.368 

Recall 0.654 0.615 0.769 0.654 0.500 0.538 0.692 0.769 0.385 0.538 

Specificity 0.959 0.964 0.967 0.950 0.953 0.956 0.948 0.931 0.937 0.934 

F1 0.586 0.582 0.690 0.557 0.464 0.500 0.571 0.563 0.339 0.438 

F2 0.625 0.602 0.735 0.612 0.485 0.522 0.638 0.671 0.365 0.493 

TP 17 16 20 17 13 14 18 20 10 14 

FP 15 13 12 18 17 16 19 25 23 24 

TN 348 350 351 345 346 347 344 338 340 339 

FN 9 10 6 9 13 12 8 6 16 12 

6 days 

Accuracy 0.931 0.951 0.949 0.946 0.920 0.933 0.941 0.918 0.915 0.918 

Precision 0.480 0.621 0.615 0.581 0.407 0.500 0.552 0.417 0.394 0.406 

Recall 0.462 0.692 0.615 0.692 0.423 0.538 0.615 0.577 0.500 0.500 
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Specificity 0.964 0.970 0.972 0.964 0.956 0.961 0.964 0.942 0.945 0.948 

F1 0.471 0.655 0.615 0.632 0.415 0.519 0.582 0.484 0.441 0.448 

F2 0.465 0.677 0.615 0.667 0.420 0.530 0.602 0.536 0.474 0.478 

TP 12 18 16 18 11 14 16 15 13 13 

FP 13 11 10 13 16 14 13 21 20 19 

TN 350 352 353 350 347 349 350 342 343 344 

FN 14 8 10 8 15 12 10 11 13 13 

10 days 

Accuracy 0.949 0.949 0.954 0.941 0.938 0.943 0.951 0.920 0.946 0.936 

Precision 0.600 0.600 0.667 0.552 0.536 0.571 0.630 0.442 0.581 0.515 

Recall 0.692 0.692 0.615 0.615 0.577 0.615 0.654 0.731 0.692 0.654 

Specificity 0.967 0.967 0.978 0.964 0.964 0.967 0.972 0.934 0.964 0.956 

F1 0.643 0.643 0.640 0.582 0.556 0.593 0.642 0.551 0.632 0.576 

F2 0.672 0.672 0.625 0.602 0.568 0.606 0.649 0.646 0.667 0.620 

TP 18 18 16 16 15 16 17 19 18 17 

FP 12 12 8 13 13 12 10 24 13 16 

TN 351 351 355 350 350 351 353 339 350 347 

FN 8 8 10 10 11 10 9 7 8 9 

In all cases, except for Configuration 1 and T = 6 days, it is shown that the models 

trained with oversampled datasets resulted in a clear improvement in recall compared to 

the imbalanced-dataset-based models, at the cost of a very small loss of accuracy. This 

suggests that the oversampling method employed allowed the imbalanced binary classi-

fication problem to be solved. In Figure 1 it is also shown that, generally, the models 

trained with oversampled datasets improved over those trained with imbalanced ones on 

F1 and F2 metrics, especially the latter. Furthermore, the models trained with over-

sampled datasets showed less variability in F1 and F2, with T = 10 days being the most 

stable case for all input configurations. 

 
(a) 
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(b) (c) 

Figure 1. Comparison of RF model performance metrics for the different input configurations and 

the imbalanced and oversampling-based balanced datasets for T = 3 days (a), T = 6 days (b) and T = 

10 days (c). 

For the RF model trained on the oversampled dataset for T = 10 days, we obtained an 

accuracy of 95% and recall of approximately 70% for several configurations. Even though 

the highest recall was obtained for T = 3 days in Configurations 3 and 8, T = 10 days per-

formed better on average considering all configurations. In general, with the oversampled 

dataset, the difference in classification metrics between simpler models that include only 

accumulated dynamics and their corresponding complex versions, which also include 

daily dynamics, was not significant, especially for T = 10 days. 

When weather variables were omitted, the use of the matric potential and DPV dy-

namics (configurations 7 and 8) yielded classification metrics that were among the highest, 

in many cases even higher than those of configurations that did include all weather vari-

ables. 

3.1.1. Influence of Soil Matric Potential and Soil Water Content on the Performance of  

the Models 

Input Configurations 3 through 10 allowed us to evaluate the influence of using ei-

ther soil moisture or soil matric potential sensors for tree water stress estimation. There is 

a wide variety of commercial and experimental soil moisture sensors and several meas-

urement techniques, whereas only a few models of soil matric potential sensors can be 

found, the vast majority of them having limited pressure ranges. Generally, soil moisture 

sensors are available at a lower cost, yet soil matric potential offers a range of measure-

ment of the water in soil that is available for the plant, which is a priori more relevant when 

studying soil–plant water interaction, as is the case here. 

As shown in Tables 4 and 5 and Figure 1, better classification metrics were found for 

configurations including Ψm instead of θv, even though the differences were dramatically 

reduced for T = 10 days. This suggests that the measured θv provides misleading infor-

mation to the model in the short term in comparison with Ψm. Several factors, or even a 

combination of them, could be contributing to this, such as the proper heterogeneity of 

the soil, magnified by its stony nature; the way the Enviroscan sensor was installed in the 

soil, inside an access tube, which could produce considerable soil disturbance around the 

tube wall, altering the hydraulic conductivity of the soil; or a mismatch between the En-

viroscan’s default calibration and the actual relationship between the dielectric properties 
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of the soil and its water content, which is proven to be very dependent on soil texture, 

electromagnetic frequency and soil EC [40–42] and is not linear. 

3.1.2. Comparison between RF and SVM Models 

In Table 6, we present a representative example of the classification metrics for the 

SVM model with the MWMOTE-balanced dataset and T = 10 days, and in Figure 2 the 

most descriptive metrics are compared to those obtained with the RF model under the 

same conditions. The accuracy was similar with both models for every input configura-

tion. Likewise, recall, F1 and F2 were similar for both models with most of the input con-

figurations, with marked differences shown only for Configurations 6, 8 and 9, for which 

RF proved to be a better option. In this regard, it should be noted that SVM was applied 

with radial kernel, a technique which involves non-trivial tuning of several hyperparama-

ters with a high influence on the results obtained. 

Table 6. SVM model performance metrics with the MWMOTE-balanced dataset. 

T Metric Input Configuration 

  1 2 3 4 5 6 7 8 9 10 

10 days 

Accuracy 0.969 0.946 0.951 0.943 0.931 0.920 0.951 0.905 0.923 0.925 

Precision 0.818 0.600 0.630 0.563 0.481 0.414 0.640 0.351 0.430 0.459 

Recall 0.692 0.580 0.61 0.654 0.692 0.462 0.615 0.500 0.462 0.654 

Specificity 0.989 0.972 0.972 0.961 0.961 0.953 0.975 0.934 0.956 0.945 

F1 0.750 0.588 0.642 0.621 0.491 0.436 0.627 0.413 0.444 0.540 

 F2 0.714 0.581 0.649 0.662 0.496 0.451 0.620 0.461 0.455 0.603 

 

Figure 2. Comparison of SVM and RF models’ performance metrics with different input configura-

tions for the oversampling-based balanced datasets and T = 10 days. 

3.2. Regression Approach 

For the regression approach, a higher performance was again observed with RF 

against SVM models. In Table 7, the regression performance metrics are summarized for 

RF with the different input configurations and T = 3, 6 and 10 days. In this regression 

approach, no oversampling was applied. The best goodness of fit was obtained for Con-

figurations 1, 2, 3 and 4 for all T values, which again evidences the relevance of the infor-

mation provided by the soil matric potential sensors together with the rest of the weather 

variables in the model, to the detriment of the less accurate information provided by the 
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soil moisture sensors. The regression metrics obtained for T = 10 days were higher than 

those obtained with the rest of the integration periods, which suggests that the soil and 

meteorological states of up to at least 10 previous days have influence on the tree’s water 

status. As shown in Figure 3, generally, the use of both daily and accumulated dynamics 

provided slightly higher performance than using only the accumulated dynamics. 

Table 7. RF model regression performance metrics. 

T Metric Input Configuration 

  1 2 3 4 5 6 7 8 9 10 

3 days 

ME −0.004 −0.002 −0.004 −0.002 −0.002 −0.001 −0.005 −0.002 −0.002 −0.002 

RMSE 0.122 0.120 0.123 0.122 0.131 0.131 0.130 0.132 0.137 0.139 

R2 0.791 0.799 0.790 0.792 0.760 0.762 0.765 0.756 0.738 0.731 

MAPE 12.458 12.080 12.265 11.928 13.052 12.808 12.745 12.876 13.317 13.683 

6 days 

ME −0.004 −0.002 −0.003 −0.001 −0.001 −0.002 −0.003 −0.002 −0.001 −0.002 

RMSE 0.118 0.121 0.119 0.120 0.127 0.130 0.126 0.131 0.138 0.135 

R2 0.804 0.797 0.801 0.798 0.773 0.763 0.780 0.761 0.736 0.745 

MAPE 12.223 12.005 12.159 11.883 12.865 12.843 12.554 12.705 13.533 13.493 

10 days 

ME −0.003 −0.001 −0.003 −0.002 −0.002 0.000 −0.006 −0.002 −0.001 −0.001 

RMSE 0.114 0.118 0.115 0.119 0.123 0.128 0.122 0.125 0.131 0.136 

R2 0.817 0.805 0.816 0.802 0.788 0.771 0.792 0.782 0.761 0.742 

MAPE 11.691 11.914 11.600 11.768 12.507 12.722 12.105 12.287 13.222 13.454 

 

  
(a) (b) 

Figure 3. MAPE (a) and R2 (b) regression metrics obtained with RF with the different input config-

urations for T = 3, 6 and 10 days. 

A coefficient of determination (R2) of up to 0.817 was obtained with Configuration 1 

and T = 10 days. Intrigliolo and Castel [16] obtained an R2 of 0.62 when correlating Ψm and 

Ψstem in plum trees, but no other soil or weather variables were considered in the model 

and the operating range of the Ψm sensors used was considerably more reduced than that 

of the ones used in the present study. Martí et al. [20] obtained higher R2 of up to 0.926 in 

‘Navelina’ citrus trees by using soil volumetric water content and weather data, but the 

dataset was limited to only 46 examples and only one RDI strategy was applied, thus 



Agronomy 2022, 12, 1422 14 of 20 
 

 

demonstrating an outstanding performance in a specific reduced case, but more general-

ized models are expected when broadening the experimental conditions, as in the case of 

this study. Valdés-Vela et al. [21] evaluated the approach proposed by Martí et al. [20], in 

addition to a novel fuzzy rule based approach, on data from five different irrigation treat-

ments with four replications each during five growing seasons, obtaining a RMSE of 0.141 

in the best case, whereas with Configuration 1 and T = 10 days we managed to considera-

bly reduce it to 0.114. 

To evaluate the capability for discrimination between ‘no stress’ and ‘warning stress’ 

states by applying a threshold from estimations of Ψstem obtained with RF regression mod-

els, we obtained the ROC curves for T = 3, 6 and 10 days and the different input configu-

rations. In Figure 4, the ROC curves for T = 10 days are presented as a representative ex-

ample. Generally, from the ROC curves, the objective is to maximize the AUC. In Table 8, 

the AUCs for T = 3, 6 and 10 days and the different input configurations are presented. 

For all T values, Configurations 1, 2 and 3 were the ones providing the highest discrimi-

natory ability, i.e., the greatest AUCs. However, these differences in discriminatory ability 

were not statistically significant, as indicated by the confidence intervals for the AUC pre-

sented in Table 8, i.e., for the same T value, since the intersection of all input configura-

tions asymptotic confidence intervals is not an empty set, it could not be affirmed that 

there were differences between the AUCs of the different input configurations. 

 

Figure 4. ROC curves for threshold-based binary classification from regression-estimated Ψstem for 

all input configurations and T = 10 days. 

Table 8. AUC metrics for ROC curves obtained from binary classification applied using thresholds 

on the regression-estimated Ψstem. 

T Metric Input Configuration 

  1 2 3 4 5 6 7 8 9 10 

3 days 

AUC 0.974 0.971 0.970 0.966 0.952 0.951 0.964 0.958 0.938 0.937 

Deviation error 1 0.008 0.009 0.009 0.010 0.012 0.013 0.010 0.011 0.014 0.013 

Asymptotic signification 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

95%  

asymptotic 

confidence  

interval 

Lower 

bound 
0.958 0.954 0.952 0.947 0.928 0.926 0.944 0.936 0.910 0.910 

Upper 

bound 
0.990 0.988 0.988 0.985 0.976 0.976 0.985 0.980 0.965 0.963 

6 days 
AUC 0.972 0.965 0.970 0.960 0.955 0.952 0.964 0.954 0.936 0.945 

Deviation error 1 0.009 0.010 0.009 0.010 0.012 0.012 0.011 0.012 0.014 0.013 
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Asymptotic signification 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

95%  

asymptotic 

confidence  

interval 

Lower 

bound 
0.954 0.944 0.953 0.940 0.932 0.928 0.943 0.931 0.908 0.918 

Upper 

bound 
0.990 0.985 0.988 0.981 0.978 0.976 0.985 0.978 0.964 0.971 

10 days 

AUC 0.974 0.968 0.972 0.960 0.962 0.956 0.966 0.951 0.963 0.944 

Deviation error 1 0.009 0.011 0.009 0.010 0.010 0.011 0.010 0.012 0.010 0.013 

Asymptotic signification 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

95%  

asymptotic 

confidence  

interval 

Lower 

bound 
0.957 0.947 0.955 0.940 0.941 0.934 0.946 0.927 0.943 0.918 

Upper 

bound 
0.992 0.989 0.989 0.981 0.983 0.978 0.985 0.975 0.984 0.970 

1 Under the non-parametric assumption. 2 Null hypothesis: true area = 0.5. 

As an example application of this combined regression classification approach, from 

the ROC curve corresponding to T = 10 days and Configuration 2, two interesting thresh-

olds could be found in terms of obtaining convenient recall and specificity. If the threshold 

was set at Ψstem = −1.102 MPa, so that an estimated Ψstem lower than that would be consid-

ered ‘warning stress’ and a higher one ‘no stress’, a recall of 88.5% and a specificity of 

96.1% would be obtained. In this case, the specificity would indicate the likeliness of cor-

rectly predicting a ‘no stress’ case. Both recall and specificity were substantially high, but 

considering that avoiding ‘warning stress’ episodes is critical, a more conservative thresh-

old, set at Ψstem = −0.845 MPa, would lead to a recall of 100% and a specificity of 82.9%. 

Therefore, this would avoid the risk of subjecting the tree to extreme stress by detecting 

all cases of potentially harmful stress, but at the same time it would generate an alert on a 

larger number of cases that were not really threatening, thus being on the side of safety. 

This would lead to the application of a slightly higher irrigation amount than needed by 

the crop in these cases in exchange for reducing the risk of unsafe water conditions for the 

tree. 

3.3. Classification Model Test 

To assess classification model performance in predicting the water stress status of the 

crop during an arbitrary time period, we selected the RF model trained with the over-

sampled dataset and Configuration 2 for T = 10 days. The models were tested and their 

performance metrics obtained by means of the LOO method in Section 3.1. Here, we 

graphically evaluated the predictions of the model for days for which no Ψstem measure-

ments were obtained, i.e., days from which the model was not trained. Thus, even though 

no objective metrics could be derived from this analysis, it did allow for observation of 

the consistency of predictions over time. In Figure 5, we present ‘no stress’ and ‘warning 

stress’ estimations (pink scatters) together with a reference four-level categorical stress 

defined by an agronomist (blue scatters) for irrigation treatments FMR (Figure 5a) and 

RDC-2 (Figure 5b) during 2015, as an example. These four categories of crop water stress 

were defined by an expert agronomist in a previous work [43] based on Ψstem measure-

ments, harvest period and soil and weather time series data observations from the same 

dataset used in this study. These four stress categories corresponded to: 0, absence of 

stress; 1, light stress; 2, moderate stress; and 3, severe stress. In this study, we unified the 

stress categories 0, 1 and 2 into ‘no stress’, whereas stress category 3 corresponded to 

‘warning stress’. Showing the reference stress divided into four categories in Figure 5 in-

stead of the binary reference values provides information regarding how the crop water 

stress level evolves during the transition between ‘no stress’ and ‘warning stress’. The 

binary predictions were generally consistent with the reference data. The model kept the 

estimation at ‘no stress’ while the reference crop water stress level defined by the expert 

was 0 or 1. The model ‘alerted’ of ‘warning stress’ in the transition from expert-defined 
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levels 1 to 2 and slightly fluctuated between ‘no stress’ and ‘warning stress’ during Au-

gust, when the reference stress level was mainly 2 with a single case of level 3. However, 

in both cases presented, the model predicted ‘warning stress’ several days before level 3 

was reached. 

 
(a) (b) 

Figure 5. Comparison of crop water stress level estimated with the classification RF model trained 

with Configuration 2 and T = 10 days and the reference crop water stress level defined by an expert 

agronomist in [43] for FMR (a) and RDC-2 (b) irrigation treatments during 2015. 

3.4. Regression Model Test 

A similar approach to that in the previous section was adopted with the regression 

model. Likewise, we selected the RF model trained with Configuration 2 and T = 10 days 

as the best model and predicted Ψstem for those days that it had not been empirically meas-

ured. In Figure 6, the estimated and measured Ψstem are presented for the same irrigation 

treatments and times as in Figure 5. It can be noted that the predictions on the days when 

there were no Ψstem measurements follow the patterns and trends of the measured Ψstem 

fairly. At the lower and upper bounds of the Ψstem range presented in Figure 6a for the 

FMR irrigation treatment, i.e., when water was barely and highly available for the crop, 

respectively, the regression model tended to slightly underestimate the measured Ψstem 

values. Even though this behavior is not shown in the example presented for RDC-2 in 

Figure 6b, it was generally observed across the dataset. This means that the model would 

often predict slightly worse conditions than in the worst-case scenario for the crop water 

status, thus remaining on the side of security to manage crop health and productivity. 
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(a) (b) 

Figure 6. Predictions of Ψstem obtained with the RF regression model trained with Configuration 2 

and T = 10 days and measured Ψstem in FMR (a) and RDC-2 (b) irrigation treatments during 2015. 

4. Conclusions 

In this study we evaluated the performance of ML techniques to estimate the crop 

water stress of fruit trees, focusing the analysis on 15-year-old sweet cherry trees. We 

posed a novel model input format consisting of integrating the curve described by the 

input physical variables for a time period immediately before the day the estimation was 

going to be made. Two modeling approaches were tested: (i) a binary classification ap-

proach to determine whether the crop was subjected to tolerable (‘no stress’) or severe 

(‘warning stress’) water stress conditions and (ii) a regression approach to predict the nu-

merical value of the tree stem water potential. As an alternative, this second approach was 

turned into a binary classification approach by defining a stem water potential threshold. 

The ML algorithms used were RF and SVM. We generally obtained higher performance 

with the former. 

Modeling the crop water stress with the classification approach was challenging 

when using the original dataset due to its imbalanced condition, which provided limited 

examples of the minority class. The use of the MWMOTE oversampling method was crit-

ical to enhancing the performance of the model, increasing the recall and F1 and F2 scores 

and giving rise to more homogenous performance metrics among the different input con-

figurations tested. The importance of the input configuration selected for the classification 

model was reduced as the inputs integration time increased, so that for T = 10 days, the 

performance of the model was leveled for all input configurations. This meant that the 

longer the input integration time, the lower the number of input variables needed to reach 

a similar classification performance. For the classification approach, the RF model trained 

with the oversampled dataset and Configuration 3 for T = 3 days and Configuration 2 for 

T = 10 days were the options which showed the highest performance in terms of accuracy, 

recall, and F1 and F2 scores. Generally, avoidance of soil water matric potential as an input 

to the classification model resulted in worse classification metrics, especially for reduced 

integration times (T = 3 and 6 days), and this was even more pronounced when the model 

was trained with the imbalanced dataset. Thus, soil matric potential sensors proved more 

accurate than soil moisture sensors in the estimation of crop water stress in the short term. 

Nevertheless, there is no evidence to confirm this in a generalized way. Further research 

is required with other sensors with different probe geometries and ways of installation, 

as well as with soil-specific calibration. 
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In the case of the regression approach, the input configurations including all soil and 

weather variables and those not including the soil moisture variables were the ones show-

ing the best goodness of fit, revealing again the limited information provided by the soil 

moisture sensors used. It was also demonstrated that the longer the model input integra-

tion time, the better the model fit, at least up to 10 days, obtaining a R2 of up to 0.817 with 

input Configuration 1; and that considering both daily and accumulated dynamics for the 

model inputs resulted in better estimations than using only accumulated dynamics. We 

also evidenced that from the crop stem water potential predicted with the regression 

model, an alarm system based on a Ψstem threshold could be set to inform the farmer of a 

potential crop water stress risk. Setting the threshold at Ψstem = −0.845 MPa for the RF re-

gression model, with input Configuration 2 and T = 10 days, would detect every potential 

severe crop water stress episode. 

Once the crop water stress estimation models developed in this study prove success-

ful for preventive deficit irrigation management in sweet cherry trees, future work should 

be focused on extending this method and these models to other crops. Hypothetically, 

different crops and different soil conditions would change the parameters of the models. 

Additionally, the use of different soil moisture sensors would allow for clarification of the 

actual importance of this variable in the models. 
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