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Abstract: The growing demand for organically produced vegetables requires the adoption of new
cropping systems such as strip-cropping. To counteract the additional labour mixed cropping entails,
automation and robotics play a key role. This research focuses on the development of a proof-
of-concept platform that combines optical sensors and an actuation system for targeted precision
fertilization that encircles selected plants rather than a local field area. Two sensor types are used for
the detection of a fertilisation need: a multispectral camera and light detection and ranging (LiDAR)
devices in order to acquire information on plant health status and three-dimensional characterisation.
Specific algorithms were developed to more accurately detect a change in fertilization need. An
analysis of their results yields a prescription map for automatic fertilisation through a robotic arm. The
relative location of the platform within the prescription map is essential for the correct application of
fertilizers, and is acquired through live comparison of a LiDAR pushbroom with the known 3D world
model. The geometry of each single plant is taken into account for the application of the sprayed
fertiliser. This resulted in a reliable method for the detection of delayed growth and prototype
localization within a changing natural environment without relying on external markers.

Keywords: organic farming; robot; actuation system; fertilization; LiDAR; multi-spectral camera

1. Introduction

The increase in food consumption around the world must be addressed by producers
and technicians [1,2]. However, due to conventional agricultural practices, the environmen-
tal effect associated with the use of fertilisers and herbicides has increased [3]. Fortunately,
precision agriculture allows producing higher quality products, through sustainable de-
velopment [4], the use of technological tools, sensory systems [5,6], and modern actuation
systems [7–10]. The Sureveg project [11] focuses on the application of diversified strip-
cropping systems to intensive organic vegetable cultivation, the reuse of biodegradable
waste, as well as the development of automated machinery for the management of strip-
cropping systems.

The development of agricultural robotics accumulates several decades of history;
however, only in recent years commercial prototypes have reached the market, and the real
adoption of these technologies by farmers is very small [12–14]. Robotic platforms derived
from research projects have been designed primarily to scout and sense crops [15,16] or the
soil, and perform automated weeding on arable crops [17,18], while work has also been
done also on robotic seeding [19], pesticide spraying [20], and harvesting [21], to mention
some examples. Nevertheless, as far as we know, robotic fertilisation has not been properly
studied, especially with respect to the application of organic fertilisers. Furthermore, the
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application of robotics to organic production requires a new approach, far from traditional
monocultural farming systems, to include properly the agroecological context [22].

The objectives of this work were: designing and building a platform able to locate and
characterize single plants along a crop row; extraction of plant features (health status, three-
dimensional characterization) related to plant development in order to decide whether
each single plant should be fertilised or not; and application of liquid fertiliser around
targeted plants.

For this purpose, a proof-of-concept was proposed in the form of a manually displaced
robotic prototype, containing three LiDAR sensors, a multispectral camera, and a 5 degree-
of-freedom (DOF) manipulator. A nozzle connected to a tank of liquid organic fertilizer is
used as the end-effector of the actuator.

2. Materials and Methods

The mobile platform implemented in the proof of concept of this work consists of
different subsystems: the mobile structure with wheels, the robotic arm, the sensory system,
the actuation system for the application of fertiliser, and the storage tank, as seen in Figure 1.

Agronomy 2022, 12, x FOR PEER REVIEW 2 of 15 
 

 

[21], to mention some examples. Nevertheless, as far as we know, robotic fertilisation has 
not been properly studied, especially with respect to the application of organic fertilisers. 
Furthermore, the application of robotics to organic production requires a new approach, 
far from traditional monocultural farming systems, to include properly the agroecological 
context [22]. 

The objectives of this work were: designing and building a platform able to locate 
and characterize single plants along a crop row; extraction of plant features (health status, 
three-dimensional characterization) related to plant development in order to decide 
whether each single plant should be fertilised or not; and application of liquid fertiliser 
around targeted plants. 

For this purpose, a proof-of-concept was proposed in the form of a manually dis-
placed robotic prototype, containing three LiDAR sensors, a multispectral camera, and a 
5 degree-of-freedom (DOF) manipulator. A nozzle connected to a tank of liquid organic 
fertilizer is used as the end-effector of the actuator. 

2. Materials and Methods 
The mobile platform implemented in the proof of concept of this work consists of 

different subsystems: the mobile structure with wheels, the robotic arm, the sensory sys-
tem, the actuation system for the application of fertiliser, and the storage tank, as seen in 
Figure 1. 

  
(a) (b) 

Figure 1. Frontal view (b) and rear of the platform (a), the yellow circles show the 3 LiDAR sensors 
and the red circle indicates the multispectral camera. 

2.1. Mobile Structure 
The mobile structure that supports the robot and sensory systems—actuation, was 

built with aluminium bars (Bosch Rexroth 45 × 45) and four wheels, according to previ-
ously established requirements in the framework of an organic stripped crop. The frame 
supports the different elements and does not rely on an autonomous traction system. Fig-
ure 1 shows the structure implemented with the sensory system indicated with coloured 
circles. At his stage of the work, displacement of the rig was performed manually, as au-
tomatic displacement is solved in many other prototypes, and the authors wanted to focus 
this research on sensing and actuation. 

2.2. Sensory System 
The sensory system relies mainly on two types of sensors: a multispectral camera and 

3 LiDAR (light detection and ranging) devices. They were selected to provide combined 

Figure 1. Frontal view (b) and rear of the platform (a), the yellow circles show the 3 LiDAR sensors
and the red circle indicates the multispectral camera.

2.1. Mobile Structure

The mobile structure that supports the robot and sensory systems—actuation, was
built with aluminium bars (Bosch Rexroth 45× 45) and four wheels, according to previously
established requirements in the framework of an organic stripped crop. The frame supports
the different elements and does not rely on an autonomous traction system. Figure 1
shows the structure implemented with the sensory system indicated with coloured circles.
At his stage of the work, displacement of the rig was performed manually, as automatic
displacement is solved in many other prototypes, and the authors wanted to focus this
research on sensing and actuation.

2.2. Sensory System

The sensory system relies mainly on two types of sensors: a multispectral camera and
3 LiDAR (light detection and ranging) devices. They were selected to provide combined
information on vegetation health status (camera) and three-dimensional (3D) information
on plant development (LiDAR). The multispectral camera (model Sequoia; Parrot Drones
SAS, France) is used to obtain multispectral images and compute vegetation indices of
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plants. This camera was installed in the centre of the cart frame, to take pictures of the
target plants from the zenith perspective. The Parrot Sequoia camera produces each image
five times: 1.2 Mpixel images of green, red, red-edge, near-infrared channels, as well as a
combined high-resolution (16 Mpixel, 10 bit) red, green, and blue (RGB) image. Each of
the spectral images is obtained through a different lens. As a result, the images themselves
show a slight translation with respect to one another. This effect is negligible when this
type of camera is used onboard a drone, but in this case pictures were registered within a
1 m range to the plants. Image translation was assessed and corrected for automatically
using the function ‘imgregtform’ in Matlab during image preprocessing.

The time lapse setting during image acquisition (3 s) in combination with a forward
speed (0.55 m/s) generates a series of partially overlapping images that were stitched
together using the software ‘Hugin Panorama’, as it is open source and allows for man-
ual manipulation of automatically extracted features so that the exact same mosaicking
operations can subsequently be applied to the other spectral bands. With the corrected mo-
saicked images, a series of vegetation indices were calculated for the entire field. The most
optimal vegetation index can depend on the crop type and cultivar and can be optimised
regarding the specific characteristics of the crops and soil spectra present in a certain field.
In this work, results using the well-known normalized difference vegetation index (NDVI)
are presented.

Furthermore, 3D data was gathered using 3 LiDAR devices (model LMS-111; SICK
AG, Waldkirch, Germany) with the aim to create models of soil and plants from multiple
perspectives. Each LiDAR uses an infrared rotating laser pulse, where the time of flight
between emission and reflection in each rotational increment is used to calculate the
distance of the sensor to any object. The reflectance intensity of the beam was found to
not provide additional information in this setting and was ignored. From the cylindrical
coordinates, each distance was converted to a Cartesian coordinate system, where the
inclination of the sensor and the odometry data of the cart wheels were combined to
provide the dimension perpendicular to the plane of rotation of the laser. This results in
a 3D point cloud per LiDAR, describing the same crop row. These point clouds provide
complementary information inherent to their varying angles and installation heights,
where the majority of the surfaces are picked up by all LiDAR devices. This overlap
was used to merge the point clouds into a high-resolution single point cloud, describing
all surfaces within a crop row, in other words, both plant matter and non-plant matter
such as soil. Besides information on crop architecture, the combined 3D world model
facilitates motion planning of the robotic arm and the application of treatments in the
adequate locations. Figure 1 shows the three sensor locations on the mobile structure:
frontal 45-degree pushbroom, vertical (zenith view), and horizontal (across the row).

2.3. Sensing Algorithms

The sensing algorithms can be divided into two subcategories: multispectral sensing
using the multi-spectral camera (aimed at searching for differences in plant health) and
3D sensing using the LiDAR (focused on detecting growth volume differences). Also, 3D
information of crop rows will be used for the localization of the robot and the planification
of the arm movement. Building the proper algorithms to locate and characterise single
plants was an iterative process parallel to the data acquisition procedure; this is why more
details about the sensing models built are included in the Results section, in order to be
commented along with the findings.

2.4. Robotic Arm

The robotic arm acquired for the prototype (Robolink Igus CPR RL-DC-5 STEP RL-
D-RBT-5532S-BF) has the following characteristics: a load capacity of 1.5 kg, 5 degrees of
freedom, IP54 protection, and is able to follow point-to-point trajectories. The robot has a
reach of 790 mm with a precision of 1 mm. This actuator weighs around 20 kg, including
the electromechanical components and excluding the control and power elements.
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2.5. Fertilization System

The implemented actuation system consists of a tank containing a liquid treatment
(Figure 2, highlighted in red), a hose from the tank to the robot tooltip, and a nozzle at
the end to spray the liquid (Figure 2, indicated in yellow). In this way, the robotic arm
can apply the liquid treatment in the desired position and orientation (on the soil around
each plant), as shown in Figure 2. The actuation of the nozzle is carried out by means of a
electronically controlled hydraulic motor.

Agronomy 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 

2.4. Robotic Arm 
The robotic arm acquired for the prototype (Robolink Igus CPR RL-DC-5 STEP RL-

D-RBT-5532S-BF) has the following characteristics: a load capacity of 1.5 kg, 5 degrees of 
freedom, IP54 protection, and is able to follow point-to-point trajectories. The robot has a 
reach of 790 millimetres with a precision of 1 mm. This actuator weighs around 20 kg, 
including the electromechanical components and excluding the control and power ele-
ments.  

2.5. Fertilization System 
The implemented actuation system consists of a tank containing a liquid treatment 

(Figure 2, highlighted in red), a hose from the tank to the robot tooltip, and a nozzle at the 
end to spray the liquid (Figure 2, indicated in yellow). In this way, the robotic arm can 
apply the liquid treatment in the desired position and orientation (on the soil around each 
plant), as shown in Figure 2. The actuation of the nozzle is carried out by means of a elec-
tronically controlled hydraulic motor. 

 
Figure 2. Robotic fertilization prototype in the cultivation row. Red: tank with liquid treatment, 
yellow: nozzle. 

2.6. Experimental Field and Crop 
The field was located in ETSIAAB—UPM (40°26′33.1″ N, 3°43′41.9″ W) and consisted 

of a 50 m × 15 m test plot, on sandy-loamy soil, where organically fertilised crop strips 
were established and monitored during the growing season. The soil profile is very irreg-
ular since it has its origin in materials from construction waste. However, the phreatic 
level is high due to the proximity of the Manzanares river; in addition, crops were irri-
gated when needed using drip irrigation. 

Regarding the fertiliser, a pre-crop application of 1 ton/ha of mature compost made 
from pig slurry and litter straw was applied and mixed with the soil, only to half of the 
field. In this way, the eastern part of each crop row (25 m) received more fertiliser than 
the western half, in order to create nutrient differences in the field before transplantation, 
which could generate later variances in early crop development, to be detected by the 
sensorized platform. 

Subsequent robotic applications were carried out using a commercial water-soluble 
liquid fertilizer (3% nitrogen, 5% of potassium, 14.5% organic carbon) obtained from beet 
vinasse and phosphorite, with a density of 1.2 g/cm3 and registered for use in organic 
production (COMPO GmbH, Germany). A dose of 10 mL (after dilution of 10 mL of the 
commercial product per 1 L of water) was sprayed to the soil around each targeted plant 
when the algorithm so decided. The aim of this work was to demonstrate the capability 
of the robotic platform to locate individual plants, characterize them, and apply liquid 
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yellow: nozzle.

2.6. Experimental Field and Crop

The field was located in ETSIAAB—UPM (40◦26′33.1′′ N, 3◦43′41.9′′ W) and consisted
of a 50 m× 15 m test plot, on sandy-loamy soil, where organically fertilised crop strips were
established and monitored during the growing season. The soil profile is very irregular
since it has its origin in materials from construction waste. However, the phreatic level is
high due to the proximity of the Manzanares river; in addition, crops were irrigated when
needed using drip irrigation.

Regarding the fertiliser, a pre-crop application of 1 ton/ha of mature compost made
from pig slurry and litter straw was applied and mixed with the soil, only to half of the
field. In this way, the eastern part of each crop row (25 m) received more fertiliser than
the western half, in order to create nutrient differences in the field before transplantation,
which could generate later variances in early crop development, to be detected by the
sensorized platform.

Subsequent robotic applications were carried out using a commercial water-soluble
liquid fertilizer (3% nitrogen, 5% of potassium, 14.5% organic carbon) obtained from beet
vinasse and phosphorite, with a density of 1.2 g/cm3 and registered for use in organic
production (COMPO GmbH, Germany). A dose of 10 mL (after dilution of 10 mL of the
commercial product per 1 L of water) was sprayed to the soil around each targeted plant
when the algorithm so decided. The aim of this work was to demonstrate the capability
of the robotic platform to locate individual plants, characterize them, and apply liquid
fertiliser if needed, but not to precisely follow nutritional needs along the crop development
or maximize crop production, which could be done in further research.
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In this work, only results concerning head cabbage (Brassica oleracea var. capitata)
and cauliflower (Brassica oleracea var. botrytis) are presented, although data was collected
also on rows of potatoes, faba beans, tomatoes, leaks and pumpkins; these datasets are
being processed for validation purposes.

Field data collection was performed on a weekly basis over crops to track plant growth,
from the transplantation date until the time that moving the sensorized platform was no
longer possible due to large plant development. Two seasons of crop development were
recorded, 2019 and 2020. To register reference data to serve as ground truth, after each
weekly data acquisition over the crop rows, a manual measurement of individual plant
heights was performed.

3. Results and Discussion

The results are discussed per objective, where multispectral and 3D sensing are first
covered separately, after which the benefits and drawbacks of their combination are re-
viewed. For the subsequent actuation both the geometric properties of the vegetation are
relevant, as well as the relative position of the platform with respect to the 3D world map.

3.1. Multi-Spectral Sensing

In the corrected mosaicked images of the crop rows, the NDVI vegetation index
was used to separate plant matter from soil, as to well as assess the health of the plant. In
Figure 3, the distribution of the vegetation index values in an entire row is shown in the form
of a histogram, clearly revealing the three types of areas present in the image. Regarding
the NDVI values, three Gaussian distributions can be recognised: a wide one around low
(negative) values for soil; a narrow one around 0 describing the stark shadows, i.e., areas
where all spectral reflectance values were very small; and a wide one of positive NDVI
values describing the plant matter. The relative heights of these three peaks depend on the
number of plants with respect to the amount of visible soil, as well as the lighting conditions.
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Figure 3. Distribution of NDVI values in a cabbage row, and its correspondence with
histogram information.

To facilitate the identification of the optimal cut-off value to define plant matter, the
vegetation index values were passed through a Gaussian filter, further separating the peaks
in the histogram, revealing a minimum between the plant matter pixels and the remaining
pixels that were not present in the original distribution, as shown in Figure 4. Using
Otsu’s method, the cut-off value was identified that minimizes variance in each of the pixel
populations (plant matter versus non-plant matter).
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After applying the Otsu procedure, the range of the filtered image no longer cor-
responds to the [−1, 1] range of the original NDVI index. The altered values reveal a
minimum between plant matter and the non-plant matter, as obtained by the Otsu method,
indicated in the histogram with a red vertical line in Figure 4. For each cluster resulting
in the new image, a range of characteristics can be considered, such as mean value of the
vegetation index, distribution of the vegetation index, area of the cluster, or perimeter.
In this proof-of-concept, the mean value within a cluster was used. This value is then
compared with the mean NDVI values of the other groups within the same row to identify
the need for fertilization on a single crop scale.

3.2. Three-Dimensional (3D) Sensing

An example of the raw data received from the three LiDARs is included in Figure 5.
A stake can be seen marking the beginning of the area of interest around displacement
x = 4000 and it was used to determine the translation between the different point clouds.
First, the pushbroom LiDAR included in the top graph registers significantly more fluc-
tuation in terrain compared to the other two. This could be due to the subtle changes in
inclination of the lightweight cart while traveling the row, which are amplified more in the
pushbroom measurement as the registered points are further away. Second, when looking
at specific cabbage heads such as the ones at x = 3500 and x = 5000 in the lower graphs,
a displacement to the right (in the direction of movement) can be seen in the uppermost
graph, which is not present in the other cabbage heads or the wooden stake. Third, the
wooden stake is barely detected by the vertical LiDAR, which can be explained by the
stake aligning with the laser beam in that orientation. Finally, the vertical and lateral
LiDAR will suffer gaps or cart inclinations while scanning the same cabbage, whereas the
pushbroom LiDAR will be looking ahead to the upcoming crops, which explains the near
perfect alignment in the lower two graphs.
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As no colour or spectral information is retained, only three-dimensional information is
present in this type of point cloud, so the points needed to be identified as crop or non-crop
purely based on their location and height. Especially for smaller plants, the coarseness
of the terrain yields height data that are comparable to the height data of lower hanging
leaves. This means that an identification based on only height data was not possible.

To overcome this, each point was assigned a value J based on the heights of all points
within a 150 mm radius, where the closest points are considered more heavily than those
at the border of this sphere. The resulting value is averaged over the number of points,
as this yields a higher contrast in the histogram of all values of J, i.e., J is an averaged
sum of height squared over distance. The number of points that are present within this
radius varies as some areas are detected by multiple LiDAR devices, whereas other areas
only have a direct line of sight, for example the low-mounted lateral LiDAR. Equidistant
sampling of the merged point clouds at 1.5 cm intervals resolves this imbalance, while also
reducing the calculation time of the averaged sum.

Based on the histogram of all J values of the downsampled merged point cloud several
properties can be automatically detected, such as steepest decline in the bin count as
proposed in [23]. This histogram edge is close to the upper edge of the naturally distributed
J values of the soil points, but results in a conservative estimation of the soil. However,
through Otsu’s method, the vegetation cloud estimation was too conservative. Thus, the
local minimum of the J histogram with the highest prominence value, bounded by these
lower and upper limits, yielded the best bisection of the point cloud into vegetation and
soil throughout different stages of the growing season, as assessed visually.

Points with a value of J higher than this threshold value, the previously described local
minimum, are considered plant points, and lower values are considered non-plant matter.
This algorithm allows low leaves and protruding surfaces such as rocks to be identified
correctly, despite the rock points possibly having higher altitude values than those of the
low leaf, as shown in Figure 6.
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by the values of the function J.

The resulting merged 3D point cloud containing only plant points can subsequently
be cleaned, where any singular noise points are removed. Then, a clustering procedure is
applied on the point clouds using a Euclidean distance of 75 points, in order to singularize
and label each single plant. Examples of these results are shown in Figure 7A,B, for a row
of cabbages and cauliflowers, respectively. The western half (left) of the row was fertilized
less than the eastern half (right) prior to the establishment of the plant.

For each of the identified clusters, a range of characteristics was calculated: surface area
of covered soil, height, cluster volume, cluster surface to volume ratio, and distribution of J
values. These metrics were compared between crops that had received different fertilizer
doses and were combined later with VI data to decide on single-plant fertilization.
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Figure 7. Example of a cabbage row in the middle of the first season (Part (A)) and a cauliflower
row at the start of the second season (Part (B)). Depicted are the points of the downsampled merged
point cloud that exceed the defined threshold value of J (above), clusters based on Euclidean distance
(middle), cleaned and labelled (bottom). The western half (left) is fertilised less than the eastern
half (right).

As a validation of results, reference data from plant heights was compared with
LiDAR data. Identification of where in the cluster one crop finishes and the other starts
was not always possible, especially for the larger crops in the second half of the growing
season. Crop centers were estimated based on the shape of the cluster and continuity
between measurements. For cauliflower, the amount of manually documented heights was
consistent from week to week, and the comparison between manual and 3D cluster heights
is included in Figure 8. Each measurement is represented by a colour of increasing intensity
and contains 19 data points, where green and blue indicate the first and second seasons,
respectively. The correlation reached an R of 0.8; the shift from the perfect correlation can
be explained by a tendency to overestimation using a ruler or by a local elevation in soil
height that is not taken into account when estimating the cluster height.
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The evolution of the two aforementioned vegetation metrics over time is included
in Figure 9 for red cabbages, along with a visualization of the definition of both metrics:
cluster volume and covered soil surface. These values represent the total of all clusters with
the same fertilization strategy, after filtering for cluster size as explained in the previous
section. This yields two quantifiable measures per crop type per half of the field. The 13
red cabbage measurements collected during the weeks after transplantation (WAT) (noted
W1, W2, etc. in the figure) illustrate the volatility of the volume metric, with respect to the
projected surface coverage. Along the 42 measurements, the volume of the eastern half
is less than the volume in the western half for only five measurements, 2 of which are in
cabbages in the second season. In the second season, the vegetation and, therefore, the
clusters are smaller than anywhere in the first season, and the values of both field halves lie
very close together in all of the measurements of that year. For the less erratic soil surface
area, 4 of the 42 measurements indicate that the covered surface is smaller on the eastern
half than on the western half, 3 of which are in the second, less reliable, season. The poor
relation among pre-crop fertilization and plant development in the western/eastern part of
the field could be due to several causes, such as irregular soil profile, local differences is soil
nutrition or individual plat stress. However, single plant volumes and projected surfaces
can be satisfactorily tracked during crop development.

In Figure 10 the total volumes of vegetation per running meter per fertilization strategy
are shown for three types of crops. Here, the yellow lines correspond to the solid lines
in Figure 9. The relative size and thus the significance of the results of the second season
can clearly be seen in contrast to the first season, as the crops were transplanted late and
removed prematurely, as a plague of rabbits invaded the field. The difference between
fertilization strategies is consistently registered from about 3 WAT onward.
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egy are shown for three types of crops. Here, the yellow lines correspond to the solid lines 
in Figure 9. The relative size and thus the significance of the results of the second season 
can clearly be seen in contrast to the first season, as the crops were transplanted late and 
removed prematurely, as a plague of rabbits invaded the field. The difference between 
fertilization strategies is consistently registered from about 3 WAT onward. 

Figure 9. (A) Example of a cabbage cluster based on LiDAR data (left) alongside the definition of its
volume (solid green) and projected soil surface (shaded area with dash dotted green border). (B) The
same green lines are used to indicate the total of all cluster volumes (solid, left y-axis) and surfaces
(dash dotted, right y-axis) of the eastern (green) and western (red) field half over time.

3.3. Combination of Multi-Spectral and Three-Dimensional Analysis

The identified vegetation based on the data of both types of sensors can be compared
through their surface area, using the projected area of the three-dimensional vegetation
point clouds onto the horizontal plane. The resulting areas of several crop rows with
varying fertilization dosage, measured throughout two growing seasons, showed great
consistency between each of the sensor results, yielding an R2 of 0.88.

The multispectral sensing algorithm is able to detect any individual plant with either
delayed size in terms of covered soil or altered vegetation index values. The 3D sensing
algorithm also identifies delayed development in terms of volume or height. This means
that a combination of both sensors was preferred to determine the fertilisation necessity
of individual plants. This fertilisation necessity was translated into a binary prescription
map, where each individual plant in need of additional fertilisation was marked prior
to application. A detailed description of the decision-making algorithm and how it was
implemented in the robotic actuator control system can be found in [24].

Besides this prescription map, the data of the 3D algorithm was used as a reference
world model for the actuation algorithms, which serves both to locate the cart in the field
and to plan the movements of the robotic arm as discussed below.
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Figure 10. Volume evolution per crop type and field half. The yellow lines (red cabbage) coincide
with the solid lines (volume) in Figure 9. The eastern half (dashed) received more fertiliser than the
western half (solid), across all crop types.

The drawbacks and potential pitfalls of these algorithms are the detectability of newly
transplanted crops (under 5 cm of height), as both sensors and would not be treated. As
the field is prepared prior to transplantation and all individuals will need fertilizer, this
does not pose a large problem. The distance between plants is another aspect that should
be considered, as plants that overlap cannot be separated by either of the proposed sensing
algorithms. This should be taken into account when assessing the results once the plants
reach a certain growth stage where this starts to occur. Finally, the algorithms now assume
all plant matter to belong to desired crops; in other words weeds could mistakenly be
identified as individuals with a delayed development when compared to the plants of the
desired crop in that row. Crop-type identification can be added to these algorithms in the
future, but was not considered in this proof of concept.

3.4. Actuation
3.4.1. Geometrical Characterisation

The clusters extracted in the previous section served as a reference to establish a
path for the movements of the robotic arm to apply the liquid treatment. The parameters
extracted are shown in Figure 11 in the form of centers and defined edges. Colours indicate
each identified group. For the processing of the clusters, the unsupervised learning process
K-means has been used, where the clusters are grouped with labels “cluster 1–10”.
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Figure 11. K-means classification and geometrical parameters extraction from a row crop.

3.4.2. Localisation

One of the essential aspects during the application of fertiliser with the robotic arm
was to locate the robotic platform within the crop at all times without using an external
positioning device (such as GPS) or any reference markers. The developed method takes
the previously developed point cloud, captured with 3 LiDAR devices, creating a G-PC
(Global Point Cloud) as well as a second real-time cloud L-PC (Local Point Cloud) of only
1 LiDAR, concerning the sections of G-PC that the platform reads while moving forward
(being initially small).

In Figure 12 the correspondence of L-PC points with G-PC points is indicated with red
lines for two examples of L-PCs of different sizes. This establishes the position of the local
cloud within the known environment and the position of the robotic platform within the
crop row.
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Figure 12. Matching key points from the L-PC ((upper)—two captured partial sections) to the
G-PC (lower).

Figure 13 shows the perception system (G-PC and robot visualisation), where the
point cloud and the estimated position of the platform are shown for each instance. As the
robotic platform progresses from point 1 to point 7, the L-PC accumulates earlier values,
continuously improves the location estimation.

In Figure 14, a box plot shows the decreasing localisation error found at each of the
positions indicated in Figure 13. Initially, the average error was around 12 mm; which
reduces to approximately 0.1% at the end of a row.
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while the platform was moving over the crop row.

This initial positioning error did not affect the fertilization, because a 5 cm was added
to the radius defined in the extraction of geometric parameters extraction to encompass the
plant and define the passage zone of the arm trajectory, thus avoiding the application of
the fertiliser directly on the plant and damaging it. As the platform progresses, new points
are added to the L-PC, allowing for more key points and improved localisation, resulting
in errors with an average of 5 mm.

4. Conclusions

A proof-of-concept prototype was built, as a sensing system composed of LiDAR
sensors, a multispectral camera mounted on a mobile platform equipped with an odometry
sensor, and an actuation system based on a robotic arm and a pumping system for liquid
fertiliser attached to the same platform. The sensing system gathers information from the
plants in the row about crop volume (LiDAR), crop health (multispectral images), and
plant position (point cloud for navigation). Then a decision about the need for fertilization
(yes/no) is made and the actuation system applies liquid fertiliser to the soil around the
plant avoiding contact with the crop.

Algorithms created for plant detection are able to identify correctly single plants
and to perform calculations on them, such as NDVI of foliar surfaces and morphological
measurements (plant volume, height, soil surface covered). The validation of manually
measured plant heights reached R = 0.8. At the beginning of the crop season, the newly
transplanted crops provide very little height difference when compared to the coarseness
of the soil, which is why when plant height is below 5 cm, only the use of the multispectral
algorithms is recommended. On the other hand, at the end of the season, when the leaves
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overlap, the actual algorithms fail to separate individual plants, and this must be solved
in future research. Regarding the location of the platform, even though it was operated
manually, the developed algorithm was able to recognize the three-dimensional models
constructed using data from previous passes to calculate the exact position of the platform,
and to plan and execute the fertiliser application without damaging the plants. Localisation
errors ranged from 15 mm at the beginning of each row and converged rapidly to less than
5 mm.

From a proof-of-concept point of view, the proposed objectives were met, as singled
plants were located and characterized, and fertilization actuation was carried out on
targeted specimens.

Future work includes expansion of this research to other (strip-cropping) vegetable
crops, comparing these results with other sensors, and expanding the research from fertil-
ization needs to other interventions, e.g., pest detection and mitigation.
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