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Abstract: Soil mulching has advantages for horticultural crops, from both agronomic and phytosan-
itary points of view. The most common material used is polyethylene (PE); however, promising
alternatives from the circular economy exist, such as straw (ST) and biodegradable biopolymers
(BBs). The effect of the three aforementioned mulches was evaluated and compared to non-mulched
soil in a Mediterranean greenhouse for two years of an organic tomato crop. Physical (moisture
and temperature) and physicochemical properties of the soil, in addition to crop yield and the effect
of the mulches on weed control, were assessed. Additionally, the deterioration of plastic mulches
was assessed. The temperature was higher in the mulched soils, but few differences were found
between soil and BB at the end of the second cycle. Evaporation was lower in mulched soil, in general,
without big differences among the types of mulch. Crop yield did not show differences. At the
end of the trials, of the 16 physicochemical variables evaluated, only a slight increase in pH was
detected in the ST-mulched plots. BB film degradation reached 5.6% and 6.7% of the total surface at
the end of the first and second cycles, respectively. Weeds were equally limited for PE, BB, and ST
mulches, but cereal seeds contained within the straw germinated randomly all over the crop cycle.
In summary, straw and biodegradable plastic mulches offered the same benefits as conventional PE
mulch. Therefore, they can be considered a feasible and more sustainable option, in addition to being
consistent with the principles of the bioeconomy.

Keywords: biodegradable biopolymer; mulching; polyethylene film; straw

1. Introduction

The global demand for plastics and their production has increased in recent decades
and is envisaged to further increase in the future, intensifying the impact of plastic on the
environment and human health [1]. It is estimated that 79% of plastic waste has ended up
in landfills or the natural environment [2]. Thus, the prevention and minimization of waste
of petroleum-based plastic materials is currently considered one of the main challenges of
today’s societies, and reducing plastic pollution has been pushed to the top of the global
policy agenda [3]. As an example, in 2018, the European Commission adopted the European
Strategy for Plastics in a Circular Economy [4].

Agriculture generates a large amount of plastic waste worldwide, both in open-field
and greenhouse production systems. Plastics provide many services in modern agriculture,
where they are mostly used in the form of film. Within the Mediterranean basin, in
the south-east of Spain, the largest concentration of greenhouses in the world is located;
specifically, the Almería greenhouse surface area reached 32,554 ha in 2021 [5]. Plastic
used as a protection material by greenhouses in Almería represents approximately 6% of
the total volume of waste produced (the remaining 94% is organic residues), and plastic
mulch (4900 tons per year) represents 3% of the inorganic waste produced [6]. The current
system of external management of plastic waste and by-products does not offer a complete
solution to the needs of the sector [7].
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Plastic mulch is widely used for intensive vegetable production systems, as it is
an effective practice for increasing soil temperature, increasing water use efficiency, de-
creasing weed growth, and minimizing nutrient lixiviation [8–11]. In addition, the use
of plastic mulch is reported to increase energy efficiency in greenhouses with passive air
conditioning [12], in addition to being an efficient tool for earlier production and improving
fruit yield and quality [13,14]. However, polyethylene, the main material of plastic mulches,
is a polluting and poorly degradable material. In addition, for polyethylene mulch film
fragments, exposure to sunlight, moisture, and adverse environmental conditions make its
complete removal from farmland difficult, leading to a gradual but significant accumulation
of microplastics in soils, which negatively impacts soil health and the environment [15–18].
Furthermore, although in many cases the recycling of polyethylene mulch is insufficient,
in other cases the presence of highly persistent active compounds from agrochemicals
makes the material unattractive for recycling at the end of its useful life [19–21]. For these
reasons, polyethylene plastic mulch is a major issue in agriculture [22]. As biodegradable
materials do not produce wastes that require disposal, they may represent a sustainable
ecological alternative to polyethylene films. Biodegradable plastic mulches (e.g., biopoly-
mers), paper-based mulches, and plant debris (e.g., dried cereals straw) are promising
alternatives to alleviate polyethylene plastic mulch pollution [9,11,23]. In addition, at the
end of their life, these biodegradable materials can be integrated directly into the soil, where
microorganisms transform them into carbon dioxide or methane, water, and biomass, with
direct effects on soil properties [9,24,25], making them consistent with the principles of a
circular economy.

As there is an urgent need to find alternatives to the use of polyethylene plastic mulch
that are sustainable in terms of the environment and human health, and that are viable
for use in greenhouse vegetable production systems, it is necessary to study different
biodegradable mulches to assess their impact on the main agronomic parameters that
have a direct impact on horticultural crops. In this study, the effect of two biodegradable
mulches (biodegradable plastic mulch and dried barley straw) was evaluated and compared
to polyethylene plastic mulch and non-mulched soil in a Mediterranean greenhouse for
two years of growth of an organic tomato crop. The objective was to assess the effect of
these mulches on the physical (moisture and temperature) and physicochemical properties
of the soil, in addition to crop yield and weed control. Additionally, the deterioration of
plastic mulches (polyethylene and biodegradable plastic mulches) was assessed.

2. Materials and Methods
2.1. Location and Experimental Greenhouse

The trials were conducted for two consecutive years (2019/2020 and 2020/2021 sea-
sons) at the Andalusian Institute for Research and Training in Agriculture and Fisheries
(IFAPA) in Almería (36◦48′ N, 2◦41′ W; altitude 142 m), the biggest Mediterranean green-
house cropping region, and the main organic winter tomato production area in Europe.
The local climate is Mediterranean arid, with mild winters and hot, rainless summers. The
experimental greenhouse was representative of the “raspa y amagado” Mediterranean
greenhouse [26], and has been certified for organic production by the Andalusian Organic
Farming Committee (C.A.A.E.) since 2006. The maximum and minimum heights in the
greenhouse were 3.9 and 2.3 m, respectively. The greenhouse area was 832 m2, and it
had a west–east orientation, with crops rows aligned north–south. The irrigation system
was automated, with droppers located at 0.5 m intervals, and a discharge rate of 3 L h−1.
The greenhouse had a 200 µm thick polyethylene cover, with theoretical transmissivity
of 90% and thermal properties, and zenithal and lateral ventilation with an anti-aphid
mesh (20 × 10 threads/cm2). Two zenithal windows were east-facing and two west-facing,
while the lateral windows were located on all four sides of the greenhouse. Similarly,
the lateral and zenithal windows had deflectors in their lower part, which improves air
circulation in the area occupied by the crop [27].
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2.2. Plant Material and Cropping Details

Two subsequent winter cycles of tomato (Solanum lycopersicum L.) “Valenciano type”
plants, grafted onto Armstrong® rootstock (Syngenta, Switzerland), were grown in the
same greenhouse in the seasons 2019/20 and 2020/21 (i.e., Year 1 and Year 2, respectively).
Four-week-old tomato plants were planted on 16 September 2019 and 25 September 2020,
in Years 1 and 2, respectively. In both years, prior to planting, in July, fresh sheep manure
was buried uniformly throughout the greenhouse at a rate of 4 kg m−2. With the aim of
favoring the manure’s decomposition, the soil was covered with transparent polyethylene
film (30 µm, TIF Desinfección DS®, Sotrafa, Spain) for a period of two months, after a
single irrigation application to reach saturation at a 15 cm depth, which is known as
the soil biosolarization technique. Planting took place two days after removing the film.
Crop growth occurred on two axes, considering each as an individual plant for sampling
purposes, thus resulting in an overall density of 2 plants/m2. Tomato vines were vertically
trained with polypropylene strings, and pruned and managed according to established
local practices. For correct and optimal pollination, bumblebees (Bombus terrestris) were
used. Crop management and pest control were guaranteed by adhering to Regulation
(EU) 2018/848 on organic production. Irrigation was based on the moisture content of
the soil in the reference treatment (–15 to –10 kPa), and a nutrient solution was supplied
according to the crop phenological stage and adjusted to the Commission Implementing
Regulation (EU) 2021/1165 on products and substances for use in organic production. All
experimental plots were fertigated in the same manner in each of the experimental years
(see Supplementary Materials Table S1).

2.3. Soil Mulches Materials and Experimental Design

The treatments consisted of different soil mulch materials: (i) dried barley straw
applied at 1.21 kg m−2, (ii) black polyethylene film 37.5 µm thick (SOTRAFILM NG, Sotrafa,
Spain), (iii) black biodegradable biopolymer plastic film 18 µm thick (SOTRAFILM NG
BIO, Sotrafa, Spain), and (iv) non-mulched soil as a control treatment. Each treatment was
replicated in three different plots (n = 3), with a randomized complete block design. The
factor was the type of mulching (four levels). The 12 experimental plots consisted of 33 m2

(i.e., 66 plants) (Figure 1). At the end of the crop season in Year 1, the two biodegradable
materials (dried barley straw and black biodegradable biopolymer plastic film) were buried
to favor their biodegradation.
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2.4. Analyzed Variables
2.4.1. Soil Matric Potential

The soil moisture measurements of the experimental plots were carried out with
tensiometers (Irrometer, Riverside, CA, USA) installed at a depth of 15 cm, and located at
the same distance from the plants and the irrigation emitters (15 cm). The readings were
carried out daily and at the same time in the morning, just before watering. The results
corresponded to the weekly average measurements in kPa. Additionally, two tensiometers
were installed at a depth of 30 cm in the non-mulched soil experimental plots in order to
avoid infiltration or excess irrigation.

2.4.2. Soil Temperature

For the measurement of soil temperature, each experimental plot had thermistor type
sensors, model WAM-200TS-15, which recorded data at intervals of 30 min, and were stored
in a WATERMARK Monitor 900 M datalogger of IRROMETER with capacity for eight
sensors, powered by a 9 volt battery with an output voltage of 0–5 V and 4–20 mA, and
with a storage capacity of 85 days. The results are presented as Monthly and Total Growing
Degree-Days Accumulation in the two crop seasons.

2.4.3. Physical and Chemical Variables of Soil Samples

To assess the starting situation, soil sampling was carried out in three areas of the
greenhouse immediately before placing the mulches and planting the tomato seedlings.
Thus, the soil samples were taken after the biosolarization treatment with fresh sheep
manure, three days before planting. Similarly, in both years, at the end of the tomato crop
season, all the experimental plots were sampled. The samples were taken with an auger
at a depth of 0–30 cm. Three subsamples were randomly taken from cultivation lines and
then mixed and homogenized to ensure representativeness in each sample. Subsamples
were taken in the center of the cultivation lines to avoid a possible edge effect. Soil samples
were then analyzed for pH, electrical conductivity (EC), interchangeable cations (Ca2+; Na+;
Mg2+, K+), active limestone, phosphorus Olsen (P Olsen), nitric nitrogen, organic matter,
total carbonates (HCO3

−), total nitrogen, C/N ratio, and texture (% of sand, silt, and clay),
following standard soil testing procedures as described in Order 5/12/1975 [28] by an
external laboratory (Eurofins, El Ejido, Spain). The results of most physical and chemical
variables of soil samples are reported in different units for Years 1 and 2. Comparisons
among the treatments were made for each year separately.

2.4.4. Crop Yield

The production and yield were measured for all the harvests. In Year 1, the first
harvest was undertaken on 27 December 2019 (102 Days After Planting: DAP) and the
last on 25 March 2020 (191 DAP). In Year 2, the first harvest was on 30 December 2020
(110 DAP) and the last on 13 April 2021 (200 DAP). In total, 14 harvests were undertaken in
both years. The cumulative tomato production was measured (kg m−2) using an electronic
balance with an accuracy of ± 0.01 kg, and the number of fruits per m2 was recorded.

2.4.5. Weed Assessments

The suppression of weeds was evaluated throughout the two crop seasons. Weed
presence was assessed 11 and 9 times in Year 1 and Year 2, respectively. The presence of
weeds was assessed in the root zone of all plants in the experimental plots, considering pres-
ence or absence regardless of the number of weeds. Weeds were only removed after each
assessment. The root zone of each tomato plant was considered a sampling point. Results
are expressed as a percentage of weed presence over the total number of sampling points.

2.4.6. Plastic Mulch Deterioration (Polyethylene and Biodegradable Films)

The percent visual deterioration (PVD) of the plastic mulches was evaluated at the
end of the crop season in Year 1, and four times throughout the crop season, including
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at the end, in Year 2. For this purpose, a metal ring of known area (1 m2) was randomly
thrown onto three different places of each experimental plot with plastic mulch treatments
(low density polyethylene film and biodegradable biopolymer film). The surfaces occupied
by the ring were photographed and subsequently processed with the free software ImageJ
1.52a (NIH Image, Bethesda, MD, USA) to obtain the deteriorated area (perforations and/or
breaks). The PVD was calculated as the percentage of soil exposed within the evaluated
area, such that 0% represented intact mulch and 100% represented completely deteriorated
mulch [29–31].

2.5. Statistical Analysis

Analysis of variance (one-way ANOVA) was used to compare differences among
treatments (four levels: dried barley straw, black low density polyethylene film, black
biodegradable biopolymer plastic film, and no-mulch control) for each of the variables
evaluated in the study (soil matric potential, soil temperature, physical and chemical vari-
ables of soil, crop yield, weed control, and plastic mulch deterioration) for both years.
Previously, normality and homoscedasticity were tested using the Shapiro–Wilk and Lev-
ene tests, respectively. For these analyses, Fisher’s least significant difference (LSD) test
was used to make comparisons of treatments of the most interest, using the 5% level
of significance. Arcsine square root transformation was applied to percentages before
analyses. The statistical analyses were carried out using the statistical software package
Statgraphics Centurion XVIII (Statgraphics Technologies, Inc., The Plains, VA, USA) for
Windows (Microsoft Corporation, WA, USA).

3. Results and Discussion
3.1. Soil Matric Potential

The reduction in water loss by mulch is a positive feature of its use, especially because
it allows for longer irrigation intervals and water saving [32]. The effect of the assessed
mulches on soil moisture was very similar throughout the tomato crop season in Year 1. In
general, during the first crop season (Year 1), the non-mulched soil showed lower moisture
than the mulched soils, although significant differences in soil matric potential values
(p < 0.05) between mulches and the non-mulched soil were only detected at the beginning
of the crop season, mainly due to the high dispersion of the values in the non-mulched
experimental plots (Figure 2, Year 1). The soil moisture in the plots with polyethylene
mulch seemed to be higher than that of the other mulches in the final four weeks of the
crop season in Year 1, but no significant differences were detected (p > 0.05). Throughout
the second year, the effect of soil mulches on soil moisture was similar to that in the first
year, showing significant differences in soil matric potential values between the mulches
and non-mulched soil only at three time points (Figure 2, Year 2). These results suggest
that straw acts efficiently in maintaining soil moisture. In this regard, Cirujeda et al. [33]
reported similar effects, which may be due to some extent to the decrease in radiant
energy absorbed by the soil [34]. However, Lei et al. [35] concluded that plastic mulches
conserve soil moisture more efficiently than vegetable mulches (e.g., straw), as plastic
mulches are more impermeable to water vapor than vegetable mulches. In addition, the
use of polyethylene plastic mulch is reported to achieve the greatest effects in terms of
water economy, as its high impermeability prevents evaporation from the soil surface,
leaving water available to the crop, which benefits from a more constant and regular
supply [36–39]. On the contrary, Yang et al. [40] and Ghosh et al. [41] concluded that
straw mulches maintain a higher soil water content than plastic mulch and bare soil. By
comparison, the progressive deterioration of biodegradable mulches reported throughout
the crop season (see Section 3.6) did not lead to lower soil moisture.
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3.2. Soil Temperature

For a better understanding of the results, it should be noted that the crop cycle was
longer in the second year of the study. Crop cycles ended on 25th March and 13rd April in
the first and second years, respectively. Moreover, the climate conditions were different in
both years; these are the reasons for the differences found between the two years.

In the first year, Total Growing Degree-Days Accumulation for the whole crop season
showed a significant increase (p < 0.05) when soil mulches were used compared to non-
mulched soil, whereas no differences (p > 0.05) were detected among soil mulches (Figure 3,
Year 1). Total Growing Degree-Days Accumulation for the whole crop season were 1406,
1324, 1297, and 1096 for polyethylene, biodegradable biopolymer, straw, and non-mulched
soil, respectively. In general, the same trend was observed from October to January (in-
cluded) when results were considered as the Monthly Growing Degree-Days Accumulation.
However, values in February and March were higher in the soil with polyethylene mulch
(205 and 217, respectively) compared to the rest of the treatments, whereas biodegradable
mulches (183 in February and 200 in March) and straw (175 in February and 176 in March)
did not show differences compared to non-mulched soil (155 in February and 196 in March).

In the second year, the Total Growing Degree-Days Accumulation for the whole crop
season showed a significant increase when polyethylene mulch was used compared to
non-mulched soil, and to straw and biodegradable mulches. Total Growing Degree-Days
Accumulation for the whole crop season were 1677, 1558, 1580, and 1479 for polyethylene,
biodegradable biopolymer, straw, and non-mulched soil, respectively. In this case, soil
temperature was higher in the plots with straw mulch compared to with non-mulched
soil, whereas no differences were detected when biodegradable mulch was used (Figure 3,
Year 2). Similarly, generally the same trend was observed from October to April when
the Monthly Growing Degree-Days Accumulation was considered, although it must be
highlighted that there were no differences among treatments in February. In addition, in
April, when air temperature in the greenhouse was higher than the rest of the season, the
Monthly Growing Degree-Days Accumulation was lower for the straw mulch (149) com-
pared to the polyethylene and biodegradable plastic mulches (173 and 164, respectively),
and even the non-mulched soil (157), which may be beneficial in hot climates. These results



Agronomy 2022, 12, 1333 7 of 16

agree with Duppong et al. [42] and Kosterna [43], who showed that the use of organic
mulches is a feasible way to decrease soil heating in summer and helps to reduce soil
temperature fluctuations. Stinson et al. [44] also indicated that organic mulching keeps the
soil temperature lower in summer and higher in winter. Moreover, in an open field tomato
crop study performed in central Spain, the temperatures reached under polyethylene films
were always higher than those for biodegradable films; this may be a disadvantage in hot
climates, although it can also be advantageous in colder conditions [45]. In this regard, a
large meta-analysis comparing the performance of polyethylene and biodegradable mulch
films in annual crops revealed that biodegradable mulch reduced soil temperature by 4.5%
compared with polyethylene mulch [46]. Our results showed the efficacy of mulches to
increase soil temperature in different periods throughout the winter crop season, even
in colder months when this increase can be more beneficial. In this regard, López-Marín
et al. [14] stated that one of the greatest benefits of plastic mulch is the increase in soil
temperature, a benefit that is also achieved by dry barley straw mulches [33]. This effect
allows crops to develop and reach acceptable yields in cold periods of the year, or in areas
with minimum temperatures below the physiological optimum for the cultivated species.
In the case of tomato crops, environmental temperatures below 10 ◦C or over 30 ◦C cause
the plant to stop growing and developing, and the soil temperature becomes limiting when
it drops below 12 ◦C or exceeds 34 ◦C [47,48]. In this regard, all treatments of this study,
including the non-mulched soil, maintained the temperature above the base temperature
for tomato growth (Table S2).
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Figure 3. Monthly and Total Growing Degree-Days Accumulation in the two crop seasons depending
on mulch type and for non-mulched soil. Values (mean ± standard deviation; n = 3). Different
letters in the same period indicate significant differences (p ≤ 0.05, Fisher´s LSD test). ‘*’, ‘**’,
and ‘***’ indicate significance at p ≤ 0.05, 0.01, and 0.001, respectively.

3.3. Physical and Chemical Variables of Soil Samples

At the end of the first crop season, only the K+ concentration showed significant
differences (p = 0.027) between polyethylene plastic mulch and non-mulched soil, which
showed average values of 3391 ± 532 and 1982 ± 303, respectively (Table 1). The increase
in K+ content may be because the process of mineralization of sheep manure incorporated
through soil biosolarization occurred faster in soils with polyethylene mulch. Li et al. [49]
concluded that there is a greater availability of nutrients in mulched soils, due to the greater
microbiological activity caused by the increase in temperature, humidity, and oxygenation
in the soil; these parameters directly affect the processes of nitrification and mineralization.
In contrast, Moreno and Moreno [45] concluded that the use of polyethylene films resulted
in lower values of soil organic matter mineralization, probably due to the increase in the
temperature under polyethylene mulch. This disparity of results suggests that the effects
of temperature increase on the soil chemical parameters when polyethylene plastic mulch
is used depend, to a large extent, on the environmental conditions of the study area.
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Table 1. Soil physical and chemical variables at the beginning of the study (start of season 1), and at the end of the two crop seasons, depending on the mulches and
for the non-mulched soil.

Soil Physical and
Chemical Variables

Start
Season 1

End Season 1 Soil Physical and
Chemical Variables

End Season 2

Straw Polyethylene Biopolymer Non-mulched p-Value Straw Polyethylene Biopolymer Non-mulched p-value

pH 8.6 ± 0.2 8.1 ± 0.1 8.1 ± 0.1 8.1 ± 0.1 8.1 ± 0.1 0.821 pH (Extract 1:2:5 H2O) 9.2 ± 0.1a 9.0 ± 0.1b 9.0 ± 0.1b 9.0 ± 0.1b 0.024
CE (dS/m) * 6.19 ± 3.99 2.58 ± 0.44 2.46 ± 0.62 2.28 ± 0.74 3.37 ± 0.74 0.251 CE (dS/m) ** 0.53 ± 0.10 0.48 ± 0.04 0.69 ± 0.08 0.81 ± 0.34 0.182
Ca+2 (mg/L) 1253 ± 117 5001 ± 1257 5898 ± 869 5563 ± 849 2927 ± 1756 0.071 Ca+2 (mg/kg sms) 5753 ± 81 5761 ± 31 5649 ± 144 5678 ± 221 0.706
Na+1 (mg/L) 37 ± 8 47 ± 5 51 ± 18 47 ± 10 52 ± 13 0.926 Na+1 (mg/kg sms) 218 ± 47 201 ± 24 252 ± 35 304 ± 123 0.348
Mg+2 (mg/L) 261 ± 13 383 ± 94 413 ± 8 337 ± 66 314 ± 52 0.292 Mg+2 (mg/kg sms) 348 ± 31 339 ± 30 333 ± 16 384 ± 46 0.288
K+1 (mg/L) 1841 ± 922 2796 ± 176ab 3391 ± 532a 2573 ± 604ab 1982 ± 303b 0.027 K+1 (mg/kg sms) 884 ± 144 819 ± 62 824 ± 105 1009 ± 236 0.431

Active limestone (%) 5.7 ± 1.9 6.0 ± 1.8 4.5 ± 1.7 5.8 ± 2.9 6.3 ± 1.6 0.722 Active limestone
(% sms) 7.7 ± 0.6 7.7 ± 0.6 7.7 ± 0.6 7.7 ± 0.6 1.000

P Olsen (meq/L) 19 ± 1 8 ± 1 9 ± 2 8 ± 2 9 ± 1 0.696 P Olsen (mg/kg sms) 61.9 ± 8.3 59.6 ± 8.6 65.0 ± 16.7 67,5 ± 6.6 0.817
Nitric N (mg/L) 157 ± 86 61 ± 23 48 ± 4 52 ± 24 62 ± 25 0.821 Nitric N (mg/kg sms) 7.1 ± 0.9 7.8 ± 5.4 19.0 ± 6.1 21.6 ± 17.8 0.232

Organic Matter (%) 1.2 ± 0.5 1.1 ± 0.0 0.9 ± 0.0 1.1 ± 0.1 1.0 ± 0.2 0.304 Organic Matter (% sms)) 2.1 ± 0.1 2.4 ± 0.6 2.1 ± 0.2 2.3 ± 0.2 0.563

Total carbonates (%) 14 ± 4 19 ± 4 18 ± 3 17 ± 5 21 ± 6 0.728 CaCO3 equivalent
(% sms) 25.7 ± 1.5 25.0 ± 1.0 26.7 ± 1.2 25.7 ± 0.6 0.394

Total N (%) 0.043 ± 0.015 0.050 ± 0.010 0.040 ± 0.010 0.043 ± 0.006 0.037 ± 0.006 0.297 Total N (% sms) 0.177 ± 0.015 0.180 ± 0.036 0.180 ± 0.036 0.177 ± 0.006 0.999
C/N 20 ± 11 16 ± 4 16 ± 5 17 ± 3 20 ± 2 0.531 C/N 7.02 ± 0.77 7.83 ± 0.68 6.84 ± 0.70 7.47 ± 0.30 0.297

Sand % 68 ± 4 56 ± 3 59 ± 8 59 ± 4 60 ± 7 0.873 Sand % 58 ± 3 57 ± 3 59 ± 2 55 ± 5 0.464
Silt % 13 ± 1 21 ± 4 17 ± 6 20 ± 2 19 ± 6 0.867 Silt % 21 ± 2 22 ± 1 20 ± 1 21 ± 2 0.767

Clay % 19 ± 3 23 ± 1 24 ± 3 21 ± 2 21 ± 1 0.284 Clay % 21 ± 1 22 ± 2 21 ± 1 24 ± 3 0.280

* Results in saturated extract at 25 ◦C. ** Results in extract 1:5 H2O at 25 ◦C.
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At the end of the second year, there was only a significant difference in soil pH, which
was slightly higher in the straw mulch (pH = 9.2 ± 0.1) treatment compared to the rest
of the treatments, which showed the same values (pH = 9.0 ± 0.1; Table 1). However, a
decrease in soil pH has been reported when straw is incorporated into the soil [50,51].

Additionally, it should be considered that both straw and biodegradable plastic
mulches can be mechanically incorporated into the soil at the end of the crop season, thus
avoiding the costs of removal from the field [31] and facilitating the reutilization of plant
debris as an organic amendment for the improvement of greenhouse soil fertility [7,52],
which is a valuable management technique within the framework of a circular economy.
Biodegradable materials have the capacity to disintegrate, fragment, and degrade through
the action of microorganisms [24,25]. In this sense, there is a need to carry out residuality
studies derived from their decomposition, and, among other aspects, to know the effects
that these can have on root growth and plant stress [19]. On the contrary, the incorpora-
tion of polyethylene plastic mulch into the soil can have a serious negative impact on the
environment as a consequence of its poor final disposal [17,53], due mainly to large accu-
mulations of microplastics from the deterioration of the polyethylene [18]. Therefore, recent
studies have aimed to increase knowledge of the advantages and disadvantages of different
alternatives to polyethylene plastic mulch on different soil parameters [21,23,54–56].

3.4. Crop Yield

In both years, soil mulches did not significantly influence the early tomato production,
based on the production obtained in the first harvest, nor the cumulative total production
throughout the crop cycle, nor that at the end of it (Figure 4). No significant differences were
detected among mulched plots and non-mulched soil, nor among mulches. In all cases,
total tomato production was within the range of common yields for this type of tomato in
organic production, and ranged from 11.89 to 12.73 kg m−2 and 14.06 to 15.09 kg m−2 in
Years 1 and 2, respectively.

Agronomy 2022, 12, x FOR PEER REVIEW 10 of 18 
 

 
Agronomy 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/agronomy 

Additionally, it should be considered that both straw and biodegradable plastic 
mulches can be mechanically incorporated into the soil at the end of the crop season, thus 
avoiding the costs of removal from the field [31] and facilitating the reutilization of plant 
debris as an organic amendment for the improvement of greenhouse soil fertility [7,52], 
which is a valuable management technique within the framework of a circular economy. 
Biodegradable materials have the capacity to disintegrate, fragment, and degrade through 
the action of microorganisms [24,25]. In this sense, there is a need to carry out residuality 
studies derived from their decomposition, and, among other aspects, to know the effects 
that these can have on root growth and plant stress [19]. On the contrary, the incorporation 
of polyethylene plastic mulch into the soil can have a serious negative impact on the en-
vironment as a consequence of its poor final disposal [17,53], due mainly to large accumu-
lations of microplastics from the deterioration of the polyethylene [18]. Therefore, recent 
studies have aimed to increase knowledge of the advantages and disadvantages of differ-
ent alternatives to polyethylene plastic mulch on different soil parameters [21,23,54–56]. 

3.4. Crop Yield 
In both years, soil mulches did not significantly influence the early tomato produc-

tion, based on the production obtained in the first harvest, nor the cumulative total pro-
duction throughout the crop cycle, nor that at the end of it (Figure 4). No significant dif-
ferences were detected among mulched plots and non-mulched soil, nor among mulches. 
In all cases, total tomato production was within the range of common yields for this type 
of tomato in organic production, and ranged from 11.89 to 12.73 kg m−2 and 14.06 to 15.09 
kg m−2 in Years 1 and 2, respectively. 

 
Figure 4. Cumulative tomato production in the two years of study depending on mulch type and 
for non-mulched soil. Values (mean ± standard deviation; n = 3). DAP: Days After Planting. 

Similarly, soil mulch did not significantly influence the number of fruits per m2, with 
average values ranging from 36.1 to 39.6 fruits m−2 and 52.2 to 57.4 fruits m−2 in Years 1 
and 2, respectively (Figure 5). In this regard, it should be noted that the differences in 
production and number of fruits between the two years of study (higher values in the 

Figure 4. Cumulative tomato production in the two years of study depending on mulch type and for
non-mulched soil. Values (mean ± standard deviation; n = 3). DAP: Days After Planting.



Agronomy 2022, 12, 1333 10 of 16

Similarly, soil mulch did not significantly influence the number of fruits per m2, with
average values ranging from 36.1 to 39.6 fruits m−2 and 52.2 to 57.4 fruits m−2 in Years
1 and 2, respectively (Figure 5). In this regard, it should be noted that the differences in
production and number of fruits between the two years of study (higher values in the
second year in both cases) may be mainly due to the fact that in the second year the crop
cycle was longer.
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Several authors have concluded that the greater precocity of production in tomato
cultivation is one of the most attractive benefits of using soil mulches [48]. In addition,
tomato yield (total and marketable production and fruit number) is reported to increase
when using polyethylene or biodegradable film mulches compared to non-mulched soil, in
both high tunnel and open field production systems [13]. However, tomato yield increases
due to soil mulch are not always reported, since yield beneficial effects depend on both
the type of film and the geographic location [29]. As a complement, a study performed in
central Spain to evaluate the incidence of polyethylene and biodegradable plastic mulches
on open field tomato crops concluded that the variability of the yield depended mainly
on the number of fruits; the average weight of the fruits was practically constant in the
different treatments and seasons, which suggests a strong seasonal and varietal character
of this parameter [45]. In this regard, although, under the specific experimental conditions
of the present study, there were no positive influences on tomato yield due to the use
of mulching, it should be noted that all mulches increased the temperature of the soil
with respect to non-mulched soil, while causing a smaller loss in soil moisture, which
may allow water savings without negatively affecting crop yield. Similarly, these results
differed from those obtained by Nachimuthu et al. [57], who reported lower crop yields
of zucchini, pumpkin, and pepper in an open field when plant mulches (e.g., straw) were
used compared to plastic mulches.

3.5. Weed Control

Figure 6 shows the average percentages of weed presence depending on soil mulch
and for non-mulched soil. Generally, the presence of weeds in non-mulched soil was low
and showed no difference to that of plastic mulches (polyethylene and biodegradable
biopolymer). The implementation of soil biosolarization treatments could have played
a role, as they are considered a viable technique for weed control [58]. Plastic mulches
suppressed weeds similarly throughout the crop, without an increase in the presence of
weeds due to perforations and deterioration, in any of the cases. These results are in line
with those obtained by Minuto et al. [59], who reported no significant difference in weed
suppression between polyethylene and biodegradable mulch films throughout the tomato
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crop season in Italy. Weed growth under plastic mulches is highly dependent on light
transmission, especially in the PAR band (400–700 nm) [60], and this is the main reason why
Cowan et al. [13] concluded that black and brown biodegradable mulches, but not white,
control weeds comparably to black polyethylene mulch in high tunnel tomato production,
as was the case in our results. However, it should also be noted that biodegradable plastic
films and polyethylene are not always the most efficient option for weed control, as some
species (e.g., Cyperus rotundus L.) are able to pierce the material [61]. On the other hand,
in both years of our study, throughout the tomato crop cycle, the experimental plots with
straw mulches reported significantly (p < 0.05) greater weed presence than plastic mulches
(polyethylene and biodegradable). In addition, the presence of weeds was also higher
(p < 0.05) in most of the samples when using straw mulch compared to non-mulched soil.
The main reason for these differences was related to the germination of barley seeds present
in the dried straw used as mulch, since this was the predominant plant species in the
experimental plots with this mulch (data not shown). Several studies achieved this result
when using cereal straw mulches [33,62,63]. In addition, a recent three-year study [64], in
which the assessment of weed presence did not include cereals as weeds, reported similar
weed control efficacy when straw mulches (i.e., wheat, barley, and rice straw) were used
compared to black polyethylene plastic mulch.
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Figure 6. Weed presence during the two crop seasons depending on mulch type and for non-mulched
soil. Values (mean ± standard deviation; n = 3). Different letters in the same week indicate significant
differences (p ≤ 0.05, Fisher´s LSD test). ‘*’, ‘**’, and ‘***’ indicate significance at p ≤ 0.05, 0.01, and
0.001, respectively. DAP: Days After Planting.

Soil mulches must suppress the presence of weeds, as in organic production this is
considered one of the most complex problems to solve. It is therefore of great interest to
study the effects of barley plants on the main crop, to determine whether the competition
for water and nutrients that could negatively affect main crop development occurs. If so,
additional efforts towards its removal should be considered. However, it may have benefits
for soil fertility and/or as a reservoir plant for beneficial insects, among others.

3.6. Deterioration of Plastic Mulches (Biodegradable Biopolymer and Polyethylene)

Figure 7 represents the visual deterioration of plastic mulches (polyethylene and
biodegradable biopolymer) at the end of the tomato crop cycle and for the Year 2 cycle,
referring to the percentage of deterioration over the total area evaluated. It should be
noted that, although mulch visual deterioration assessments (PVD) are generally related
to changes in certain mechanical properties of the mulch (e.g., resistance and elongation
percentage at break point) [65,66], visual assessment and mechanical properties provide
different information on deterioration. In the present study, at the end of the tomato
crop season, the visual deterioration of the biodegradable mulch was significantly higher
(p < 0.05) compared to polyethylene mulch in both years, reaching average values in
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biodegradable mulch of 6.70% and 5.61% in Years 1 and 2, respectively, compared to 0.98%
and 0.02% for polyethylene mulch (Figure 8). In the second year, significant differences
were detected from 161 DAP.
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Figure 7. Visual deterioration of plastic mulches (biodegradable biopolymer and polyethylene) at
the end of the crop season in Year 1 of the study, and during the crop season in Year 2. Values
(mean ± standard deviation; n = 3). ‘*’ indicates significance at p ≤ 0.05 (t-Student test). DAP: Days
After Planting.
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Figure 8. Visual deterioration of biodegradable biopolymer ((left); deteriorated area in yellow color)
and polyethylene ((right); deteriorated area in red color) plastic mulches at the end of the crop season
in Year 2 (195 days after planting). Surfaces occupied by the ring (1 m2) were processed with software
to obtain the deteriorated area (perforations and/or breaks).

The higher deterioration of biodegradable plastic mulches compared to polyethylene
plastic mulches has been reported by several authors. A two-year study in central Spain
reported that polyethylene mulches remained practically intact throughout the open field
tomato crop season, while signs of biodegradable mulch degradation appeared from the
beginning of its use. However, in general, biodegradable mulches remained functional
during use and the deterioration did not affect yield or fruit quality attributes (total soluble
solids, firmness, dry weight, juice content, and shape) [45]. Othman and Leskovar [31]
reported, in an open field watermelon crop season, that the PVD rates of degradable
mulches were 7%, 20%, 37%, 44%, 57%, 83%, and 92% after 120, 180, 210, 240, 300, 330,
and 365 d after field transplanting, respectively, while no deterioration was noted in the
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polyethylene mulch for the same period. Similarly, assessments in three tomato production
regions in North America, both in high tunnels and open fields, concluded the greatest PVD
was obtained for two commercially advertised black biodegradable plastic mulches, while
the values were insignificant for black polyethylene plastic mulch [29]. The same study
suggested that overhead moisture may play a larger role than temperature or incident
radiation in the deterioration of these mulch products. The high molecular weight and
hydrophobicity of polyethylene films lend these films high chemical stability and thus
resistance to degradation, requiring about 100 years for its complete decomposition [67,68].

In contrast to the study by Moreno and Moreno [45], in which the biodegradable films,
previously buried at the end of the crop cycles, were not visible during the spring following
each crop season, in our study biodegradable film fragments in the soil were clearly visible
at the end of the second year.

4. Conclusions

From an agronomic perspective, dry barley straw mulch and biodegradable plastic
mulch offered the same benefits as the polyethylene plastic mulch in a Mediterranean
organic greenhouse winter tomato crop. However, the germination of the numerous cereal
seeds present in the dry straw suggests the need to develop further studies in order to
understand the possible advantages and/or disadvantages that the grown cereals may
have on the profitability of the agrosystem as a whole. Their use in agrosystems is a viable
and sustainable option in accordance with the principles of the circular economy and
agroecology. Similarly, as these are biodegradable materials that can be incorporated into
the soil, their implementation facilitates practices aimed at reducing waste from the farm,
such as the reuse of plant debris at the end of the season as an organic amendment for the
improvement of soil health and fertility. This avoids the labor and environmental costs
associated with the removal and disposal of polyethylene plastic mulch, a material that has
a long-lasting negative impact on natural systems. Its promotion and facilitation for the
farmer would favor its implementation in intensive greenhouse horticultural production
systems, thus complying with Sustainable Development Goals, which are firmly committed
to the framework of a circular economy within agricultural systems.
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