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Abstract: Extreme climatic conditions and natural hazard-related phenomenon have been affecting
coastal regions and riverine areas. Floods, cyclones, and climate change phenomena have hammered
the natural environment and increased the land dynamic, socio-economic vulnerability, and food
scarcity. Saltwater intrusion has also triggered cropland vulnerability and, therefore, increased the
area of inland brackish water fishery. The cropland area has decreased due to low soil fertility; around
252.06 km2 of cropland area has been lost, and 326.58 km2 of water bodies or inland fishery area has
been added in just thirty years in the selected blocks of the North 24 Parganas district, West Bengal,
India. After saltwater intrusion, soil fertility appears to have been decreased and crop production has
been greatly reduced. The cropland areas were 586.52 km2 (1990), 419.92 km2 (2000), 361.67 km2 (2010)
and 334.46 km2 (2020). Gradually the water body areas were increased 156.21 km2 (1990), 328.15 km2

(2000), 397.77 km2 (2010) and 482.78 km2 (2020). The vegetated land area also decreased due to it
being converted into inland fishery areas, and around 79.15 km2 were degraded during the last thirty
years. The super cyclone Aila, along with other super cyclones and other environmental stresses,
like water-logging, soil salinity, and irrigation water scarcity were the reasons for the development
of the new fishery areas in the selected blocks. There is a need for proper planning for sustainable
development of this area.

Keywords: extreme climatic condition; crop land vulnerability; fishery area identification; remote
sensing and GIS; North 24 Parganas district
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1. Introduction

Climate change and environmental degradation have influenced the land dynamic,
caused ecosystem damage, and resulted in unexpected life-threatening conditions [1,2].
The land use and land cover (LU/LC) classification and estimation, or LU/LC change, have
been the most important factors for earth surface change analysis [3,4]. The classification of
land use, land cover, and land alteration were used for studying the earth’s surface change
and estimating environmental degradation. The coastal areas, such as South 24 Parganas,
North 24 Parganas, and Purba Medinipur of West Bengal state, India, are the most vul-
nerable, and natural extreme hazard events like floods and super cyclones, have affected
the land and coastal area. The results have been shoreline change, saltwater intrusion, in-
creased soil salinity, changed cropland dynamics, and socio-economic losses. The potential
zones for surface water or groundwater and their quality assessment, organization, and
investigation have continuously been of high importance; subsequently, it is important to
communal, anthropological, environmental, health, and economic development [5]. The
water quality assessment and water related research activities are the most significant in the
present period [6–8]. The water organization methodologies are not solely about stopping
water contamination or other problems, nevertheless, they aim towards forecasting the
technical needs for sustainable water resource management through decision-making or
policy-making by the water pollution regulators, and to teach suitable preparation methods
to control water shortage or scarcity associated problems [9].

Strong tidal actions, wave, and long-shore tidal currents have continuously adapted,
shaped, and redesigned the coastal shorelines in the alternating estuarine or riverine delta
region by the hydro-geomorphological processes of erosion and accretion [10–12]. The
coastal region is the area most vulnerable to cyclones, natural disasters that influence the
earth’s surface processes [13,14]. Cropland dynamics influence the food production of this
local region because rice is the main food and fish production has high economic values,
but ecological degradation has been hammering the local environment with associated rice
production losses. Previously, in the early 1980s, cropland categories were good using tem-
poral and supernatural physiognomies [15,16]. The estimation of the time periods having
the maximum alteration for cropland categories has been frequently acknowledged [17–20].
The most common method for this purpose is an image classification constructed using the
geo-spatial index like the normalized difference vegetation index (NDVI) [21,22]. Much
research has used machine learning methods to categorize the cropland types, such as
decision trees [23], support vector machines [24,25], random forest [26] or hidden Markov
models [27]. The land dynamics of the selected study blocks are most affected by saltwater
intrusion and climatic conditions as croplands and inland fisheries are located there. There-
fore, land degradation measurement using the Remote Sensing and GIS procedures are
more useful. The area most affected by land dynamics is the southern parts of the North
24 Parganas, which is the area most affected by these problems, so those blocks of North
24 Parganas were selected as the study area.

The North 24 Parganas district is generally impacted by natural disasters and envi-
ronmental degradation every year, e.g., the Odisha super cyclone (1999), Phyan (2009),
Nilam (2012), Phailin (2013), Helen (2013), Hudhud (2014), Vardah (2016), Ockhi (2017),
Titli (2018), Fani (2019), Bulbul (2019), Amphan (2020) and Yass (2021). Many cyclones and
floods have been associated with extreme climate events [28–31]. Many cyclone events have
occurred like, Aila, Fani, Bulbul, Amphan, and Yash. These cyclones and the deformation
of landforms have, therefore, increased the saltwater intrusion over the region. Mainly, the
southern parts of the districts like Sandeshkhali-I, Minakhan, Haroa, Barasat-I, Barasat-II,
and Hasnabad have been the most affected by saltwater intrusion. The Central inland
fishery research institute (http://www.cifri.res.in/ (accessed on 21 February 2022)), which
is situated in Barrackpore, influences inland fishery-related awareness, training (water
quality and fish production). The satellite-based Remote sensing (RS) and Geographic
Information System are influential methods for mapping, monitoring, and measuring the
LU/LC alteration analysis using moderate and high resolution of temporal satellite-based

http://www.cifri.res.in/
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imageries, which is cheaper and more effective than the methods used in the traditional
procedure [32–35]. Many researchers have used the LU/LC classification and geospatial
indicators for delineating the LU/LC classes and social impacts [36,37]. The Normalized
Different Vegetation Index (NDVI) has been widely used for delineating the vegetation
condition using a red and near-infrared band of satellite data [38,39]. For water area iden-
tification and area estimation, the Normalized Different Water Index (NDWI) has been
used [40]. For land use alteration examination, previous studies have used multi-temporal
Landsat datasets, and numerous procedures, like Cellular Automata (CA), Markov Chain
(MC), regression analysis, and Artificial Neural Network (ANN) [41–43]. The CA procedure
has been used aimed at changeover algorithms and historical circumstances of dissimilar
LU/LC classes of the earth’s surface. The distance from the road, distance from the river
area, DEM, slope, and many other earth surface features have been used for the CA model
to inaugurate the future LU/LC prediction [44]. Prediction of future land cover change
can help gather valuable information about land degradation and future disaster related
activities. It is also true that the North 24 Parganas areas have a vital role for rice paddy
production and appear to be contributing a large amount of paddy per year. However,
inland fisheries transformation has decreased the crop production and, therefore, the re-
sults of this study can be helpful for the future investigation, awareness, planning and
management purposes.

The RS and GIS methods were extensively used for the LU/LC classification and
identifying the land area alteration and monitoring the changes and environmental aspects.
The Landsat 5 TM and 8 OLI/TIRS datasets for different years were used for mapping
the LU/LC classification of the southern parts of North 24 Parganas. The Normalized
Different Water Index (NDWI) and the Normalized Different Vegetation Index (NDVI)
were used for monitoring the water and vegetation covered area of the study region. The
foremost impartial objectives of this study were to: (i) make the LU/LC classification
for different years 1990, 2000, 2010, and 2020; (ii) conduct land alteration analysis for
different time periods; (iii) identify cropland dynamics and development of inland fishery
areas using field data and classification maps; (iv) conduct vegetation and water condition
analysis use two different geospatial indicators. The study results will be helpful for
local planners, administrative departments like the agricultural department, inland fishery
department, policymaker, researchers, and other stakeholders aimed at the development of
this study blocks.

2. Study Area

The North 24 Parganas district is situated in West Bengal, which state is located in
the eastern portion of India, and the study blocks are in the tropical zone from latitude
22◦11′6′′ to 23◦15′2′′ North, and longitude 88◦20′ to 89◦5′ East. The western parts are
in the Kolkata, Howrah, and Hooghly districts. The total area of North 24 Parganas is
4094 km2 and the total population of this district is 10,009,781 (Census of India and North
24 Parganas District handbook, 2011, https://www.census2011.co.in/census/district/11
-north-twenty-four-parganas.html (accessed on 23 February 2022)). The headquarters of
North 24 Parganas is located at Barasat. The annual average precipitation, or rainfall, is
1550 to 1600 mm. The main urban areas are Barasat, Habra, Madhyamgram, Basirhat,
Rajarhat-Newtown, Hasnabad, Dum Dum etc. The average temperatures of this district are
41 ◦C in the month of May and 10 ◦C in the month of January, and the relative humidity
varies from 50% in the month of March to 90% in the month of July in each year (http:
//imdkolkata.gov.in/districts/north-24-parganas (accessed on 28 February 2022), Indian
Methodological Department, India).

In this study identifying of the area of crop land vulnerability and the area of the
inland fishery, six blocks of the North 24 Parganas district were used (there are 22 blocks
in the North 24 Parganas district) and the names of those blocks are Haroa, Minakhan,
Sandeshkhali-I, Hasnabad, Basirhat-I, and Basirhat-II. Those areas were taken for this study
because crop land has been converted into inland fishery in those areas. In the thirty years

https://www.census2011.co.in/census/district/11-north-twenty-four-parganas.html
https://www.census2011.co.in/census/district/11-north-twenty-four-parganas.html
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1990 to 2020, many crop lands have been converted into brackish water inland fishery
use. Gradually, food scarcity has increased due to crop production losses. Farmers are
economically building a strong position (http://north24parganas.gov.in/blocks/gaighata/
schemes (accessed on 3 March 2022)); however, the land use and land cover (LU/LC) change
has been the main reason for crop vulnerability in this study area. The total study area was
927.55 km2 (Figure 1) and it is situated in the southern parts of North 24 Parganas district.
The study blocks of North 24 Parganas district are located in the Ganga-Brahmaputra-
Meghna delta where extreme environmental events and ecological disturbances have been
observed like floods, super cyclones, and manmade disasters. Those climatic conditions are
the reason for saltwater intrusion. Saltwater intrusion is the main reason for land use and
land cover change and cropland vulnerability. The salt water from the Bay of Bengal has
inundated the riverine area and the crop lands are affected by this natural phenomenon.
After super cyclone Aila, these areas were affected by saltwater creating huge soil fertility
loss related problems. After that, the local farmers, or agriculturalists, have gradually
converted the cropland area into inland fisheries.
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Figure 1. Location map of the selected study area. The red frame shows the identification of the
study location.

3. Materials and Method

The water body and cropland dynamics were significantly influenced by the local
natural conservation situation and the reserve parts were identified in the study blocks
(Figure 2). The areas of inland fishery were increased gradually as the croplands were
decreased due to extreme environmental condition and climatic phenomenon in the
study area.

http://north24parganas.gov.in/blocks/gaighata/schemes
http://north24parganas.gov.in/blocks/gaighata/schemes


Agronomy 2022, 12, 1268 5 of 23

Agronomy 2022, 12, x FOR PEER REVIEW 5 of 25 
 

 

3. Materials and Method 
The water body and cropland dynamics were significantly influenced by the local 

natural conservation situation and the reserve parts were identified in the study blocks 
(Figure 2). The areas of inland fishery were increased gradually as the croplands were 
decreased due to extreme environmental condition and climatic phenomenon in the study 
area. 

 
Figure 2. Entire methodology of the study area. 

3.1. Data Used 
Four Landsat 5 Thematic Mapper (TM) and 8 Operational Land Imager/Thermal 

Infrared Sensor (OLI/TIRS) datasets were used for mapping and monitoring the land 
dynamic and cropland dynamic in southern selected blocks of North 24 Parganas. The 
Landsat multi-temporal satellite datasets with less than 10% cloud cover were 
downloaded from the USGS earth explorer website (https://earthexplorer.usgs.gov/ 
(accessed on 2 February 2022)). Table 1 shows the sensor, path, row, and data details of 
different years. The 1990, 2000, 2010 and 2020 Landsat data were used for cropland 
dynamic and inland fishery area identification over the southern blocks of North 24 
Parganas. The administrative boundary of each block and the population data were 
obtained from Census of India (https://censusindia.gov.in/ (accessed on 5 February 2022)). 
The ArcGIS 10.4 software (ESRI, Redlands, CA, USA)was used for image classification 
and monitoring of the inland fishery and cropland situation. 
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3.1. Data Used

Four Landsat 5 Thematic Mapper (TM) and 8 Operational Land Imager/Thermal
Infrared Sensor (OLI/TIRS) datasets were used for mapping and monitoring the land
dynamic and cropland dynamic in southern selected blocks of North 24 Parganas. The
Landsat multi-temporal satellite datasets with less than 10% cloud cover were down-
loaded from the USGS earth explorer website (https://earthexplorer.usgs.gov/ (accessed
on 2 February 2022)). Table 1 shows the sensor, path, row, and data details of different years.
The 1990, 2000, 2010 and 2020 Landsat data were used for cropland dynamic and inland
fishery area identification over the southern blocks of North 24 Parganas. The administra-
tive boundary of each block and the population data were obtained from Census of India
(https://censusindia.gov.in/ (accessed on 5 February 2022)). The ArcGIS 10.4 software
(ESRI, Redlands, CA, USA)was used for image classification and monitoring of the inland
fishery and cropland situation.

Table 1. Details of satellite data and acquisition dates.

Satellite Sensor Date Path and Row Data Source

Landsat 5 TM 14 November 1990 138,044 https://earthexplorer.
usgs.gov/ (accessed
on 2 February 2022)

9 November 2000 138,044
6 February 2010 138,044

Landsat 8 OLI/TIRS 18 December 2020 138,044

3.2. Satellite Data Pre-Processing

The main objective of this study was to analyse the land alteration due to natural
extreme environmental events and climate change. The Landsat data for the four years
1990, 2000, 2010, and 2020 were used for mapping and monitoring the LU/LC change.
The satellite datasets were obtained from the earth explorer (USGS website) with minimal
alteration in geometric accuracy. The pre-processing of satellite datasets is necessary for

https://earthexplorer.usgs.gov/
https://censusindia.gov.in/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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LU/LC classification, mapping, and monitoring land dynamic and others earth surface-
related work [45]. Geometric correction, atmospheric correction, and radiometric correction
are needed for image classification. The ERDAS Imagine version 14 software was used for
band combination or layer stacking or band composition, geo-referencing or rectification,
masking, and sub-setting or clipping the Area of Interest (AOI). Histogram equalization
was used for the enhancement and development of satellite images [46].

3.3. Image Classification and Post Classification

The LU/LC classification of the earth’s surface is the main way to capture the impact
of humans on the environment. The ecological balance and environmental conditions
are important aspects of our earth’s surface. But the urban expansion, overwhelming
population pressure, and hazards such as natural extreme events like cyclones and floods,
have influenced the local climatic disorder and environmental degradation [47]. The
physical parts like, vegetation, water, soil, and other features have been destroyed by
anthropogenic activities. Digital image classification techniques were used for the LU/LC
classification [48]. The supervised classification technique with a maximum likelihood
algorithm was used for the LU/LC maps classification [49,50]. Land cover was categorised
as vegetation area, water bodies, agricultural land, and forest area. Land use/land cover
change analysis was used for mapping and monitoring the land dynamic or alteration
during the different time periods [51]. After the LU/LC classification, the change detection
analysis, accuracy assessment, and the kappa coefficient estimation were the main aspects
of the study. The selected blocks of the North 24 Parganas were classified into four classes,
agricultural land, water body, vegetation land, and built-up area.

After land use/land cover classification, maps were subjected to an accuracy assess-
ment. The kappa coefficient identification (Table 2) was used for monitoring the error
matrix of LU/LC classification [52]. The ERDAS Imagine version 14 software was used
for the accuracy assessment and the kappa coefficient. The accuracy valuation of each
classified image was carried out by field survey and the data were obtained from Google
Earth software. The accuracy assessment and kappa coefficient were calculated used those
formulas (Equations (1) and (2)).

OA =

(
∑k

i=1 nij

n

)
(1)

Ki =
(Observed accuracy−Chance accuracy)

(1− Chance accuracy)
(2)

where, nij is representative of the slanting fundamentals in the error matrix, k is the total
number of classes in the land use/land cover classification of the selected parts, n is the
total number of samples in the error.

Table 2. Scale of Kappa coefficient and the strength of agreement.

Sl No. Value of K Strength of Agreement

1 <0.20 Poor
2 0.21–0.40 Fair
3 0.41–0.60 Moderate
4 0.61–0.80 Good
5 0.81–1.00 Very good

3.4. Validation of the Results

The LU/LC classifications derived from different Landsat images had problems due to
the difficulty of identifying the proper area and validating the result. Because Landsat data
has 30-m resolution, pixel mixing, and alteration were the main problems when identifying
the land transformation. For validation of the classification results and accuracy assessment,
300 Google Earth sample collections were verified, and the classification results and the
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kappa coefficient scale were used for finding the suitable classification (Table 2). Field
datasets were used aimed at validating the imagery classification results. The accuracy
assessments were estimated at 90.33%, 90.67%, 88.00%, and 86.67% in the years of 1990,
2000, 2010, and 2020, respectively. The kappa coefficients were estimated as 0.86 (1990),
0.87 (2000), 0.83 (2010), and 0.80 (2020) correspondingly.

3.5. Image-Based Geo-Spatial Indices
3.5.1. Normalized Difference Vegetation Index (NDVI)

The delineation of green area is the major work for understanding the vegetated
area and the health of the vegetation. Satellite-based RS data from the Landsat 5 TM and
8 OLI/TIRS datasets were used for vegetation monitoring of this area. Many indicators or
methods have been extensively used for delineating the forest land area over the earth’s
surface, but the normalized difference vegetation index (NDVI) has been the most used
for identifying the vegetation area [50]. The vegetation index (NDVI) map was used to
identify the area of vegetation cover and its reduction over different time scales from
1990 to 2020. The following formula (Equation (3)) was used for delineating the NDVI
maps using satellite images.

NDVI =
(

NIR− Red
NIR + Red

)
(3)

where Red was denoting that the red band and the second band NIR represented the near
infrared band of satellite images. The NDVI map shows −1 to +1. The 0 to +1 represented
the densely green space or vegetation, and low index values (<) represented the other
LU/LC classes of the study location.

3.5.2. Normalized Difference Water Index (NDWI)

The Normalized Difference Water Index (NDWI) was firstly established by McFeeters
in 1996 to detect surface water bodies such as the pond, wetland, river, and lake, that is,
the water body environments, and to express the measurement or documentation of their
duration [53]. The NDWI index was estimated for use with the Landsat TM and OLI/TIRS
Multi-spectral satellite images and it has been positively used with additional satellite
sensors anywhere the magnitude of the water areas are desirable [54]. The NDWI was
calculated using the Equation (4):

NDWI =
(

Green−NIR
Green + NIR

)
(4)

This formula uses the Green band and the NIR, or Near Infrared band, of the Landsat
5 TM and 8 OLI/TIRS satellite images. The NDWI index values more than zero were
identified as those parts that were actual water surfaces, while values less than or equivalent
to zero represented the other LU/LC classes or surfaces in the selected region. Values of
the NDWI were estimated in ArcGIS version 10.4 software.

3.5.3. LU/LC Feature Prediction

The LU/LC is a fluctuating earth’s surface feature which is changing gradually but
the prediction of future classes of LU/LC features is an additional problem to contem-
plate. Numerous approaches have been used for LU/LC features forecast like Cellular
Automata (CA), Artificial neural network (ANN), regression techniques and Markov Chain
(MC) [55,56]. The QGIS software and the MOLUSCE plugin were used for the LU/LC
prediction investigation in the selected blocks of the North 24 Parganas district. The
MOLUSCE plugin tool was used for LU/LC features prediction and for various types of
LU/LC, NDVI, LST, and NDWI forecast and simulation. The well-known algorithms like
CA, multi-criteria decision analysis, ANN, and logistic regression were used for the earth’s
surface. The DEM, distance from river, distance from road, domination lands water bodies,
other LU/LC classes, and slope (LU/LC prediction) and Normalized Difference Water
Index (NDWI), Normalized Difference Vegetation Index (NDVI), Normalized Difference
Salinity Index (NDSI), and Normalized Difference Built-up Index (NDBI) were used for
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land use and land cover prediction. The 1990 and 2020 classification year images were
used for forecasting the 2050-year LU/LC of these selected blocks. For approximating
the reproduction of the LU/LC classes, the geometry requirements had similar resolution
and the same geographic projection system. Using the Cellular Automata-Artificial neural
network method (CA-ANN), a forecast was created for this study location.

4. Result and Discussion

Remote sensing-based Landsat datasets were used for this study to identify the crop-
land dynamic and inland fishery area using land use and land cover classification, field
data collection, and geospatial indicators. The NDWI maps were used for delineating water
body area and NDVI maps were used for vegetation area monitoring from 1990 to 2020
over the southern parts of North 24 Parganas. Supervised classification techniques with
maximum likelihood algorithms were used for the LU/LC classification. The results show
that quantifiable values of land alteration occurred during the last thirty years and the
LU/LC maps and geospatial indicators (NDVI and NDWI) shows that the alteration of
land and the socio-economic values also increased.

4.1. Land Dynamic Analysis

The Landsat 5 TM and 8 OLI/TIRS data of dissimilar years (1990, 2000, 2010, and 2020)
were used for this study. A supervised classification technique with maximum likelihood
algorithms was used for the LU/LC classification in southern parts of the North 24 Parganas
block. Four types of LU/LC classes were identified in this study area, which were built-up
land, agricultural land/ cropland water body, and vegetation. The built-up land and water
bodies were increased progressively, whereas agricultural land and vegetation areas have
been reduced due to several cyclonic floods and extreme environmental conditions over
selected blocks of North 24 Parganas. Land transformation is the main occurring result for
the LU/LC classification and the LU/LC transformation was augmented by the ecological
susceptibility of the study location. The ecosystem was mostly affected by aspects due of
land alteration. Agricultural land or croplands were converted into inland fishery areas and
the riverine areas were mostly affected by several extreme natural events (Tables 3 and 4).

Table 3. LU/LC area change examination.

Class Name
Area in Sq. km Area in Percentage (%)

1990 2000 2010 2020 1990 2000 2010 2020

Built-up Land 2.23 3.75 5.43 6.86 0.24 0.40 0.59 0.74
Water Body 156.21 328.15 397.77 482.78 16.84 35.38 42.88 52.05
Vegetation 182.61 175.74 162.69 103.46 19.69 18.95 17.54 11.15

Agricultural Land 586.52 419.92 361.67 334.46 63.23 45.27 38.99 36.06
Total 927.55 927.55 927.55 927.55

Table 4. Loss and gain analysis of the LU/LC classes.

Class Name
Area Change (Sq. km)

(1990–2000) (2000–2010) (2010–2020) (1990–2020)

Built-up Land 1.52 1.68 1.43 4.63
Water Body 171.94 69.62 85.02 326.58
Vegetation −6.86 −13.06 −59.23 −79.15

Agricultural Land −166.60 −58.25 −27.21 −252.06

The area of built-up lands in the four years were 2.23 km2 (1990), 3.75 km2 (2000),
5.43 km2 (2010), and 6.86 km2 (2020). The areas of built-up land were mainly located in the
Rampur, Sorberia, Basirhat, Hasnabad, Rameswarpur, Taki, and Haroa areas. Basically, area
of built-up lands became less in the study area. Areas of croplands and inland fishery mostly
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fluctuated in the terms of the land use classes in the study blocks (Table 3). Vegetation
land area also decreased due to anthropogenic activities and natural extreme events over
the study area. Basirhat-I and Basirhat-II were the two blocks most vegetated in the year
1990, but after that, the vegetation area decreased (Figure 3). A total area of 1852.61 km2

(19.69%) of vegetation land was identified in the year 1990, but after that vegetation area
was gradually decreased, as shown by the LU/LC classification results of 175.74 km2 (2000),
162.69 km2 (17.54%), and 103.46 km2 (11.15%) (Figure 3).
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The area of agricultural land or croplands identified in the classification maps were
582.52 km2 (63.23%), 419.92 km2 (45.27%), 361.67 km2 (38.99%), and 334.46 km2 (36.06%)
in the years 1990, 2000, 2010 and 2020, respectively (Figure 4a,b). Agricultural cropland
was the most affected LU/LC class of this region because of natural extreme events and
man-made hazards. The water bodies were mainly river and inland fishery areas. The
Landsat data for these four years were used for this study to identify the increased water
area over the study area. The bodies of inland fishery areas were located in the Hat-
gachi, Sandeshkhali, Bayar Mari Abad, Khariat Abad, Sankardaha Abad, Matbari Abad,
Bhurkunda, Mallick Gheri, Ramjay Gheri, and Ranigacchi areas. Those areas were mostly
converted to inland fishery areas and the local names of those inland fisheries are ‘Bheri’.
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The water bodies occupied 156.21 km2 (16.84%), 328.15 km2 (35.38%), 397.77 km2 (42.88%),
and 482.78 km2 (52.05%) in the years 1990, 2000, 2010, and 2020, respectively.
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Figure 4. LU/LC classification area calculation; (a) total LU/LC classes in different time periods;
(b) loss/gain analysis of different years.

Land alteration or transformation also occurred in the study area and the changed
areas for different years were calculated to monitor the yearly land alteration in the study
area. From the year 1990 to 2020, the built-up area was increased by 1.52 km2, water body
area was increased by 171.94 km2, vegetation and agricultural land were decreased by
6.86 km2 and 166.60 km2, respectively (Table 4). Land-use change and land alteration
phenomena are natural conditions, but identification of the reason for land alteration is
the most effective way of monitoring the land dynamic [57,58]. From the year 2000 to
2010, the land classes areas were 1.68 km2 for built-up land, 69.62 km2 for water bodies
which were increased, and 13.06 km2 for vegetation and 58.25 km2 for agricultural cropland
which were both decreased (Figure 5). The same situation was identified by the study
area. Many portions of the study area were rehabilitated into the inland fisheries areas
due to cyclones and other extreme environmental conditions (Figure 6). Over the thirty
years (1990–2020), the built-up area and water bodies areas were increased 4.63 km2 and
326.58 km2, respectively, also the vegetation and agricultural cropland areas were decreased
around 79.15 km2 and 252.06 km2, accordingly (Figure 7a–d). The accuracy assessments
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were estimated at 90.33%, 90.67%, 88.00%, and 86.67% in the years of 1990, 2000, 2010,
and 2020, respectively. The kappa coefficients were identified as 0.86 (1990), 0.87 (2000),
0.83 (2010), and 0.80 (2020), correspondingly (Tables 5–8).
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Table 5. Accuracy assessment and kappa coefficient in the year of 1990.

Class Name
Ground Truth/References Row

Total
Commission

Error
User

AccuracyWater Body Agricultural Land Vegetation Built-Up Land

Water body 68 3 3 1 75 9.33% 90.67%
Agricultural Land 3 99 6 2 110 10.00% 90.00%

Vegetation 2 6 96 1 105 8.57% 91.43%
Built-up Land 0 1 1 8 10 20.00% 80.00%
Column Total 73 109 106 12 300

Omission Error 6.85% 9.17% 9.43% 33.33%
Producer Accuracy 93.15% 90.83% 90.57% 66.67%
Overall Accuracy 90.33% Kappa Coefficient 0.86

Bold indicates the variaiton.
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Table 6. Accuracy assessment and kappa coefficient in the year of 2000.

Class Name
Ground Truth/References Row

Total
Commission

Error
User

AccuracyWater Body Agricultural Land Vegetation Built-Up Land

Water body 90 4 3 1 98 8.16% 91.84%
Agricultural Land 2 94 5 1 102 7.84% 92.16%

Vegetation 1 5 79 2 87 9.20% 90.80%
Built-up Land 1 1 2 9 13 30.77% 69.23%
Column Total 94 104 89 13 300

Omission Error 4.26% 9.62% 11.24% 30.77%
Producer Accuracy 95.74% 90.38% 88.76% 69.23%
Overall Accuracy 90.67% Kappa Coefficient 0.87

Bold indicates the variaiton.
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(c) 2010–2020; and (d) 1990–2020. The red frame shows the identification of the study location.
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Table 7. Accuracy assessment and kappa coefficient in the year of 2010.

Class Name
Ground Truth/References Row

Total
Commission

Error
User

AccuracyWater Body Agricultural Land Vegetation Built-Up Land

Water body 101 9 5 2 117 13.68% 86.32%
Agricultural Land 3 82 4 2 91 9.89% 90.11%

Vegetation 3 4 69 1 77 10.39% 89.61%
Built-up Land 0 1 2 12 15 20.00% 80.00%
Column Total 107 96 80 17 300

Omission Error 5.61% 14.58% 13.75% 29.41%
Producer Accuracy 94.39% 85.42% 86.25% 70.59%
Overall Accuracy 88.00% Kappa Coefficient 0.83

Bold indicates the variaiton.

Table 8. Accuracy assessment and kappa coefficient in the year of 2020.

Class Name
Ground Truth/References Row

Total
Commission

Error
User

AccuracyWater Body Agricultural Land Vegetation Built-Up Land

Water body 115 6 7 1 129 10.85% 89.15%
Agricultural Land 6 73 4 2 85 14.12% 85.88%

Vegetation 3 6 59 1 69 14.49% 85.51%
Built-up Land 3 0 1 13 17 23.53% 76.47%
Column Total 127 85 71 17 300

Omission Error 9.45% 14.12% 16.90% 23.53%
Producer Accuracy 90.55% 85.88% 83.10% 76.47%
Overall Accuracy 86.67% Kappa Coefficient 0.80

Bold indicates the variaiton.

4.2. Geospatial Indicator

Geospatial indicators have been widely used for delineating the different index-based
maps. The Landsat 4–5 TM, 7 ETM+, 8 OLI/TIRS, and Sentinel-2A/B datasets have been
used for identification of different geospatial indicators. The most used indicators have
been the Normalized Difference Water Index (NDWI), Normalized Difference Vegetation
Index (NDVI), Soil-Adjacent Vegetation Index (SAVI), Ratio Vegetation Index (RVI), Trans-
formed Normalized Difference Vegetation Index (TNDVI), Enhance Vegetation Index (EVI),
Modified Normalized Difference Water Index (MNDWI), Water Ratio Index (WRI) and
Normalized Difference Salinity Index (NDSI) for vegetation, water body, and salinity iden-
tification of an area. This study used two geospatial indicators (NDVI and NDWI) for
delineating the vegetation scenario and water area identification. Moreover, the indices
were used for the validation of the classification. Agricultural land and water area, mainly
the area of inland fishery, dominated land classes of the southern parts of North 24 Par-
ganas. Figures 8 and 9 show that the NDVI and NDWI maps for different time periods of
the southern parts of North 24 Parganas. In the year 1990, the vegetation area occupied
a huge amount in the south, north and north-east parts of the study area. After that, the
green space area was greatly reduced by human modification and saltwater intrusion over
the study area. The green colour shows the vegetated area, and the blue colour indicates
the water area. The high values of NDVI were 0.83 (1990), 0.63 (2000), 0.54 (2010), and
0.47 (2020). The NDVI maps show that the vegetation area was degraded, and water
bodies increased (Figure 8). Normalized Different Water Index (NDWI) maps were used
for defining the area of water bodies in the study location. In the initial phase, the areas
of water bodies or inland fisheries, were less and only showed in the Sandeshkhali-I and
Haroa blocks, but after the saltwater intrusion, extreme environmental conditions, and
disaster-related work, those areas had a huge amount of water area change. The highest
values of NDWI were, 0.27 (1990), 0.31 (2000), 0.38 (2010), and 0.46 (2020) (Figure 9). The
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Aila, Fani, Bulbul, Amphan, and Yash cyclones have destroyed the region and similarly,
the inland fishery areas were increased.
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4.3. Impact of Cropland Dynamic

Crop production is very important for West Bengal because many people are de-
pendent on rice. Rice is the main food in West Bengal, but it was the rice-growing areas
that have been converted into inland fishery areas. Farmers are economically well off for
cultivating the fish, but the resultant rice scarcity has increased due to loss of crop land. It
was mainly the riverine areas that were converted from cropland into inland fishery use.
An administrative awareness program, planning and water quality related information and
training was given by the government. The number of markets and preservative companies
were increased due to inland fish cultivation, but crop production was decreased on this
study area. Around 586.52 km2 (63.23%) of agricultural cropland area was identified in
the year 1990, and the most cropped production block was Sandeshkhali-I. After several
natural disasters and environmental changes, these blocks were almost all converted from
cropland to inland fishery area (Figure 7). In 2020, the agricultural cropland was identified
334.46 km2 (36.06%).

4.4. Impact of Inland Fishery Alteration

Inland fisheries are a more profitable use of this area because of food production and
the international demand for fish. Mainly the southern parts of North 24 Parganas are
farming different shrimp and crabs for their livelihood. The southern parts of the West
Bengal and Odisha coast are regularly affected by several cyclones and natural disasters
yearly, that is why those areas are mainly facing a huge amount of saltwater intrusion and
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the associated decreased soil fertility rate and soil pH, which were the most significant
parameters for crop production. But this problem has been widely affected over the
area. Several natural disasters like the Aila, Fani, Bulbul, Amphan, and Yash cyclones
have affected the riverine area and influence the land dynamic. Fish cultivation is more
profitable for the farmers, but the overwhelming land alteration has affected the natural
environment and the flora and fauna. The ecosystem of the rural areas has been affected by
this type of land alteration.

Agronomy 2022, 12, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 8. Normalized Different Vegetation Index (NDVI) maps of the study area. 

 
Figure 9. Normalized Difference Water Index (NDWI) maps of the study area. Figure 9. Normalized Difference Water Index (NDWI) maps of the study area.

In the year 1990, 156.21 km2 (16.84%) of the land was identified as water bodies, but
several years of cyclonic activities changed the areal conditions over the study area. Most of
the inland fishery areas were identified in Sandeshkhali-I and Haroa during 1990 (Figure 6).
But after that, several cyclones and environmental disasters have affected the area and
influenced land alteration. The Sandeshkhali-I block was the most affected area and had
the maximum amount of terrestrial land that was rehabilitated cropland altered to inland
fisheries lands. In the year 2020, 482.78 km2 (52.05%) area was under water bodies. This
change influenced the land alteration and crop area dynamic. People were mostly building
their economic development due to fish production and high international demands for
fish-related food production, but the land alteration has degraded the local ecology and
environment. Mangrove areas are a natural barrier, which protects the land from extreme
environmental and natural disasters. Only the Sandeshkhali-II block has some parts of the
mangrove area remaining; the rest of the area is not covered by mangrove forest. The reason
for floodwater intrusion is that low land areas and the Ganga delta have a huge amount of
high tide related problems. During high tides, many land areas are cover by water. The
cyclonic condition has triggered this phenomenon and decreased the soil fertility rate.

4.5. Socio-Economic Values due to Land Alteration

The surface water body change analysis and crop vulnerability area identification
was the most effective research work for delineating food scarcity and land dynamic
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identification. Furthermore, the causes of land dynamics and mitigation strategies are
more essential for forthcoming development and sustainable expansion of this area. The
southern parts of North 24 Parganas are a riverine area, and those six blocks were the most
affected by the natural extreme environment. Cyclones Aila, Bulbul, Fani, Amphan, Yash,
and many other natural disasters have triggered the changes in the natural environment
and reduced local soil fertility. Good soil fertility and soil quality (pH, nitrogen, etc.) are
essential for crop production, but the floods have affected that region, and low soil fertility
has triggered the conversion of cropland into inland fishery area over the southern parts of
North 24 Parganas. Sandeshkhali-I is the most affected block of North 24 Parganas, with
most of the land now covered in inland fisheries. In the initial phase or year of this study,
1990, the area did not support this type of inland fishery, but after Aila, those regions were
where the cropland was converted into an inland fishery area. The Kanmari, Chunchura,
Matbari Abad, Malancha, Kachurhula, Muchikhola, and Ramchakir Gheri zones then
supported an enormous quantity of inland fisheries area.

This remote sensing (RS) and geographic information system (GIS) based study has
indicated that the land dynamic over thirty years in southern parts of North 24 Parganas has
changed. The Landsat 5 TM and 8 OLI/TIRS datasets were used for this study from 1990 to
2020 at 10-year intervals. The NDVI and NDWI geospatial indices were used for green
space or vegetation degradation and water area change analysis. The geospatial indicator
was widely used for monitoring the land-related study and different NDWI maps for the
four years show that the water areas have changed due to climate change and extreme
environmental conditions. The Sandeshkhali-I, Haroa, and Minakhan blocks have been
most affected by the saltwater interruption because the river areas were situated only on
those blocks. This study has identified that the area of cropland has changed, and the inland
fishery area has increased, which has developed the local farmer’s economic well-being
and they are building their life towards a sustainable healthy livelihood. Government and
policymakers also build such type of planning for the overall development of those areas.

West Bengal is the highest rice-producing state of India, but with the overwhelming
population pressure and urban expansion towards rural and fringe areas, the areas of
cropland and vegetation has decreased. The vegetation area was converted by the local
people for building the settlement. The natural extreme environmental conditions and
methodological conditions have affected the coastal area, which was the most demanded
parts for crop production, by saltwater intrusion and reduced soil fertility rate. But the
natural environment and man-made disasters have affected the selected blocks of North
24 Parganas and increased the inland fishery area due to saltwater intrusion. Farmers are
mostly economically stronger because of fish production. National and international fish
cultivation demands are very high, and farmers have increased their profit by farming fish
and crabs. Mainly, the selected blocks of North 24 Parganas were farming brackish water
inland fish after conversion of cropland to fishery areas, and farmers were most economi-
cally strong and built proper environmental conditions over the study area. The Central
Inland Fishery Research Institute (http://www.cifri.res.in/ (accessed on 28 February 2022)),
which is situated in Barrackpore, runs an awareness program for farmers, training, and a
water quality monitoring centre for the development of fish production, for the general
improvement of this study location.

4.6. Land Use/Land Cover Prediction for 2050

For the LU/LC forecast for the year 2050, the two different image classification maps
of 1990 and 2020, distance from road and the digital elevation model (DEM) were used with
the QGIS software MOLUSCE plugin toolbar or algorithm. The forecast map shows that
the natural disaster connected phenomena will augment the agricultural land alteration
and control the water bodies or inland fisheries location. The soil salinity of the land and
the inland fisheries lands will both be increased in forthcoming years. In the predicted
LU/LC map for the year 2050, the water body or inland fishery was identified as 614.73 km2

(66.27%), agricultural land as 217.38 km2 (23.44%), vegetation as 76.85 km2 (8.28%), and

http://www.cifri.res.in/
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built-up land as occupying 18.58 km2 or 2% of the total area (Figure 10). The water
bodies or inland fishery area will have increased gradually and the agricultural cropland
and vegetation significantly been decreased. Due to urban expansion and overwhelming
population pressure, the settlements land will be likewise increased [59]. The reduced
agricultural cropland and vegetation land combined with the local climatic disorder will
result in a degraded environmental condition. The fishery area will be increased gradually
and the area along the river side will be the most affected by this LU/LC change. The
Sandeshkhali-I, Minakhan, Haroa and Basirhat-II blocks will be the most affected by 2050.
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5. Limitation and Recommendation

The Landsat 5 TM and 8 OLI/TIRS datasets were used for calculating the LU/LC
change, then geospatial indicators (NDVI and NDWI) were used for identification in the
selected blocks of North 24 Parganas district, West Bengal, India. Four multi-temporal
datasets were used for this cropland dynamic and inland fishery area identification (1990,
2000, 2010 and 2020). Due to resolution problems and pixel mixing problems, the area
identification was more difficult for and is a limitation of the Landsat data. Additionally,
the area of cloud cover and pixel identification were the most important limitations of these
images. But the Landsat data have been widely used for earth surface change analysis.
The CA-ANN model was used for the LU/LC prediction of the study location [42]. The
QGIS software was used for the purpose of the LU/LC prediction, where some of the
most significant variables for prediction such as the road density, elevation, slope, and
residential areas were used. The CA-ANN model is not used for established designated
standards in the structure of each weighting contribution criterion contributing to their
significance [60]. The LU/LC did not forecast 100% correctly through several models,
therefore better prediction is desirable for future development and management in the
study location. This study was also accommodating for the administrators, policymakers,
local planners, other stakeholders and researchers for their study and development of
this area. The future research scope for this area, are flood susceptibility mapping, soil
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salinity identification, cropland losses estimation, green space decreased identification,
groundwater potential zone and groundwater quality assessment, socio-economic impact
study, and improvement of farmers income study.

6. Conclusions

Land dynamics has increased the land scarcity for some areas like urban, peri-urban,
and fringe areas, because vegetation and agricultural land has been converted into built-up
or industrial land. The North 24 Parganas district is the most land dynamic district of
West Bengal because of croplands being converted into inland fisheries due to extreme
weather conditions. The Western parts of this district are joint with the megacity Kolkata
and the southern parts are mangrove forests. The southern parts of this area have some
important rivers, which are the main water source for some time. The Bay of Bengal is
situated in the southern part of this area. Every year, the natural environment has been
destroyed by the changing climate conditions, floods, cyclones, and many other natural and
manmade hazards. This location has been subjected to an enormous volume of saltwater
intrusion due to the riverine area that has damaged the cropland over these study areas.
The Sandeshkhali, Basirhat, Haroa, Hasnabad, and Minakhan areas are the most affected by
natural phenomena and the cyclonic storms that have hammered the natural environment.
Due to saltwater intrusion, the land conversion has occurred in the land use and land
cover classification map. In 1990, the agricultural land, or mainly the cropland occupied
a large area in the selected blocks but after that, the extreme events of climatic change have
destroyed the cropland and increased the inland fisheries areas over the study region.

Cropland vulnerability assessment is the most recent work for this study area because
most of the people of West Bengal are dependent on rice cultivation and the main food is
rice and related items. But the natural cyclones have increased cropland vulnerability over
the southern parts of North 24 Parganas. The most affected blocks are the Sandeshkhali-I,
Hasnabad, and Haroa. After the super cyclone, Aila, the South, and North 24 Parganas were
most affected, and saltwater intrusion has damaged the soil fertility and crop production
capacity. The soil is now mostly saline and rice cultivation is not suitable for those areas.
Because of this natural climatic condition, many farmers have converted the cropland
into brackish water inland fishery areas, resulting in increased crop vulnerability and
reduced food security for this location. The cropland area was reduced around 252.06 km2

(1990 to 2020) due to saltwater intrusion and man-made hazards. Gradually the water
area was increased by 326.58 km2 (1990 to 2020). Vegetated land area also decreased due
to anthropogenic activities and salinity incensement of this area. Around 79.15 km2 of
vegetation portions have been lost due to climatic conditions and human activities. There
is a need for proper planning, management, and an increased awareness for this problem,
and for some mitigation strategies to figure out the sustainable development goals for the
study location. Otherwise, saltwater intrusion and land dynamics will increase the crop
vulnerability and inland fishery over the study area. The study results can accommodate
the policymakers, local administrators, and other stakeholders in building proper planning
for those blocks and increasing a better healthy life. Future study is required for the
development of this area, such as the identification of areas of flood susceptibility, soil
salinity, crop production and fish production, and the socio-economic conditions of this
area, and agricultural application. This study method can also be used for future study
over some other areas with or without suitable modification.
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