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Abstract: Straw returning is an important method of improving soil fertility and reducing environ-
mental pollution. Controlled-release nitrogen fertilizer (CRN) is regarded as an effective way to
reduce nitrogen (N) loss and increase N-use efficiency and crop yield. In order to determine the
combined effects of straw management (straw removal and straw returning) and N-fertilization
strategy (CK (no N), urea, CRN, and a mixture of urea and CRN (UC)) on lint yield, N utilization,
and soil properties at harvest of field-seeded cotton, field experiments were conducted from 2018
to 2019. The results demonstrated that the lint yield was the highest with a combination of straw
returning and UC, increasing by 4.2–46.9% over other combinations. Straw returning combined with
UC facilitated biomass-accumulation and N-uptake from squaring to the boll-opening growth stage,
contributing to higher N agronomic-use efficiency and apparent recovery-use efficiency. Moreover,
regardless of the straw management, CRN or UC treatment increased the soil microbial N content
and sucrase activity at harvest compared to urea or CK treatment. In summary, straw returning
combined with UC was beneficial to the lint yield, N utilization, and soil N availability, which might
be an optimizing strategy for field-seeded cotton.

Keywords: straw management; N-fertilization strategy; field-seeded cotton; lint yield; N-utilization

1. Introduction

Straw is an important biological resource in the crop-production system as it contains
a large amount of organic matter and nutrient elements, such as carbon, nitrogen (N),
phosphorus, and potassium [1–4]. Therefore, straw returning has become an important
method of improving soil fertility and ecological protection for the sustainable development
of agriculture in the world [5,6].

Barley–cotton rotation is an important cropping system in the main cotton-producing
regions of the Yangtze River Valley and the Yellow River Valley in China. Straw returning
is a technical approach to reducing the application of chemical fertilizer in two crops un-
der the barley–cotton rotation system. Several studies have shown that straw returning
can increase crop yield in maize, wheat, rice, and cotton, etc. [1,7–9], but the contrary
reports also exist [10,11]. In addition, studies have shown that straw returning enhances the
C/N ratio, which can slow straw decomposition and cause net N immobilization [12–14].
This phenomenon could affect the availability of soil and fertilizer N, thus inhibiting
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the early growth of crops and even decreasing crop yield [10,11]. Therefore, it is impor-
tant to apply N fertilizer reasonably to promote the cotton-seedling growth under straw
returning [15,16].

As field-seeded cotton after barley harvest is conducive to simplified and efficient
production, it is the future direction of cotton production in the Yangtze River Valley [17,18].
In view of the shorter effective growth period and the short season of cotton varieties
relative to conventionally transplanted cotton, an appropriate N-fertilization strategy is
crucial for concentrated boll-forming to achieve high yield for field-seeded cotton after
barley harvest. This strategy should not only favor seedling growth at earlier growth
stages but also prevent premature senescence and delayed maturity at later growth stages
for field-seeded cotton after barley harvest [17]. Although common urea is most usually
used as a N fertilizer, with split applications for high fields, it cannot be ignored that
the rapid N release of common urea leads to reduced N-use efficiency and increases the
risk of environmental pollution [19]. However, by applying different coating materials
or adding inhibitors, the controlled-release N fertilizer (CRN) could release N gradually
into the soil with a rate meeting the nutrient demand of plants, thus reducing excessive
inorganic N accumulation and N loss from the soil profile [20–23], which decreases dosage
and frequency during the crop growth period and reduces the risk of environmental
pollution [24,25]. Hence, CRN is considered to be an effective way to reduce N loss and
increase N-use efficiency and the crop yield [26]. In addition, studies have showed that
CRN could lead to insufficient N supply at earlier growth stage and delayed senescence in
crops [27,28]. Therefore, an effective N-fertilization strategy is required to maximize yields
and N-use efficiency and to minimize the negative effects of N fertilizer on the environment
in field-seeded cotton after barley harvest.

Numerous studies have examined the isolated impact of straw or CRN on crop yields
and N-utilization [9,20–23], while studies of the combined impact of straw and fertilizer
mostly focused on straw and chemical fertilizer [1,2,29]. Straw and CRN have rarely been
evaluated together for their combined effects on crops, especially on cotton yield and N-
utilization in field-seeded cotton under the barley–cotton rotation system. Further research
must be conducted to establish improved management strategies to increase cotton yield
and N-use efficiency. Understanding the interaction of straw management and CRN strat-
egy on cotton growth, yield, and N utilization is important to maximize agronomic benefits
and minimize environmental costs compared to conventional fertilization. Therefore, the
present study aimed to determine the influence of straw and CRN and their interaction
on (i) cotton yield and yield components, (ii) cotton biomass and N uptake, (iii) N-use
efficiency, and (iv) the soil properties at harvest. The results will help identify suitable
combinations of straw and CRN practices to promote cotton growth and improve yields
and N-utilization in field-seeded cotton in China.

2. Material and Methods
2.1. Experimental Site

The field experiments were conducted in 2018 and 2019 at Dafeng Basic Seed Farm,
Dafeng, Jiangsu (33◦24′ N and 120◦34′ E), China. The mean temperatures during the cotton
season (May–October) were 25.1 ◦C and 24.4 ◦C, respectively; and the total precipitations
were 429.2 mm and 473.2 mm, respectively. The sandy loam was slightly alkaline (pH = 7.9)
and contained 8.8% clay, 36.2% silt, and 55.0% sand in the 0–20 cm soil layer. Organic
matter, total N, alkali-hydro N, available phosphate (P), and available potassium (K) in
the 0–20 cm soil layer were 12.5 g·kg−1, 1.0 g·kg−1, 86.3 mg·kg−1, 30.5 mg·kg−1 and
243 mg·kg−1, respectively.

2.2. Experimental Design

A split-plot design in randomized complete blocks with three replicates was employed
for this experiment. The main plot factor was straw management and the sub-plot factor
was a N-fertilization strategy for a total of four treatments, randomly assigned. The main
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plot consisted of two levels: (1) straw removal (S0): the barley straw was removed from
the field after barley harvest and (2) straw returning (S1): the barley straw was chopped
into pieces 5–8 cm in length and then manually buried into 0–20 cm depth soil at the
rate of 6 t ha−1. The sub-plot consisted of four levels: (1) CK (0 kg ha−1 N), (2) urea
(150 kg ha−1 N), (3) CRN in the form of resin-coated urea (150 kg ha−1 N, the N release rate
was above 92.0% after incubation period of 110 days in water at 25 ◦C), and (4) a mixture
of urea and CRN (UC) at the N ratio of 4:6 (150 kg ha−1 N). The CRN and UC were applied
once at the seedling stage, while the urea was applied twice—once at the seedling stage
(40% of the total) and again at the early-blooming growth stage (60% of the total). Phosphate
and potassium fertilizers were the same for all treatment combinations, and were applied
as basic dressing with 75 kg ha−1 (P2O5) and 150 kg ha−1 (K2O).

The area of each main plot was 127.68 m2 (18.24 m× 7.0 m), divided into four sub-plots.
Each sub-plot was 31.92 m2 (4.56 m× 7.0 m) and contained six rows. The short season cotton
variety (CCRI50) was selected as experiment material, and a density of 9.75 × 104 plants ha−1

was sown with a row spacing of 76 cm on 22 May 2018 and 27 May 2019. Other management
measures were the same as those used in large-scale cotton production.

2.3. Sampling and Measurement
2.3.1. Biomass Accumulation and N-Content Determination

Plant samples for biomass and N uptake were taken from the peak squaring growth
stage onwards. In 2018, the sampling days were 15 July at the peak squaring growth stage,
15 August at the peak blooming growth stage, and 15 September at the boll-opening growth
stage. In 2019, the sampling days were 20 July at the peak squaring growth stage, 20 August
at the peak blooming growth stage, and 20 September at the boll-opening growth stage.

Five consecutive cotton plants with uniform growth were collected from each sub-
plot. Above-ground parts of the cotton plant were separated into leaves, stems, and
inflorescence. The separated samples were first heated at 105 ◦C for 30 min for deactivation
of enzymes, then dried at 80 ◦C to a constant weight, followed by weighing and grinding.
For determination of total N uptake, the ground samples of each plant part were screened
through a 0.5 mm sieve. Total N concentration was assessed using the Kjeldahl method [30].
N uptake by the plants was then calculated based on the resulting plant N concentrations
and weights of different plant parts.

2.3.2. N-Use Efficiency

The N-use efficiency values were calculated according to Yang et al. (2016) [17]:
(1) N agronomic-use efficiency (NAE, kg kg−1) = ((lint yield from N treated plants) − (lint
yield from receiving no N fertilizer))/total applied N in the N treatment, and (2) N apparent
recovery-use efficiency (NARE, %) = ((total plant N uptake from N treated plants) − (total
N uptake from plants receiving no N fertilizer)) × 100/(total applied N in the N treatment).

2.3.3. Soil Chemical and Biological Analysis

On 10 October 2018 and 12 October 2019, soil samples were collected at depths of
0–20 cm from each sub-plot, and then separated into two parts. One subsample of the soil
was air-dried, ground, passed through a 2 mm sieve, then through a 0.25 mm sieve, and
stored in paper bags for determination of the soil chemical and biological properties and
enzyme activities. Soil alkali–hydrolyzed N was measured using the procedure described
by Bao (1999) [31]. In the diffusion boat, the soil was hydrolyzed with NaOH, causing
the easily hydrolyzable N (potentially available N) to alkali hydrolyze and transform into
NH3. The NH3 was absorbed by H3BO3 after diffusion and then titrated by standard
acid. The urease and sucrase activity of soil was measured according to the procedure
described by Li et al. (2008) [32]. After adding urea solution, the sample solution was
incubated to hydrolyze urea into NH3-N by urease, the urease activity was expressed as
mg NH3-N g−1 24 h−1. After adding sucrose solution, the sample solution was incubated
to hydrolyze sucrose into glucose by sucrase. The sucrase activity was expressed as mg
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glucose g−1 24 h−1. The other subsample of the soil was stored in a −4 ◦C refrigerator
for soil microbial N analysis. Soil microbial N was measured by the method described by
Lin (2010) [33]. The soil microbial N was released with non-fumigated soil as control, and
then the microbial N was extracted by potassium sulphate solution.

2.3.4. Lint Yield and Yield Components

The number of bolls was determined from a continuous set of 20 plants at the center
area of each subplot on 10 October 2018 and 12 October 2019. Boll weight was determined
from 30 randomly sampled open bolls at each subplot and weighed after sun-drying over
one week. Then the seed cotton was rolled into lint, and the lint percentage and lint yield
were calculated.

2.4. Statistical Analyses

Data were analyzed following analysis of variance using SPSS 17.0 (SPSS Institute Inc.
Chicago, IL, USA), and the treatment means were compared based on the least significant
difference at the 0.05 level of probability.

3. Results
3.1. Yield and Yield Components under Combined Straw Management and N-Fertilization Strategy

Compared with straw removal, straw returning exhibited non-significant and signifi-
cant effects on lint yield in 2018 and 2019, respectively, and the average values increased by
0.8% and 4.9% (Table 1), which may be due to the differences in climate and the duration
of straw returning between these years. However, N fertilization significantly increased
lint yield in both years. The average lint yield was the highest in the UC treatment, and
increased by 40.9%, 12.5%, 10.7% relative to the CK, urea, and CRN treatments, respectively,
in 2018 and by 41.9%, 9.3%, 5.3% in 2019. The lint yield of the UC treatment under straw
returning was higher than that under straw removal in either year. Moreover, no significant
effect of the interaction between the straw management and N-fertilization strategy on lint
yield was observed in either 2018 or 2019.

Straw management and N-fertilization strategy, as well as their interaction, signifi-
cantly affected the boll number per hectare and boll weight in both years (Table 1). The boll
number per hectare was the highest in the UC treatment, and reduced by 8.6%, 11.7%, and
24.9% and 6.3%, 12.9%, and 28.0% in treatments of CRN, urea, and CK treatments under
straw removal, respectively, in 2018 and 2019, and by 12.7%, 10.6%, and 30.7% and 6.6%,
5.2%, and 29.8% under straw returning. What is more, the boll number per hectare of the
UC treatment under straw returning exceeded that under straw removal by 6.8%. Under
straw removal, there were no significant differences in boll weight under N fertilization in
2018 and 2019, while the boll weight was the highest in the CRN treatment under straw re-
turning. The boll weight from CRN treatment under straw removal was comparable to that
under straw returning. The lint percentage was only significantly affected by N-fertilization
strategy, and the lower value was in the CRN treatment regardless of straw management in
both years.
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Table 1. Effects of straw management combined with N-fertilization strategy on lint yield and yield components in field-seeded cotton.

Treatment Combination 2018 2019

Straw
Management

N-Fertilization
Strategy

Boll No.
(×104 ha−1) Boll Weight (g) Lint Percentage (%) Lint Yield

(kg ha−1)
Boll No.

(×104 ha−1) Boll Weight (g) Lint Percentage (%) Lint Yield
(kg ha−1)

S0 CK 71.7 e 5.0 bc 35.5 a 1281.7 d 66.6 e 5.0 bcd 35.8 a 1190.0 e
urea 84.3 d 5.2 a 35.5 a 1562.5 c 80.3 d 5.2 a 35.5 a 1484.1 d
CRN 87.2 cd 5.2 a 34.9 ab 1594.7 c 86.4 c 5.2 a 34.7 bc 1570.1 c
UC 95.4 b 5.2 ab 35.2 ab 1732.9 b 92.2 b 5.1 ab 35.0 abc 1653.8 b

S1 CK 70.7 e 4.9 d 35.8 a 1229.6 d 68.9 e 4.9 d 35.8 a 1196.2 e
urea 91.1 bc 4.9 cd 35.3 ab 1583.7 c 93.0 b 4.9 cd 35.4 ab 1613.4 bc
CRN 89.0 cd 5.2 a 34.5 b 1600.8 c 91.6 b 5.2 a 34.6 c 1645.3 b
UC 101.9 a 5.1 b 35.0 ab 1806.1 a 98.1 a 5.0 bc 35.2 abc 1732.4 a

Source of variance
Straw management (S) * ** ns ns ** ** ns *

N-fertilization strategy (N) ** ** ** ** ** ** ** **
S × N ** ** ns ns ** * ns ns

Different letters in the same column mean significant difference among the treatments at the 0.05 level. Each value represents the mean of three replications. ns, not significant;
* and ** indicate significant difference at the 0.05 and 0.01 levels of probability, respectively; S0, straw removal; S1, straw returning; CRN, controlled-release N fertilizer; UC, the mixture
of urea and CRN.
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3.2. Biomass Accumulation and Partition under Combined Straw Management and
N-Fertilization Strategy

In comparison to straw removal, straw returning significantly decreased the biomass
of both shoot and reproductive organs only at the squaring growth stage in both years,
which indicated that straw returning inhibited seedling growth at an earlier growth stage
(Table 2). At the boll-opening growth stage, straw returning exerted non-significant and
significant effects on the biomass of both of shoot and reproductive organs, respectively,
in 2018 and 2019, which may be attributed to the difference in the rate of nutrient release
from the straw resulting from climate difference between years. N fertilization significantly
increased biomass across the whole growth stage compared with CK in either year (Table 2).
The biomass of both shoot and reproductive organs was lower in the CRN treatment at the
squaring growth stage under N fertilization, while the value was higher in the UC treatment
from peak blooming to the boll-opening growth stage (Figure 1). This indicated that
application of CRN was unfavorable for seedling growth at the earlier growth stage, while
application of UC could promote biomass accumulation in both shoot and reproductive
organ during the whole growth stage (Table 2, Figure 1). At the squaring growth stage,
significant interactions between straw management and N-fertilization strategy on biomass
both of shoot and reproductive organs were detected in both years (Table 2). The shoot
biomass was lower in the combination of straw returning and CRN under N fertilization.
Similar results were detected for biomass of reproductive organs (Figure 1). At the boll-
opening growth stage, the shoot biomass was significantly affected by the interaction of
straw management and N-fertilization strategy in either year (Table 2). The highest shoot
biomass was in the UC treatment regardless of straw management, and decreased by
39.7%, 13.4%, and 6.5% and 41.1%, 13.4%, and 6.5% in treatments of CK, urea, and CRN,
respectively, under straw removal in 2018 and 2019, and by 44.2%, 13.7%, and 7.3% and
45.4%, 9.2%, and 5.8% under straw returning. The shoot biomass of UC treatment was
higher under straw returning than under straw removal. Similar results were found for
biomass of reproductive organs (Figure 1). The results indicated that higher biomass at the
boll-opening growth stage could be obtained in the combination of straw returning and
UC for field-seeded cotton after barley harvest.

3.3. N Uptake and Utilization in Shoot and Reproductive Organs under Combined Straw
Management and N-Fertilization Strategy
3.3.1. N Uptake and Partition

N uptake of the shoot significantly decreased only at the squaring growth stage under
straw returning compared with straw removal, while it decreased from peak squaring to
the peak-blooming growth stage for reproductive organs (Table 3), which indicated that
straw returning hindered N uptake at the earlier growth stage. N fertilization significantly
enhanced N uptake both of shoot and reproductive organs across all growth stages com-
pared with CK (Table 3). For urea treatment, the N uptake of both shoot and reproductive
organs was higher at peak squaring but lower at the boll-opening growth stage under
N fertilization; for CRN treatment, N uptake was lower at peak squaring but higher at the
boll-opening growth stage (Figure 2). This suggested that application of urea facilitated
N uptake at the early growth stage, while application of CRN facilitated it at the later
growth stage.
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Figure 1. Effects of straw management combined with N-fertilization strategy on biomass accumula-
tion at main growth stages in field-seeded cotton. The data are the means for three replications ± SD.
Different letters on the bar mean significant difference at the 0.05 level. S0, straw removal; S1, straw
returning; CRN, controlled-release N fertilizer; UC, the mixture of urea and CRN.

Figure 2. Effects of straw management combined with N-fertilization strategy on N uptake at main
growth stages in field-seeded cotton. The data are the means for three replications ± SD. Different
letters on the bar mean significant difference at the 0.05 level. S0, straw removal; S1, straw returning;
CRN, controlled-release N fertilizer; UC, the mixture of urea and CRN.
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Table 2. Sources of variance in variance analysis for the biomass accumulation.

Source of Variance

2018 2019

Shoot Reproductive Organs Shoot Reproductive Organs

Peak
Squaring

Peak
Blooming

Boll
Opening

Peak
Squaring

Peak
Blooming

Boll
Opening

Peak
Squaring

Peak
Blooming

Boll
Opening

Peak
Squaring

Peak
Blooming

Boll
Opening

Straw management (S) ** ns ns * ns ns ** ns * * ns *
N-fertilization

strategy (N) ** ** ** ** ** ** ** ** ** ** ** **

S × N ** ns ** * ns ns * ns * * ns **

ns, not significant; * and ** indicate significant difference at the 0.05 and 0.01 levels of probability, respectively.

Table 3. Sources of variance in variance analysis of N uptake.

Source of Variance

2018 2019

Shoot Reproductive Organs Shoot Reproductive Organs

Peak
Squaring

Peak
Blooming

Boll
Opening

Peak
Squaring

Peak
Blooming

Boll
Opening

Peak
Squaring

Peak
Blooming

Boll
Opening

Peak
Squaring

Peak
Blooming

Boll
Opening

Straw management (S) * ns ns * * ns * ns ns ** * ns
N-fertilization

strategy (N) ** ** ** ** ** ** ** ** ** ** ** **

S × N ** ** ns ** ** ns * ** ns ** ** ns

ns, not significant; * and ** indicate significant difference at the 0.05 and 0.01 levels of probability, respectively.
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The interaction of straw management and N-fertilization strategy exhibited significant
effects on N uptake from peak squaring to peak blooming growth stage. At the squaring
growth stage, the lowest combination of N uptake was the same as that of biomass. At
the peak-blooming growth stage, the lowest N uptake of the shoot was detected in the
combination of straw returning and urea, while it was in the combination of straw re-
turning and CRN for reproductive organs. This suggested that the combination of straw
returning and urea displayed premature senescence to some extent at the later growth
stage. At the boll-opening growth stage, the N uptake was only significantly affected by
the N-fertilization strategy, and the average highest N uptake was in the CRN treatment.
Under straw removal, the N uptake of the shoot decreased by 55.0%, 26.8%, and 14.1%
and 54.0%, 23.5%, and 9.1% in treatments of CK, urea, and UC relative to CRN treatment,
respectively, in 2018 and 2019; under straw returning, the decrements were 60.3%, 29.6%,
and 7.0% and 58.2%, 24.3%, and 6.6% (Figure 2 and Table 3). N uptake in the CRN treatment
under straw returning was higher than that under straw removal. N uptake in reproductive
organs displayed the same trend as that of the shoot. The results suggested that application
CRN could cause extended N uptake, especially under the combined application of straw
and CRN.

3.3.2. N-Use Efficiency

The NARE and NAE were markedly enhanced under straw returning compared with
straw removal in both years (Table 4), with the average NARE values increasing by 17.8%
and 11.6% and the NAE by 23.1% and 23.3%, respectively, in 2018 and 2019.

Table 4. Effects of straw management and N-fertilization strategy on N-use efficiency in
field-seeded cotton.

Treatment
2018 2019

NARE (%) NAE (kg kg−1) NARE (%) NAE (kg kg−1)

S0 46.0 b 2.0 b 41.4 b 2.1 b
S1 54.1 a 2.4 a 46.2 a 2.6 a

urea 33.0 c 1.8 b 31.0 c 2.0 c
CRN 64.5 a 2.0 b 54.0 a 2.3 b
UC 52.7 b 2.9 a 46.4 b 2.8 a

Different letters in the same column mean significant difference among the treatments at the 0.05 level. Each
value represents the mean of three replications. S0, straw removal; S1, straw returning; CRN, controlled-
release N fertilizer; UC, the mixture of urea and CRN; NARE, N apparent recovery-use efficiency; NAE, N
agronomic-use efficiency.

N fertilization significantly affected the NARE and NAE in both years. The NARE
was the highest in the CRN treatment, followed by UC treatment, and the average values
increased by 95.5% and 74.2% for CRN treatment and by 59.7% and 49.7% for UC treatment
over urea treatment, respectively, in 2018 and 2019. The NAE was the highest in UC
treatment, and the average values increased by 61.1% and 40.0% relative to urea treatment
and by 45.0% and 21.8% relative to CRN treatment, respectively, in 2018 and 2019. These
results indicated that high NARE and NAE could be obtained by applying UC.

In addition, no significant effect of interaction between straw management and
N-fertilization strategy on NARE and NAE was observed in either 2018 or 2019.

3.4. Soil Physical and Chemical Properties at Harvest
3.4.1. Soil Alkali-Hydro N and Microbial N Contents

In comparison to straw removal, straw returning significantly increased the contents
of soil alkali-hydro N 0–20 cm deep at harvest, where the average values enhanced by 4.5%
and 7.7% in 2018 and 2019, respectively. (Table 5). However, no significant differences were
found for the soil microbial N content between the two straw managements in either year.
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Table 5. Effects of straw management combined with N-fertilization strategy on soil alkali-hydro N
and microbial N contents at harvest (mg kg−1).

Treatment
2018 2019

Alkali-Hydro N Microbial N Alkali-Hydro N Microbial N

S0 86.9 b 26.5 a 86.6 b 27.3 a
S1 90.8 a 25.9 a 93.3 a 25.8 a
CK 81.8 d 22.7 c 83.8 c 22.1 c

urea 97.0 a 22.3 c 99.3 a 21.9 c
CRN 90.1 b 31.9 a 90.0 b 32.8 a
UC 86.5 c 28.0 b 86.7 bc 29.5 b

Different letters in the same column mean significant difference among the treatments at the 0.05 level. Each
value represents the mean of three replications. S0, straw removal; S1, straw returning; CRN, controlled-release
N fertilizer; UC, the mixture of urea and CRN.

N fertilization markedly improved the contents of soil alkali-hydro N and microbial N
0–20 cm deep at harvest in both years. The average alkali-hydro N contents in the CRN and
UC treatments were 7.1%, 10.9%, and 9.4%, 12.7% lower than in urea treatment, respectively,
in 2018 and 2019. However, the average microbial N contents in treatments of CRN and
UC were 44.4% and 25.6% and 49.8% and 34.7% higher than in urea treatment, respectively,
in 2018 and 2019.

There was no significant interaction between straw management and N-fertilization
strategy on the contents of soil alkali-hydro N and microbial N in either 2018 or 2019.

3.4.2. Soil Urease and Sucrase Activities

Compared with straw removal (Table 6), straw returning significantly increased soil
urease and sucrase activities, and the average values of soil urease activity increased by
11.8% and 8.8% and the sucrase activity by 12.1% and 13.4%, respectively, in 2018 and 2019.

Table 6. Effects of straw management combined with N-fertilization strategy on soil enzyme activity
at harvest.

Treatment
2018 2019

Urease Activity
(mg NH3-N g−1 d−1)

Sucrase Activity
(mg Glu g−1 d−1)

Urease Activity
(mg NH3-N g−1 d−1)

Sucrase Activity
(mg Glu g−1 d−1)

S0 1.27 b 23.6 b 1.38 b 24.1 b
S1 1.44 a 26.4 a 1.51 a 27.4 a
CK 1.19 d 21.3 c 1.27 d 22.8 b

urea 1.55 a 23.1 b 1.65 a 22.9 b
CRN 1.39 b 28.0 a 1.46 b 28.9 a
UC 1.30 c 27.6 a 1.39 c 28.4 a

Different letters in the same column mean significant difference among the treatments at the 0.05 level. Each
value represents the mean of three replications. S0, straw removal; S1, straw returning; CRN, controlled-release
N fertilizer; UC, the mixture of urea and CRN.

The urease activities were lower in CRN and UC treatments under N fertilization,
where the average values decreased by 10.3% and 16.1% and 11.5% and 15.8%, respectively,
relative to urea treatment in 2018 and 2019. However, the average values of sucrase
activities in treatments of CRN and UC were 21.2%, 19.5%, and 26.2%, 24.0%, respectively,
higher than in urea treatment in 2018 and 2019.

No significant interaction between straw management and N-fertilization strategy on
soil urease and sucrase activities was found in either year.

4. Discussion
4.1. Straw Returning Combined with UC Improves the Cotton Yield

Crop straw returning is an important method of improving soil fertility. Numerous
studies have showed that straw returning can increase crop yield [1,9,34,35], and other
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studies also demonstrated that the yield was positively correlated with increasing straw
returning times and amount in a wheat−cotton rotation system [2,36]. In the present
study, straw returning increased the lint yield significantly only in 2019 (Figure 1), which
may have been associated to fewer times of straw returning [36]. N-fertilization is an
important technical measure to obtain higher yield [37]. In the current study, N fertilization
generated a more positive effect on lint yield than straw returning. Studies have shown
that application of CRN has different effects on crop yield, some positive [26,38], some
negative [39], and some neutral [40]. In this study, the lint yield of CRN treatment was
comparable to urea treatment [40], which could be attributed to both the slower nutrient
release rate [27,28] and shorter effective growth period of field-seeded cotton [17]. The
highest lint yield was obtained in the combination of straw returning and UC. Our previous
study showed that boll number per area contributed the most to the yield relative to other
yield components for field-seeded cotton after barley harvest [17]. In the present study, as
boll number per hectare was significantly increased by application of straw returning or N
fertilizer, especially by application of UC, the highest value in the combination of straw
returning and UC was the main cause of the highest lint yield.

4.2. Straw Returning Combined with UC Facilitates Biomass Accumulation and N Uptake

Higher biomass and its rational distribution are the basis of higher yield formation [41],
and proper nutrient management practice is an important factor affecting the formation of
crop biomass and yield [42–44]. In the present study, straw returning decreased the biomass
and N uptake only at earlier growth stage, which could be due to the N competition from
soil microbes resulting from high C/N ratio in barley straw [13,14]. The result indicated
that straw returning could result in weak seedlings and delayed development, which may
be the cause for reduction in boll weight under straw returning (Table 1). Application of
N fertilizer significantly increased the biomass accumulation and N uptake at the main
growth stage. This study also showed that the lower biomass and N accumulation at earlier
growth stages, in the combination of straw returning and CRN. This could be attributed to
both adverse effect of straw returning, as mentioned above, and slower N release rate from
CRN at the early growth stage [21,45]. In other words, the slow release of N from CRU
would aggravate the inhibition on the N supply at the earlier growth stage under straw
returning [46].

With increased nutrient release from straw or CRN, either straw or CRN facilitated
biomass accumulation and N uptake at the boll-opening growth stage. At this stage,
the combination of straw returning and UC had higher biomass than the combination of
straw returning and CRN, but the combination of straw returning and CRN had higher
N uptake. The results could explain why the combination of straw returning and UC
had higher NAE than that from the combination of straw returning and CRN, while the
combination of straw returning and CRN had higher NARE. The results further verified
that the application of CRN alone under straw returning resulted in extended growth
and delayed maturity [28], which is the cause of the lower lint percentage (Table 1). In
view of the shortened effective growth period for field-seeded cotton relative to common
transplanted cotton, we can deduce that straw returning coupled with CRN is unfavorable
to higher yield for field-seeded cotton (Table 1). The results also suggested that it is
necessary to apply the fast-release fertilizer to supply the available N for field-seeded
cotton under straw returning, especially at the seedling stage [15,16,47]. However, the
combination of straw returning and UC performed better than the combination of straw
returning and CRN or straw returning and urea in improving the biomass accumulation
and N uptake across the whole growth stage, which is consistent with the results in rice [48].
The function of the urea of this combination was to match the N demand at the earlier
growth stage [45,49]; the straw and CRN was sufficient for the N required for flowering
and boll-forming at later growth stages [45,50]. These results are the main cause of a higher
boll number per hectare and higher lint-yield and N-use efficiency under the combination
of straw returning and UC.
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4.3. Straw Returning Combined with UC Improves the Soil N Availability

The content of soil alkali-hydro N is an indicator of soil nitrogen availability. In this
study, the content of alkali-hydro N significantly increased under straw returning. The
microbial activity was stimulated under straw returning, thereby facilitating the release of
straw nutrients and the mineralization of soil N, which may be the cause for the increase
of available N content under straw incorporation. Moreover, the value was higher in the
combination of straw returning and urea than in the combination of straw returning and
CRN or straw returning and UC, which could be attributed to the following: (1) higher soil
alkali-hydro N content was associated with the split application of urea; (2) more N was
taken up by plants in combinations of straw returning and CRN or straw returning and
UC rather than that remaining in the soil relative to the combination of straw returning
and urea; and (3) the N nutrient of CRN may have been completely released (the CRN had
been applied in field over 120 d), which demonstrated that application of CRN reduces
the environmental risk [24,51]. Regardless of straw management, the urease activity was
higher under applied urea and was positively correlated with the content of alkali-hydrol N
(Table 7). Thus, it is speculated that higher urease activity was most likely associated
with higher content of enzyme-reaction substrate (alkali-hydro N) resulting from split
N fertilization.

Table 7. The correlation coefficient between soil alkali-hydro N, microbial N content, and
enzyme activity.

Factor Alkali-Hydro N Content Microbial N Content

Urease activity 0.765 ** −0.139
Sucrase activity 0.159 0.754 **

N = 16, r0.05 = 0.497, r0.01 = 0.623. ** indicate significant difference at the 0.01 levels of probability.

Furthermore, soil microbial N content and sucrase activity under applied CRN or UC
were higher than that under applied urea, and the sucrase activity was positively correlated
with microbial N content (Table 7). This could be attributed to enhanced microbial biomass
resulting from improved root growth and root activity [46,52], which has been verified by
the improved biomass accumulation after the flowering growth stage under the application
of CRN or UC (Figure 1). The sucrase activity increased under the application of CRN or UC,
suggesting that CRN or UC help to the decomposition and transformation of soil organic
matter, thereby improving soil nutrient availability [53]. Besides, since the N nutrient
fixed in soil microbe could be re-mineralized as active N nutrient for crop absorption [54],
it could be deduced that the continuous application of CRN can enhance soil N-supply
capacity, thereby improving crop N acquisition [55,56], which has been verified by the
higher N uptake (Figure 2) in the application of CRN or UC.

5. Conclusions

In order to promote the healthy and sustainable production of cotton under the
barley–cotton rotation system, appropriate application strategy of the straw and CRN in
field-seeded cotton after barley harvest should be determined to increase yield and N-use
efficiency. Compared with the combination of straw returning and urea, the combination of
straw returning and UC increased the lint yield, NAE and NARE by 7.4–14.3%, 30.7–60.0%,
and 52.3–73.4%, respectively, in 2018 and 2019, which was beneficial to improving economic
returns and reducing the environmental risk. In addition, straw returning combined with
UC can increased soil microbial N content and sucrase activity at harvest, which indicated
that the combination was beneficial to improving the soil N availability. Therefore, the
results from this study suggest that straw returning combined with UC can be widely
used in field-seeded cotton under similar conditions to this experiment, as it can obtain
sustainable increase in yield and N-use efficiency.
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