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Abstract: Rapeseed (Brassica napus L.) is an important oilseed crop grown worldwide with a planting
area of 6.57 million ha in China, which accounts for about 20% of the world’s total rapeseed planting
area. However, in recent years, the planting area in China has decreased by approximately 12.2%
due to the low yield and economic benefits. Thus, to ensure oil security, it is necessary to develop
high-efficiency cultivation for rapeseed production. Crop growth models are powerful tools to
analyze and optimize the yield composition of crops under certain environmental and management
conditions. In this study, the CROPGRO-Canola model was first calibrated and evaluated using the
rapeseed planting data of four growing seasons in Wuhan with nine nitrogen fertilizer levels (from
120 to 360 kg ha−1) and five planting densities (from 15 to 75 plants m−2). The results indicated that
the CROPGRO-Canola model simulated rapeseed growth well under different nitrogen rates and
planting densities in China, with a simulation error of 0–3 days for the anthesis and maturity dates
and a normalized root mean square error lower than 7.48% for the yield. Furthermore, we optimized
the management of rapeseed by calculating the marginal net return under 10 nitrogen rates (from 0 to
360 kg ha−1 at an increasing rate of 40 kg ha−1) and 6 planting densities (from 15 to 90 plant m−2 at
an increasing rate of 15 plant m−2) from 1989 to 2019. The results indicated that the long-term optimal
nitrogen rate was 120–160 kg N ha−1, and the optimal planting density was 45–75 plants m−2 under
normal fertilizer prices. The optimal nitrogen rate decreased with increasing fertilizer price within
a reasonable range. In conclusion, long-term rapeseed management can be optimized based on
rapeseed and nitrogen cost using long-term weather records and local soil information.

Keywords: CROPGRO-Canola model; rapeseed; planting density; fertilizer

1. Introduction

Rapeseed (Brassica napus L.) is the third largest oilseed crop in the world and the second
largest oilseed crop in China [1]. It is mainly used in the mass production of animal feed
and vegetable oil [2]. In 2019, the planting area of rapeseed in China was approximately
6.57 million ha, which accounts for nearly 20% of the world’s total rapeseed planting area [1].
However, the rapeseed planting area in China has decreased by about 11.2% in the past five
years relative to that in 2010 (about 7.4 million ha) [3]. Moreover, China’s edible vegetable
oil self-sufficiency decreased from 54% in 2010 to 31% in 2021 [3,4]. The domestic supply
of edible oil has decreased due to the COVID-19 pandemic, which restricted rural labor
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and edible oil shipments and affected the rapeseed processing enterprises [5]. Recently,
China has increased the number of large-scale rapeseed growers and promoted rapeseed
production [5]. However, the yield of on-farm rapeseed is typically one-third less than that
under regional demonstration projects, which indicates that farmers need more information
about optimum management.

The Yangtze River Basin (90◦13′~122◦19′ E, 24◦27′~35◦54′ N) is the main production
area of winter rapeseed in China, due to flat terrain and sufficient light and water supply.
Moreover, winter rapeseed production has great potential in this region, as most fields
are typically fallow in the winter [6,7]. Statistical data in this region show that rapeseed
yield is approximately 2000 kg ha−1, which is only 65.4% of that in the United States and
58.1% of that in European countries [1]. Demonstration plots under optimum management
in this region yield over 3000 kg ha−1, which is higher than on-farm yields [8]. Nitrogen
and planting density management play important roles in regulating the development of
rapeseed at both individual and population levels [9,10]. Rapeseed responds positively to
optimum nitrogen fertilizer and plant population. For example, high nitrogen application
can increase the essential components (such as cellulose and lignin) of the stem to improve
the resistance of the plants to lodging [11]. However, excessive nitrogen may increase
the lodging risk due to decreases in root neck diameter and root dry biomass [12,13]. In
addition, a higher planting density can also cause decreases in root neck diameter and root
dry biomass [12]. Therefore, optimization of nitrogen and planting population management
can help to reduce the application of nitrogen fertilizer as well as improve the yield and
overall economic benefits.

In the post-epidemic era, mechanized production, unmanned farms and smart farms
are inseparable from efficient management decisions. Long-term optimal management
of nitrogen rate and planting density is critical for maximizing the marginal net return
(MNR) [14]. However, the optimization must be performed at different spatial scales,
considering multiple factors such as fertilizers and seed cost and management cost. There-
fore, precise methodologies or tools are needed to combine these factors to make optimal
pre-season decisions. The CERES-Rice model has been used to simulate long-term op-
timal nitrogen management for rice in Northeast China [15]. The CSM-Barley model
has been employed to reduce nitrate leaching while improving grain yield and quality
in malting barley [16]. Currently, the models used to simulate rapeseed growth include
APSIM-Canola [17], CROPGRO-Canola [18] and AquaCrop-Canola [19]. Among them,
the APSIM-Canola model has mainly been used to simulate the effect of climate change
and soil on crop growth, but this model is not appropriate for simulating the flowering
period of spring rapeseed under different sowing dates [20]. The AquaCrop-Canola model
is a water-driven model mainly focused on the influence of water on crop biomass and
yield [21]. The CROPGRO-Canola model [18] simulates crop growth and development
and is open source. This model has been evaluated under irrigation, rainfed and nitrogen
stress conditions, as well as calibrated and evaluated to simulate the yield and biomass of
rapeseed in eastern Canada (Jing et al., 2016). This model is part of the Decision Support
System for Agrotechnology Transfer software [22–24]. However, the CROPGRO-Canola
model has not been evaluated in China.

In this study, the CROPGRO-Canola model was used to determine the long-term
optimal management of rapeseed in the Yangtze River Basin. The specific objectives of
this study were to: (1) calibrate the CROPGRO-Canola model for two seasons of N rate
and density experiments conducted in Wuhan, China, (2) evaluate the model at the same
site for two additional seasons of data, and (3) use the model to estimate the long-term
economic optimum N rate and density for this area for different N prices. The results
of this work will provide recommendations to farmers on optimum N and population
to maximize long-term marginal net return (MNR), and it can serve as a case study to
optimize rapeseed management in advance according to rapeseed futures, climate and soil
conditions in the future.
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2. Materials and Methods
2.1. Experimental Data

Rapeseed experiments were conducted in 2013, 2014, 2015 and 2017 in Wuhan, China,
with the variety of Huayouza62, which is a half-winter Brassica rapeseed hybrid bred by
Huazhong Agricultural University using Polima cytoplasmic male sterile line “2063A” and
the restorer line “05-P71-2”. Huayouza62 has been approved and numbered as National
Certified Oil 2011021 and is one of the most common varieties planted in the Yangtze
River Basin. Different planting densities and nitrogen rates were applied each year using a
split plot design with three replications, with the nitrogen rate being set as the main plot
(Table 1). The anthesis day was recorded as the day when 50% of the plants have open
flowers on any node, and the maturity day was recorded as the day when 95% of plants
reach a yellow color. Samples were collected from each plot at the overwintering, flowering
and the mature stage. After removal of the roots, individual plants were separately bagged,
heated at 105 ◦C and baked at 80 ◦C to constant weight, and the dry matter weight was
determined. The plots were harvested separately, and the actual yield was measured.

The CROPGRO-Canola model requires properties and daily weather data, including
daily maximum and minimum temperature and total precipitation, which were collected
from a meteorological station near the test site (Figure 1). Daily solar radiation was
calculated based on sunshine hours using the method of Angstrom et al. [25]. The soil data
used in the study were derived from the Chinese soil dataset in the global soil database
HWSD (Harmonized World Soil Database). The soil properties for each soil layer are shown
in Table 2.
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Table 1. Datasets for model calibration (I–II) and evaluation (III–IV) of the model.

Dataset Growing Season N Rate (kg ha−1) Planting Density
(Plants m−2) Source of Data

I 2012/10–2013/05 180, 270 15, 30, 45, 60, 75 Yang, 2014 [26]
II 2014/09–2015/04 120, 240, 360 15, 30, 45 Sun, 2016 [11]
III 2013/09–2014/04 120, 240, 360 15, 30, 45 Sun, 2016 [11]
IV 2017/09–2018/05 159 15, 30, 45 Yuan, 2020 [27]
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Table 2. Soil properties of the experimental site.

Depth (cm) Clay (%) Silt (%) Lower Limit
(v v−1)

Drained
Upper Limit

(v v−1)

Sat. Hydraulic
Conduct
(cm h−1)

pH
Organic
Carbon

(%)

Bulk
Density
(g cm−3)

5 21 50 0.153 0.34 0.447 7.8 1.12 1.22
15 21 50 0.153 0.34 0.447 7.8 1.12 1.22
30 21 50 0.153 0.34 0.447 7.8 1.12 1.22
60 21 45 0.144 0.314 0.414 7.9 0.82 1.31
80 21 45 0.144 0.314 0.414 7.9 0.82 1.31

100 21 45 0.144 0.314 0.414 7.9 0.82 1.31
120 21 45 0.144 0.314 0.414 7.9 0.82 1.31
150 21 45 0.144 0.314 0.414 7.9 0.82 1.31
180 21 45 0.144 0.314 0.414 7.9 0.82 1.31
200 21 45 0.144 0.314 0.414 7.9 0.82 1.31

2.2. Model Description and Calibration

The CROPGRO model is a generic crop growth model with a daily time step that
computes canopy photosynthesis at hourly time steps using leaf-level photosynthesis pa-
rameters and hedgerow light interception calculations. The model provides documentation
that defines the parameters of species, ecotype and cultivar traits, making it possible to
simulate a new cultivar in a new environment by adjusting the cultivar and ecotype param-
eters. In this study, a set of appropriate parameters for winter rapeseed growth simulation
in Wuhan were obtained by calibrating the default parameters.

The default parameters were defined by the model and updated based on previous
research. The anthesis day, maturity day, yield and above-ground biomass were the main
outputs for calibration and evaluation. Datasets in 2012 and 2014 (Table 1) were randomly
selected to be used for calibration. First, the Genotype Coefficient Calculator and GLUE
coefficient estimator within DSSAT were used for preliminary calibration [28–30]. In this
step, the parameters were adjusted through thousands of iterations to reduce the error
of the simulated values. Sensitivity analysis was then performed to determine the main
parameters that affect the output variables, and a “trial and error” method was used to
adjust these parameters to minimize the error [7]. For example, the anthesis day was
the most sensitive to EM-FL (time between plant emergence and flower appearance),
OPTBI (minimum daily temperature above which there is no effect on slowing normal
development toward flowering), RWDTH (relative width of this ecotype in comparison to
the standard width per node (YVSWH) defined in the species file), SLAVR (specific leaf
area of the cultivar under standard growth conditions) and SLOBI (slope of relationship
reducing progress toward flowering if TMIN for the day is less than OPTBI). Thus, when
simulated, anthesis day was calibrated by adjusting combinations of these parameters.
Finally, all parameters were checked to determine if they were within the normal expected
range. The calibrated parameter values are shown in Table 3.

2.3. Model Evaluation

The model was first run for 2013 and 2017 experiments with the datasets in Table 1
to evaluate its performance. Differences between the simulated and measured anthesis
day, maturity day, yield and above-ground biomass were quantified with the following
statistical indicators.
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Table 3. Calibrated parameters in CROPGRO-Canola for rapeseed with default values and calibrated
values for cultivar Huayouza62.

Parameter Definition Default Calibrated

CSDL
Critical short day length below which

reproductive development progresses with no
daylength effect (h)

24 15.59

PPSEN Slope of the relative response of development to
photoperiod with time (1 h−1) −0 −0.06

EM-FL Time between plant emergence and flower
appearance (R1) (PD) 29 38.51

FL-SH Time between first flower and first pod
(R3) (PD) 15 10.4

FL-SD Time between first flower and first seed
(R5) (PD) 31 15.9

SD-PM Time between first seed (R5) and physiological
maturity (R7) (PD) 25 26.55

FL-LF Time between first flower (R1) and end of leaf
expansion (PD) 3 0.81

LFMAX Maximum leaf photosynthesis rate at 30 C,
350 vpm CO2 and high light (mg CO2 m−2 s−1) 1 0.814

SLAVR Specific leaf area of cultivar under standard
growth conditions (cm2 g−1) 250 329.2

SIZLF Maximum size of full leaf (three leaflets) (cm−2) 100 52.79

XFRT Maximum fraction of daily growth that is
partitioned to seed-shell 1 1

WTPSD Maximum weight per seed (g) 0 0.003

SFDUR Seed filling duration for pod cohort at standard
growth conditions (PD) 20 15.02

SDPDV Average seed per pod under standard growing
conditions (no pod−1) 22 14

PODUR Time required for cultivar to reach final pod
load under optimal conditions (PD) 10 5.435

SDPRO Fraction protein in seeds (g g−1) 0.2 0.23
SDLIP Fraction oil in seeds (g g−1) 0.5 0.48

PD, photothermal days.

RMSE (root mean square error) and normalized RMSE (nRMSE) between simulated
(Pi) and measured (Oi) values were calculated using Equations (1) and (2), where n is the
number of observations, and O is the average of the measured value Oi.

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (1)

nRMSE =
RMSE

O
× 100 (2)

Model simulation efficiency (EF), mean error (ME) and its relative value rME between
the simulated and measured values were calculated using Equations (3)–(5).

EF = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −O

)2 (3)

ME =
1
n

n

∑
i=1

(Pi −Oi) (4)

rME =
ME
O
× 100% (5)
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An optimal model gives a good fit to experimental data when RMSE and nRMSE
values are small (for winter rapeseed, the nRMSE of the growth period, yield and above-
ground biomass were lower than 10%, 15% and 30%, respectively), EF is close to 1, and ME
and rME are close to 0 [31].

2.4. Long-Term Optimal Management Strategies

After calibration and evaluation, the model was used to estimate the long-term optimal
nitrogen rate and planting density of winter rapeseed in this area. Meteorological data of
1989–2019 from Wuhan were used to simulate the response of yield to 10 nitrogen rates
(from 0 to 360 kg ha−1 at an increasing rate of 40 kg ha−1) and six planting densities (from
15 to 90 plant m−2 at an increasing rate of 15 plant m−2). The marginal net return (MNR)
was computed for each scenario to evaluate the economic benefits of each treatment:

MNRij = ∆Yield ∗ Price−∆Nrate ∗ Ncost−∆Pop ∗ Pcost (6)

In the equation, MNRij is the marginal net return in year i and experiment j; ∆Yield
is the difference between the simulated yield and yield at the nitrogen rate of 0 kg ha−1

and the planting density of 15 plants m−2; Price is the price for rapeseed, which is usu-
ally 4.2 CNY kg−1; ∆Nrate is the nitrogen rate minus 0 (kg ha−1); Ncost is the cost of
N (CNY kg−1); ∆Pop is the planting density minus 15 (plants m−2); Pcost is the cost of
seed, which is usually 40 CNY kg−1. Ncost is calculated based on the typical price of
NPK = 2 CNY kg−1 and urea = 2 CNY kg−1. Based on the historical fluctuations of price,
there were six possible combinations of fertilizers, which included three NPK fertilizer
prices (2, 4 and 6 CNY kg−1) and two urea prices (2 and 4 CNY kg−1).

MNR =
1
n ∑ MNRij (7)

Equation (7) shows the formula used to compute the long-term average MNR of the
same experiment from 1989–2019, where n is the number of years. The optimal nitrogen
rate and planting density are the levels that maximize the long-term MNR.

3. Results
3.1. Model Calibration and Evaluation

The model cultivar coefficients gave a good fit between simulated and measured
anthesis day, maturity day, yield and above-ground biomass for the calibration years
(datasets I and II) and evaluation years (datasets III and IV) (Figures 2a,b and 3a,b).

In the calibration years, the RMSE of the anthesis day was 2.90 d and the model
gave an nRMSE of 1.85%, an rME of 1.34% and an EF of 0.80, while the maturity day had
an RMSE of 2.52 d, an nRMSE of 1.16%, an rME of 1.13% and an EF of 0.29 (Figure 2a).
Additionally, to evaluate the model performance for the yield, the simulation results for the
yield were presented with the determination coefficient of 1:1 regression plot (Figure 3a).
Combined with other evaluation criteria, the nRMSE of yield in the calibration years was
6.25%, with an RMSE of 150.07 kg ha−1, an rME of −0.83% and an EF of 0.94.

The calibrated model was then evaluated using datasets III and IV. In the evaluation
years, the RMSE of the anthesis day was 0.55 d, and the model generated an nRMSE
of 0.36%, an rME of 0.20% and an EF of 0.91, while the maturity day had an RMSE of
0.88 d, an nRMSE of 0.40%, an rME of 0.21% and an EF of −4.91. Combined with other
evaluation criteria, the nRMSE of yield in evaluation years was 6.58%, with an RMSE of
154.76 kg ha−1, an rME of −1.72% and an EF of 0.93. A graph of the results is shown in
Figures 2b and 3b. These results suggested that the growth period and yield of crops can
be accurately predicted.
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Figure 2. Relationship between simulated and measured anthesis day and maturity day for the
calibration datasets I and II (a) and the evaluation datasets III and IV (b).
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Figure 3. Relationship between simulated and measured yield for the calibration datasets I and II (a)
and the evaluation datasets III and IV (b).

The calibration and evaluation results demonstrated that the model could duplicate
historical test results, indicating that the model is appropriate for simulating the long-
term optimal management of Huayouza62. Moreover, the model produced an RMSE of
3184.52 kg ha−1, an nRMSE of 29.62%, an ME of−1717.69 kg ha−1, an rME of−15.98% and
an EF of −0.12 for above-ground biomass in the evaluation years. The dynamic simulation
of the above-ground biomass in this study resulted in a lower nRMSE than that reported by
Deligios et al. [18]. In addition, these results are consistent with those of other evaluations
with the CROPGRO-Canola model in colder environments [32], indicating that the model
can simulate N yield response under a warm climate as well. Model evaluation criteria
(Table 4) showed a good agreement between the simulated and observed anthesis day,
maturity day, yield and above-ground biomass.
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Table 4. Model statistical criteria.

Attribute
Statistical Criteria

N RMSE nRMSE ME rME EF

Calibration years
Anthesis day (D) 19.00 2.90 1.85 2.11 1.34 0.80
Maturity day (D) 19.00 2.52 1.16 2.47 1.13 0.29

Seed yield (kg ha−1) 19.00 150.07 6.25 −20.05 −0.83 0.94
Above-ground biomass

(kg ha−1) 19.00 3051.07 30.53 −293.42 −2.94 −0.47

Evaluation years
Anthesis day (D) 13.00 0.55 0.36 0.31 0.20 0.91
Maturity day (D) 13.00 0.88 0.40 0.46 0.21 −4.91

Seed yield (kg ha−1) 13.00 154.76 6.58 −40.38 −1.72 0.93
Above-ground biomass

(kg ha−1) 13.00 3184.52 29.62 −1717.69 −15.98 −0.12

Different nitrogen applications
Anthesis day (D) 8.00 2.00 1.29 1.00 0.65 0.84
Maturity day (D) 8.00 2.09 0.96 1.63 0.75 0.20

Seed yield (kg ha−1) 8.00 138.23 5.39 −64.75 −2.53 0.95
Above-ground biomass

(kg ha−1) 8.00 4582.25 36.24 −3454.00 −27.31 −1.25

Different planting densities
Anthesis day (D) 15.00 2.37 1.50 1.60 1.02 0.76
Maturity day (D) 15.00 1.95 0.89 1.67 0.76 0.26

Seed yield (kg ha−1) 15.00 182.10 7.48 22.47 0.92 0.61
Above-ground biomass

(kg ha−1) 15.00 3138.82 30.54 −1330.13 −12.94 −0.50

3.2. Impact of Rapeseed Management on Model Prediction

In addition to reasonable simulation of the yield, the model could also accurately
simulate responses to nitrogen rate and planting density (Table 4).

Figure 4 shows good agreements between the simulated and observed anthesis day,
maturity day and yield for different nitrogen rates. Specifically, under different nitrogen
rates, the RMSE of anthesis day was 2.00 d, and the model generated an nRMSE of 1.29%,
an ME of 1.00 d, an rME of 0.65% and an EF of 0.84 (Figure 4a). The maturity day had
an RMSE of 2.09 d, an nRMSE of 0.96%, an ME of 1.63 d, an rME of 0.75% and an EF of
0.20 (Figure 4b). The yield had an RMSE of 138.23 kg ha−1, an nRMSE of 5.39%, an ME of
−64.75 kg ha−1, an rME of −2.53% and an EF of 0.95 (Figure 4c). These results indicated
that the model simulated the response of growth period and yield to nitrogen rate well.

The model also predicted the response to planting density well (Figure 5a,b). Specif-
ically, under different planting densities, the RMSE for anthesis day was 2.37 d, and the
model generated an nRMSE of 1.50%, an ME of 1.60 d, an rME of 1.02% and an EF of 0.76
(Figure 5a). The maturity day had an RMSE of 1.95 d, an nRMSE of 0.89%, an ME of 1.67 d,
an rME of 0.76% and an EF of 0.26 (Figure 5b). In addition, the yield had an RMSE of
182.10 kg ha−1, an nRMSE of 7.48%, an ME of 22.47 kg ha−1, an rME of 0.92% and an EF of
0.61 (Figure 5c).
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Figure 4. Measured and simulated anthesis day (a), maturity day (b) and yield (c) of Huayouza62
under different nitrogen rates.

All the above results suggest that the model can simulate the response of different
indices to nitrogen rate and planting density well, particularly the yield. Overall, the model
simulated most of the variations in yield under different nitrogen rates (nRMSE = 5.39%)
and planting densities (nRMSE = 7.48%) (Figures 4c and 5c). In contrast to the simulation
of yield, the simulation of above-ground biomass was rather insufficient, with an nRMSE
of about 30% (Table 4). However, the results regarding the yield and growth period were
sufficient to support our optimization of rapeseed management.
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Figure 5. Measured and simulated anthesis day (a), maturity day (b) and yield (c) of Huayouza62
under different planting densities.

3.3. Long-Term Optimal Management

Table 5 shows the yield, soil N and MNR of winter rapeseed Huayouza62 under ten
nitrogen rates averaged over 30 seasons. Figure 6 shows a sensitivity analysis of yield
and MNR to different N prices. Generally, an increase in nitrogen rate led to increases in
the yield of winter rapeseed and soil N. However, an increase in yield did not necessarily
increase the MNR. Hence, MNR should be fully considered to maximize the economic and
ecological benefits.
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Table 5. Yield, marginal net return (MNR) of winter rapeseed and soil N under different nitrogen
rates. The values are mean of 30 seasons.

Treatments Yield (kg ha−1) MNR (CNY ha−1) Soil N (kg ha−1)

N0 1453.90 0 153.13
N40 1691.90 645.8 151.87
N80 1857.20 986.26 153.58
N120 1970.97 1110.28 156.22
N160 2076.33 1199.02 159.36
N200 2094.93 923.34 163.20
N240 2166.70 870.36 167.73
N280 2254.43 885.64 172.75
N320 2333.87 865.46 176.77
N360 2393.73 763.1 183.39

The MNR is for rapeseed price of 4.2 CNY kg−1 and N price of 2 CNY kg−1. N0: 0 kg N ha−1; N40: 40 kg N ha−1;
N80: 80 kg N ha−1; N120: 120 kg N ha−1; N160: 160 kg N ha−1; N200: 200 kg N ha−1; N240: 240 kg N ha−1; N280:
280 kg N ha−1; N320: 320 kg N ha−1; N360: 360 kg N ha−1.
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Figure 6. Simulated yield and soil N under different N rates (a) and marginal net return (MNR)
under different nitrogen rates and N fertilizer prices (b) over 30 seasons (the normal price was NPK
compound fertilizer = 2 CNY kg−1; urea = 2 CNY kg−1).

Changes in the price of N fertilizer were also considered. The lines with different
colors in Figure 6 represent the changes in MNR under different nitrogen fertilizer prices.
As the nitrogen rate increased, the MNR at normal N fertilizer price (NPK = 2 CNY kg−1;
urea = 2 CNY kg−1) first rose and reached the maximum at 120–160 kg N ha−1. However,
the MNR was strongly influenced by the price of N fertilizer. With increasing price of the
N fertilizer, the difference between the minimum MNR (the lowest point of the curve) and
maximum MNR (the highest point of the curve) increased. For instance, when the price of
NPK compound fertilizer was < 2 CNY kg−1 and that of urea was < 4 CNY kg−1, the MNR
tended to reach the maximum at the nitrogen rate of 120–160 kg N ha−1. However, when
the price of N fertilizer increased, the optimal nitrogen rate was lower than 120 kg N ha−1,
and MNR even became negative with increasing nitrogen rate.

The model was also run for ten nitrogen rates, six planting densities and six N fertilizer
prices over thirty seasons of historical weather to determine the long-term optimal nitrogen
rate for this area. In Figure 7, the range in between the red dotted lines represents the
optimal nitrogen rate. At the NPK fertilizer price of 2 CNY kg−1 and the urea price of
2 CNY kg−1, the MNR reached the maximum at the nitrogen rates of 120–200 kg N ha−1

and plant densities of 75–90 plants m−2, and then decreased slightly with further increases
in nitrogen rate; at the NPK fertilizer price of 2 CNY kg−1 and the urea price of 4 CNY kg−1,
the optimal range of nitrogen rate was 80–160 kg N ha−1. Moreover, a further increase in
the price of NPK fertilizer and urea would lead to a decrease in the optimal nitrogen rate.
Overall, the optimal planting density of rapeseed in this area is 45–75 plants m−2 with a
reasonable nitrogen rate, because rapeseed is prone to lodging at high planting densities,
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and dense planting may not necessarily bring greater economic benefits. Yield reduction
due to lodging is not considered in the model.
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Figure 7. Simulated marginal net return under different nitrogen rates, N fertilizer prices and
planting densities over 30 seasons (the normal price was NPK compound fertilizer = 2 CNY kg−1;
urea = 2 CNY kg−1; and the range in between the red dotted lines represents the optimal nitrogen rate).

4. Discussion
4.1. Simulation Performance of the CROPGRO-Canola Model

In general, the simulation error of the model for the growth stages was less than 3 days,
which is consistent with the measured growth period in the field experiments, indicating an
accurate simulation of the growth stages by the model. For the yield, the simulated nRMSE
of the model was below 8%, which is lower than 15% (acceptable standard). The model also
simulates the response to nitrogen rate and planting density well. The CROPGRO-Canola
model may be highly appropriate to simulate optimum management of rapeseed. However,
the nRMSE for the simulation of the model on the above-ground biomass was nearly 30%,
which was not as good as the simulation of yield. Although the simulated above-ground
biomass under different nitrogen rates and planting densities also showed a similar trend
to the measured data (Figure 8), the accuracy of this model for the above-ground biomass
needs to be further improved.
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Figure 8. Measured and simulated above-ground biomass under different nitrogen rates (a) and
planting densities (b) of Huayouza62.

4.2. Reduction in Uncertainty in Calibration

Uncertainty has always been a major problem in the application of crop growth
models. In the calibration of the CROPGRO-Canola model, it is necessary to determine the
optimization targets and strategies, which requires a better understanding of the mechanism
of the model. We conducted a sensitivity analysis by employing the Extended Fourier
Amplitude Test (EFAST), and found the key parameters for growth period, yield and
above-ground biomass [7]. We then used the Genotype Coefficient Calculator and GLUE
coefficient estimator within DSSAT to iteratively adjust the parameters to make the output
variables as close to the measured data as possible [28–30]. Finally, the main parameters
were slightly adjusted to improve the calibration. In this process, if the simulated anthesis
day was later than the measured anthesis day, it was necessary to adjust the parameters
related to the development, such as EM-FL and PPSEN. Generally, the parameters are
adjusted in the order of development, distribution of carbon and nitrogen (the biomass of
different parts) and yield components, which can reduce the uncertainty of the simulation
process to some extent.

Simulating growth and development of winter rapeseed could be further enhanced by
measurements such as LAI (leaf area index), plant height and biomass allocation [18]. How-
ever, these measurements were not conducted in this experiment. To improve qualitative
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simulation of crop growth, crop models have been combined with remote sensing, which
can be a surrogate for LAI measurements [21,33,34]. Thus, incorporating remote sensing
with model calibrations could likely improve the calibration process.

4.3. Practical Value of Long-Term Optimization Results

In previous studies, the optimal management was usually judged based on the yield.
For instance, most recent studies have indicated that the optimal nitrogen rate in this area
is 120–200 kg N ha−1 [11,26], which is consistent with our results at conventional fertilizer
prices. However, when the price of the fertilizer increases, this optimal nitrogen rate may
not be adopted by the farmers, since their prior concern is still the economic benefits, which
may be affected by many factors such as investment in seeds, fertilizer, irrigation, labor and
machinery cost for field operations [35]. Because the irrigation cost is generally low for the
wet climate and low temperature in the growing season of rapeseed [36], the mechanization
of rapeseed production has not been widely promoted, and the rapeseed farming labor
is highly mobile and difficult to quantify. Thus, we only considered the most important
inputs in the cultivation of rapeseed in future studies. However, more factors affecting
MNR may be incorporated into Equation (6) later to make the optimization more reliable.

The results of this study would be affected by other possible external factors. Specifi-
cally, fertilizer prices were defined considering normal fluctuations in this study, but many
other factors affect fertilizer prices, such as pandemic and regional conflicts [37]. Our
results indicated the relationship between fertilizer inputs and fertilizer prices in Figure 7.
Thus, it could be served as a basis for reducing fertilizer supplies when fertilizer prices rise
above the upper end of the range in the study. The effect of climate change and extreme
climate were not considered in this study; however, crop yield is highly sensitive to this [38].
Thus, more possible external factors could be considered and make the results of long-term
optimal management have greater reference value to practical application.

5. Conclusions

In this study, the long-term optimal management of winter rapeseed cultivation
was studied. The results considered long-term historical climate, yield, fertilizer (i.e.,
price, amount and types), rapeseed population, and seed prices. The major results can
be concluded as follows: (1) the CROPGRO-Canola model was robustly calibrated and
evaluated in Wuhan, China; (2) fertilizer input increased rapeseed yield within a certain
range, but decreased when it exceeded the range; (3) long-term optimal nitrogen rate was
120–160 kg N ha−1, and the optimal planting density was 45–75 plants m−2 under normal
fertilizer prices.

Although the main factors were considered, some possible external factors (i.e., pan-
demic and climate change) may influence the results. Some uncertainty of the model results
exists due to incomplete datasets, calibration method and potential errors in the model
growth and development theory.

In conclusion, this study optimized the CROPGRO-Canola model and provided
researchers and decision-makers with references to take adaptive management to ensure
oil security in future.
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