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Abstract: Increasing drought incidence and infertile soils require the improvement of maize for
nitrogen use efficiency (NUE) under drought conditions. The objectives were to assess tolerance
and genetic effects of Algerian populations under no-nitrogen and water stress. We evaluated a
diallel among six Algerian maize populations under no-nitrogen vs. 120 kg/ha N fertilization and
drought vs. control. Variability was significant among populations and their crosses for NUE under
drought. Additive genetic effects could be capitalized using the populations BAH and MST, with
high grain nitrogen utilization efficiency (NUtE). The most promising crosses were SHH × AOR with
no-nitrogen supply under both water regimes for NUtE, AOR × IGS, under water stress for partial
factor productivity (PFP), and well-watered conditions with nitrogen supply for protein content;
AOR × IZM for agronomic nitrogen use efficiency (AE) under water stress; and AOR × BAH for
grain nutrient utilization efficiency (NUtE) under well-watered conditions with nitrogen. These
parents could be promising for developing drought-tolerant or/and low nitrogen hybrids to improve
these traits. Maximum heterosis could be exploited using those populations and crosses. Reciprocal
recurrent selection could be used to take advantage of additive and non-additive gene effects found
based on estimations of genetic parameters.

Keywords: Algerian maize; NUE; nitrogen utilization; grain protein; nitrogen deficiency; drought;
heterosis; varietal effect

1. Introduction

Maize (Zea mays L.) is one of the world’s most widely cultivated crops with an area
around 202.72 million hectares, providing food and animal feed as well as being a source
of biofuel [1]. Maize is a major staple food crop in sub-Saharan Africa and Latin America,
providing more than 30% of the total calories and protein in 11 countries [2,3].

In recent decades, global climate change has brought more and more frequent heat-
waves and severe droughts [4]. Climate models predict that the frequency and intensity of
drought will intensify in the years ahead in response to anticipated climate change (CC) [5].
Climate change is expected to affect rains and raise average temperatures, threatening
the availability of fresh water for agricultural production [6], and it is one of the primary
culprits behind the restraint in the increase of cereal crop yields [7]. In most low-rainfall
areas of the Middle East, North Africa, and Central Asia, most of the exploitable water is
already very scarce, with 80–90% of this water destined for agriculture. Rivers and aquifers
are, therefore, operating beyond their sustainable levels [8]. Under these scenarios of (CC)
and development, world cereal production is estimated to decrease between 1% and 7%
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depending on the general circulation model (GCM) climate scenario [9]. Increasing yields
under stressful environments will require novel approaches to be implemented in gene
discovery and plant breeding that will significantly increase both production per unit of
land area and resource use efficiency [10,11].

Furthermore, the growing population will increase food demand, and more water
will be required for crop irrigation [12]. Therefore, environmental changes will become an
explicit threat to global food security, especially in Africa [13–16]. In addition, the most
affected countries by this impact are those in sub-Saharan Africa [15].

The predicted climate change threatens food security in the coming years in Alge-
ria [17]. It is projected in Algeria by the future horizon of 2030: (i) an increase in tem-
peratures of +0.9 to +1.3 ◦C and their variability; (ii) intensification of the frequency of
heatwaves, and (iii) an accentuation of the variability of precipitations, which will result
in an increase in dry and wet episodes by +10% and will be accompanied by a decrease
in precipitation of −9 up to −14% [18]. Low precipitation and its uneven distribution in
Algeria, along with fast population and agriculture activity increase and, particularly, recent
droughts have made water availability one of the country’s most pressing challenges [19].

Drought also affects fertilization, particularly nitrogen (N) uptake by the plant, which
is a paramount macronutrient for plant growth, development, and production. The high
and relatively rapid nutrient requirement is an important characteristic of maize, and its
production consumes over one-fifth of all nitrogen produced [20], resulting in marked
increases in yield [21]. In addition, as a C4 plant, maize accumulates biomass efficiently
under abundant N supply with high photosynthetic efficiency [22,23]. However, in the last
40 years, the amount of synthetic nitrogen (N) applied to crops has risen drastically [24].
Excessive application of nitrogen fertilizer is not only costly but also damaging to the
environment, causing for example soil acidification and air and water pollution [25–28].
Since the plants can take only up to 30 to 40% of the applied N, more than 60% of the N
added to the soil is lost through a combination of leaching, surface run-off, denitrifica-
tion, volatilization, and microbial consumption [20,29,30]. Furthermore, production and
application of N fertilizers consume huge amounts of energy [31].

In this context, after drought, a major challenge to smallholder farmers in sub-Saharan
Africa is low-fertility soils and inability to apply nitrogen fertilizer externally due to the
high cost [32–34]. Ribeiro et al. [35] reported also that this occurs because of farmers’
low purchasing power for nitrogen fertilizer in developing countries, which results in
most maize farming conducted under nitrogen deficiency conditions. Thus, a strategy
for maximizing economic return while minimizing environmental impact is improving
nitrogen use efficiency (NUE) [20,22,36,37]. It is estimated that a 1% increase in NUE could
save $1.1 billion annually [30]. In order to face this challenge, we need crops that are able
to efficiently uptake, utilize, and remobilize the nitrogen available to them [38].

The breeding goal for high NUE is to maintain or increase productivity with less
N applied [39]. Then, the alternative to increase yield without raising the production
cost and minimizing the dependence on agricultural inputs is the development of maize
genotypes presenting high NUE under low N level conditions, allowing the development
of sustainable agriculture [21,30,31,33,40]. Moreover, compared to inefficient cultivars, a
nitrogen-efficient cultivar may produce a higher yield at low N and/or at high N applica-
tions. In general, a cultivar that attains higher yields at relatively low N inputs is referred
to as an N-efficient genotype [41].

Maize suffers from a wide range of production constraints, the most important being
the increasing drought incidence and infertile soils [42,43]. Thus, nitrogen and water,
separately or in combination, are two of the most critical factors in maize production
worldwide [44,45] underlying poor growth and yield in maize [46]. Nitrogen deficiency
can cause several adverse effects on maize growth, development, and final yield [45] by
increasing kernel abortion resulting in about 85% of the abortion during the first 20 days
after flowering, which reduces final grain number [47,48]. In addition, Gou et al. [49]
reported that under water deficits, N supplies can enhance drought resistance of crops by
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protecting photosynthetic apparatus, activating antioxidant defense systems, and improv-
ing osmoregulation. Uptake of nitrogen and NUE may fall due to water stress during the
early growth stage. Then, maize drought-tolerant cultivars produced consistently higher
yields because they had either high nitrogen uptake or nitrogen utilization efficiency [50].
Conventionally, breeders develop stress-tolerant maize populations, improve such popula-
tions through recurrent selection, and extract from the improved populations experimental
cultivars and/or inbred lines for hybrid production [51]. However, breeding for low N
and drought have common traits indicating a common adaptive mechanism, and thus,
developing maize genotypes with tolerance to stresses and with high yield performance
across environments will favor the subsistence of farmers in Africa [45].

There are various ways to define nitrogen use efficiency (NUE) [39,52]. At the crop
level, NUE is defined as the ratio of grain yield to supplied N fertilizer [53,54] and depends
on N uptake from the soil, internal utilization, and the subsequent partitioning and remobi-
lization of N to the grain [36,55]. Nitrogen use efficiency is contributed to by N utilization
efficiency and N uptake efficiency [53]. Among the several definitions of NUE is agronomic
nitrogen use efficiency (AE), which is the relative yield increase per unit of N applied [56].
It gives an indication of how much productivity improvement was gained via the use of
nitrogen fertilizers [57].

Breeding for high NUE and tolerance to low-N stress requires the availability of
adequate genetic variability for the target traits [40], which can be found in the maize
germplasm that has not been evaluated for NUE [30]. On the other hand, the magnitude of
additive and non-additive effects on the trait control is not yet well understood. Considering
all these points, a diallel analysis is a potential tool for the identification of desirable parents
with information about the magnitude and nature of the genetic effects controlling the
trait [58,59]. If the heritability of the trait is moderate–high, a successful recurrent selection
program is expected to increase the mean performance of individuals and also maintain the
genetic variability within the population to facilitate continuous improvement in advanced
cycles of selection [51,60,61].

Little is known about the effects of drought and low N in Algerian maize populations.
However, Stephen et al. [62] reported that a large genetic diversity resides in the African
maize landraces which could be conserved and exploited for maize improvement. In
addition, Saharan maize may be a great donor of alleles of stress tolerance because of its
adaptation to biotic and abiotic stress. In this way, there is a high diversity in Algerian
maize that may provide new alleles for drought conditions reported by a few authors in
their previous phenotypic [63–66] and genetic [67–69] studies using the collection of some
maize populations from a subtropical area in the Algerian Sahara. Furthermore, their high
genetic divergence was found in the heterotic patterns study of Cherchali et al. [70], who
suggested the incorporation of this material in breeding programs. Then, a diallel among
six Algerian maize populations under drought and no-nitrogen fertilization was evaluated
by Riache et al. [71] to select the most productive genotypes, but they did not study the
nitrogen use efficiency.

The objectives of the present study were: (i) to estimate the varietal and heterosis effect
of Algerian Saharan maize populations and their crosses for nitrogen use efficiency traits
under no-nitrogen fertilization and drought conditions and (ii) to select the most promising
populations and crosses for breeding for stress tolerance.

2. Materials and Methods
2.1. Experimental Site and Weather Data

The 2-year field experiment was carried out during 2018 and 2019 at the National
Higher Agronomic School (ENSA), in Algiers, Algeria (36◦43′16′ ′ N, 3◦09′03′ ′ E, 36 m
altitude, with an annual rainfall of 600 mm).

The meteorological data were as follows (Table 1): minimum temperature varied from
10.6 (April) to 20.3 (July) in 2018 and from 9.6 (April) to 21.2 (July); total rainfall was 189 mm
in 2018 and 76 mm in 2019 during the cropping period [72].
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Table 1. Means of monthly temperatures and precipitations of the experimental field during the
cropping period 2018–2019 in Algiers [72].

2018 2019

Months P (mm) Min. (◦C) Max. (◦C) Moy. (◦C) P (mm) Min. (◦C) Max. (◦C) Moy. (◦C)

April 103 10.6 21.9 16.3 47 9.6 21.2 15.4

May 54 12.1 22.7 17.4 19.1 11.4 25.2 18.3

June 32 15.1 28.2 21.7 8.4 16.7 29.4 23.1

July 0 20.3 32.4 26.4 1.5 21.2 34.1 27.7

Total 189 58.1 105.2 81.65 76 58.9 109.9 84.4

P: precipitations; Min.: minimal temperature; Max.: maximal temperature; Moy.: mean temperature.

2.2. Germplasm

The current study used six Algerian maize populations representative of the collection
of maize germplasm reported by Djemel et al. [63] (Table 2). The six populations were
crossed (15 hybrids) following a diallel mating design without reciprocals in 2013 [64].
These populations were studied by Aci et al. [67] based on genetic distances and geographic
origin. Sixty pairs of plants were used to produce 60 crosses for each pair of populations,
and for each hybrid, a bulk of all kernels was made [70].

Table 2. Classification of the six maize populations from Algeria used in this diallel matting design
based on geographic origin [70].

Population Location, Province, Area

AOR Aougrout, Adrar, Center
BAH Bechar, West
IGS Ain Salah, Tamanrasset, South
IZM Inzgmir, Adrar, Center
MST K’sar M’sehel, Timimoune, Adrar, Center
SHH Sidi Maamar, Saida, North

2.3. Crop Management
2.3.1. Experimental Material and Treatments

The evaluated genotypes in both years were the six parents and their fifteen crosses
along with the two synthetic varieties EPS20 (originated from eight Reid inbred lines), EPS21
(originated from eight non-Reid inbred lines), and their respective cross EPS20 × EPS21,
as a check of the Reid × non-Reid heterotic pattern. Finally, we used EP17 × EP42, a
flint × flint hybrid from Spain, as a check from the European Flint germplasm, in conditions
of drought and no-nitrogen fertilization.

Treatments were arranged in a split-split plot design with two main plots representing
the water regimes (water stress and well-watered as control) and two subplots that included
the two nitrogen treatments 0 kg/ha and 120 kg/ha of nitrogen. Finally, the genotypes
were randomized within each subplot, in experimental units consisting of one 6-m row
with 0.7 m row spacing. Three repetitions were used for each trial.

2.3.2. Crop Husbandry

Maize seeds were sown manually on 18 May 2018 and 3 May 2019, respectively. Plants
were harvested by hand on 2nd and 7th of September in 2018 and 2019, respectively. The
sowing density was 70,000 plants/ha with inter-hills spaces of 0.2 m. Weeding was done
manually when necessary and was closely monitored to avoid competition.

In each growing season, from sowing to post-flowering, around 600 mm of irrigation
water was applied to the maize crop under control conditions and 300 mm under drought.
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Every week, a drip irrigation system was used to irrigate the trials, and the exact quantity
was removed when the trials received water from rainfall.

For the physico-chemical properties of the soil, five soil samples were collected before
sowing at a depth of 30 cm randomly from across the whole field following a diagonal
and then mixed. The results of bulked samples analysis revealed that the test site was silty
with a low organic matter content (1.53%) which contained 110 ppm of total nitrogen and
was moderately poor (20 ppm) in inorganic nitrogen (N min) in both years. The electrical
conductivity was 11.54 meq/100 g, total carbon 0.89%, pH-KCl 6.52, and pH-H2O 7.09.

Plots received a nitrogen supply depending on these results, which estimated the
nitrogen fertilizer rate. Consequently, 120 kg of N per ha in the form of urea was hand
applied in two splits with 1/3 (40 kg/ha) at the three-leaf growth stage and 2/3 (80 kg/ha)
at the six-leaf growth stage.

2.3.3. Data Recording
Grain Sampling and Determination of Total N Concentration

At maturity, five plants from each single-row plot were sampled, cobs manually
threshed, and then a bulk of grains was made to prepare the samples for each genotype
under each treatment from the plots. These fresh grains were oven-dried at 60 ◦C for
48 h until a constant mass was obtained, and the dry weights were recorded and used for
calculation of the dry matter yield. The yield of corn grain was adjusted to a 14% moisture
content as previously measured and published [71]. The kernels were ground and sifted
through a 1 mm mesh screen. The total N content of the samples was determined using the
micro-Kjeldahl as per the procedures prescribed by Kirk [73].

The equations for calculating the nitrogen parameters were introduced as follows:

AE =
Yf − Y0

F
(1)

where AE is the agronomic efficiency of the applied nutrient (kg yield increase per kg
nutrient applied) and means the contribution of fertilizer N towards yield, compared to a
non-fertilized control. F is the amount of (fertilizer) nutrient applied (kg/ha). Yf is the crop
yield with the applied nutrients (kg/ha). Y0 is the crop yield (kg/ha) in a control treatment
with no nitrogen [54].

PFP =
Yf
F

(2)

where PFP is the partial factor productivity (kg harvested product per kg nutrient ap-
plied) and means the expression of yield per unit of fertilizer N applied. F is the amount
of (fertilizer) nutrient applied (kg/ha). Yf is the crop yield with the applied nutrients
(kg/ha) [54].

NUtE =
Y

GNUpt
(3)

Grain nitrogen utilization efficiency was recorded using the formula proposed by
Fiez et al. [74] and adapted to grain only, where NUtE represents the N utilization efficiency
in kg/kg, Y is the crop yield in the single-row plot, and GNUpt is the grain total nitrogen
uptake, calculated as follows:

GNUpt = Y × GN
100

where Y represents the crop yield in the single-row plot in kg/ha, and GN is the N
concentration in maize grain.

PC = GN × 6.25 (4)

where PC represents the protein content in grain in %, and GN is the grain N, indicating the
total N concentration in the maize grain; 6.25 is the conversion factor for maize to estimate
the protein content [75].
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2.3.4. Statistical Analysis

The data over environments and conditions and individual analysis by each condition
over the environments were subjected to combined analyses of variance using the PROC
MIXED procedure of SAS 9.4 software [76] in order to assess the performance of the maize
genotypes under drought and low N.

Combined analyses of variance for each trait were performed according to the split-
split plot design, considering the effects of genotypes (populations per se and crosses)
and treatments (water regime and nitrogen) as fixed and the effects of environments and
repetitions as random.

Fischer’s analysis of variance (ANOVA) was computed, and comparison among mean
values of maize genotypes under drought and no-nitrogen fertilization was performed
using the least significant difference (LSD) at 5% level of probability.

Genetic analysis was performed to estimate varietal effects and heterosis effects (av-
erage heterosis, varietal heterosis, and specific heterosis) and their interaction with the
environment, using method II of Gardner and Eberhart [77], adapted for a partial diallel, in
the diallel crosses for each water × nitrogen treatment combination, excluding the checks,
according to the following model:

Yij = E + b(e) + µv + 1/2(vi + vj) +
1
2

(evi + evj) + k (hij + ehij) + Error

where Yij is the average value obtained for each variety (i = j) or for a cross (i 6= j); E is the
environment effect; b(e) is the effect of repetition within environment; µv is the mean of n
parental genotypes; vi and vj are the varietal effects for i and j, respectively; k = 0 when
I = j and k = 1 when i 6= j; hij is the overall heterosis effect; evi is the interaction effect of
environment and population i, and ehij is the interaction of environment and heterosis of
populations i and j. Error is the experimental error. The varietal effect was calculated as
the difference between the mean performance of each parent and the mean of all parents,
whereas the heterosis effect was calculated as the difference between the mean of two
parental populations and their cross. In addition, hij is the deviation from mean heterosis
observed in the cross of populations i and j, partitioned into these components:

hij = h + hi + hj + sij

where h is the average heterosis of all crosses calculated as the difference between the mean
of all crosses and the mean of all parents; hi and hj are the parental heterosis contributed
by the variety i and j in its crosses measured as a deviation from the average heterosis,
and sij is the specific combining ability effect of the cross between ith and jth parents. The
DIALLEL-SAS05 program of Zhang et al. [78] was used to analyze all data.

3. Results
3.1. Analyses of Variance and Comparisons of Means

Combined analysis of variance for AE and PFP revealed non-significant differences
between environments, and most interactions between the environment and other fac-
tors were not significant (Table 3). Differences among the genotypes and the interaction
genotypes × irrigation were significant only for PFP. However, the irrigation effects were
significant for both traits.

Combined analysis of variance for grain protein content and grain NUtE revealed
significant differences only among genotypes for grain NUtE (Table 4). For grain pro-
tein content and grain NUtE, under well-watered conditions, significant differences were
recorded only without nitrogen supply among genotypes. The ENV × genotypes interac-
tion was not significant. Under water stress conditions, differences were not significant
among genotypes and the ENV × genotypes interaction was not significant for both traits
with both nitrogen levels (Table 4). For AE and PFP, differences among genotypes were
significant for all traits under both water regimes except for AE under well-watered condi-
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tions (Table 3). Therefore, differences among genotypes for efficiently using nitrogen and
produce proteins, was significant under drought conditions. Furthermore, these results
indicate that the genetic diversity for yield per unit of fertilizer applied has significant
genotype × environment interaction and is affected by irrigation.

Table 3. Analysis of variance combined across environment of agronomic efficiency (AE) and
partial factor productivity (PFP) analyzed in the diallel systems with six Algerian maize populations
evaluated along with four checks in two environments in Algiers under both managed drought and
nitrogen deficiency.

Source of Variation df

Combined Across Treatments Well-Watered Water Stress

AE (kg of
Grain/kg

of N)

PFP (kg of
Grain/kg

of N)

AE (kg of
Grain/kg

of N)

PFP (kg of
Grain/kg

of N)

AE (kg of
Grain/kg

of N)

PFP (kg of
Grain/kg

of N)

Environment (ENV) 1 0 155.63 ns 65.29 ns 411.76 ns 0.27 ns 5.54 ns

Irrigation 1 3504.95 * 40995.91 *

Irrigation × ENV 1 27.35 ns 251.07 ns

Genotypes 24 67.97 ns 306.074 *** 136.68 ns 448.25 *** 52.96 * 57.67 **

Genotypes × ENV 24 50.53 ns 29.415ns 122.06 ns 43.57 ns 23.07 ns 17.52 ns

Genotypes × Irrigation 24 102.58 ns 165.52 ***

Genotypes × Irrigation × ENV 23 85.84 ns 30.10 ns

*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively; ns: not significant.

Under water stress conditions with no nitrogen supply, grain protein content varied
from 9.13% to 11.21% (Table 5). AOR × IZM was the cross with the highest grain protein
content (11.21%), followed by IZM × BAH (11.15%) and crosses involving IGS with BAH
(11.12%), SHH (11.09%), and IZM (10.81%) and AOR×MST, thus, they are not significantly
different. Under water stress conditions with nitrogen fertilization, the population MST had
the highest grain protein content value (12.38%) and was not significantly different from
the cross MST × BAH, while BAH had the lowest value (9.08%). Under well-watered con-
ditions, with both N levels, AOR and EPS20 × EPS21 had the highest grain protein content
value among the populations and crosses, respectively. On the other hand, EP17 × EP42
had the lowest grain protein content value for the checks with both N levels. Grain protein
content mean values varied from 9.1% (IGS ×MST) to 12.09% (AOR × IGS) with nitrogen
supply and from 7.89% (SHH × AOR) to 10.22% (SHH × IZM) with no nitrogen fertilizer.

For grain NUtE, under water stress, BAH had the highest values with both N lev-
els while SHH × IZM (with nitrogen fertilizer) and SHH × AOR (with no nitrogen
fertilizer) were the crosses with the highest values (70.60 kg/kg and 69.03 kg/kg, re-
spectively). Over eight crosses following SHH × AOR were not significantly different
(Table 5). Under well-watered conditions, SHH × AOR (80.87 kg/kg) followed by MST
(79.15 kg/kg) and EP17 × EP42 (79.15 kg/kg) had the highest grain NUtE values with
no-nitrogen fertilizer. The four crosses following SHH × AOR were not significantly dif-
ferent. AOR × BAH (70.20 kg/kg) was the best cross with nitrogen fertilizer followed
by SHH × IZM (69.39 kg/kg) and IGS ×MST (68.94 kg/kg), and four other crosses not
significantly different. In addition, BAH had the highest grain NUtE value for the parental
populations. EPS20 × EPS21 was the worst check under both N levels while EP17 × EP42
was the best. On average, nutrient utilization efficiency increases with irrigation, especially
without N fertilization, while protein content increases with water stress and N fertilization
as a low effect; however, there is genotypic diversity for these responses.
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Table 4. Analysis of variance combined across environment of grain protein content (PC) and nutrient utilization efficiency (NUtE) analyzed in the diallel systems
with six Algerian maize populations evaluated along with four checks in two environments in Algiers under both managed drought and nitrogen deficiency.

Source of Variation df

Combined Across
Treatments

Well-Watered Water Stress

With Nitrogen Without Nitrogen With Nitrogen Without Nitrogen

PC (%) NUtE
(kg/kg) PC (%) NUtE

(kg/kg) PC (%) NUtE
(kg/kg) PC (%) NUtE

(kg/kg) PC (%) NUtE
(kg/kg)

Environment (ENV) 1 53.21 ns 2429.37 ns 34.305 ns 1430.84 ns 34.02 ns 1998.19 ns 34.59 ns 1303.46 ns 5.43 ns 243.84 ns

Irrigation (Ir) 1 84.06 ns 3652.69 ns

Irrigation × ENV 1 15.55 ns 885.54 ns

Nitrogen (N) 1 18.41 ns 612.60 ns

Nitrogen × ENV 1 18.31 ns 569.83 ns

Irrigation × Nitrogen 1 12.24 ns 713.32 ns

Genotypes (G) 24 2.33 ns 85.14 * 2.432 ns 83.29 ns 1.78 * 109.31 * 2.61 ns 101.63 ns 1.082 ns 38.48 ns

G × ENV 24 1.37 ns 39.78 ns 1.487 ns 53.61 ns 0.74 ns 45.27 ns 1.80 ns 59.13 ns 1.57 ns 58.61 ns

G × N 24 2.25 ns 111.59 ns

G × Ir 24 2.09 ns 87.28 ns

G × Ir × N 24 1.14 ns 46.81 ns

G × N × ENV 24 1.54ns 62.20 ns

G × Ir × ENV 24 1.46ns 67.14 ns

G × Ir × N × ENV 22 1.27ns 50.80 ns

* Significant at the 0.05 probability level; ns: not significant.
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Table 5. Means a of grain protein content (PC) and nutrient utilization efficiency (NUtE) analyzed in the diallel systems with six Algerian maize populations
evaluated along with four checks in two environments in Algiers under drought and nitrogen deficiency.

NUtE (kg/kg) PC (%)

Water Stress Well Water Water Stress Well Water

Populations Without N With N Without N With N c Without N With N Without N With N

Algerian populations

AOR 60.41 ab 53.86 fg 63.45 gh 59.65 bcd 10.53 ab 11.98 ab 10.04 ab 10.79 abc

BAH 64.56 ab 69.51 ab 75.3 abcde 65.86 abc 9.71 ab 9.08 g 8.42 efgh 9.61 bcd

IGS 57.12 b 66.09 abcde 65.89 efgh 65.34 abc 10.96 a 10.06 cdefg 9.54 abcde 9.74 bcd

IZM 59.99 ab 56.68 cdefg 64.86 fgh 64.28 abcd 10.53 ab 10.93 abcde 9.84 abc 9.73 bcd

MST 61.81 ab 51.26 g 79.15 ab 60.3 abcd 10.62 ab 12.38 a 8.15 fgh 10.52 abcd

SHH 59.63 b 62.26 abcdef 73.62 abcdef 61.77 abcd 10.51 ab 10.31 cdefg 8.58 defgh 10.23 abcd

Population crosses

AOR × BAH 63.73 ab 59.26 bcdefg 69.74 bcdefgh 70.2 ab 9.87 ab 10.6 bcdefg 9.04 abcdefgh 8.96 cd

AOR × IGS 61.11 ab 64.41 abcde 68.07 defgh 52.57 d 10.25 ab 9.88 defg 9.51 abcde 12.09 a

AOR × IZM 55.9 b 58.71 cdefg 66.09 efgh 64.42 abcd 11.21 a 10.76 abcdef 9.47 abcde 9.92 bcd

AOR ×MST 58.28 b 60.9 abcdefg 63.94 gh 62.81 abcd 10.76 a 10.52 bcdefg 9.96 ab 10.15 abcd

IGS × BAH 58.51 b 64.36 abcdef 66.78 efgh 59.83 bcd 11.12 a 10.12 cdefg 9.44 abcde 10.61 abcd

IGS ×MST 62.46 ab 60.05 bcdefg 70.39 bcdefgh 68.94 abc 10.08 ab 10.44 bcdefg 8.97 bcdefgh 9.1 cd

IZM × BAH 56.71 b 55.18 efg 70.23 bcdefgh 67.78 abc 11.15 a 11.36 abcd 8.99 abcdefgh 9.53 bcd

IZM × IGS 58.41 b 56.2 efg 68.51 cdefgh 66.43 abc 10.81 a 11.15 abcde 9.17 abcdefg 9.45 bcd

IZM ×MST 62.8 ab 63.57 abcdef 64.21 fgh 67.41 abc 10.28 ab 10.16 cdefg 9.98 ab 9.39 bcd

MST × BAH 63.72 ab 56.28 efg 68.08 defgh 63.29 abcd 9.89 ab 11.57 abc 9.19 abcdefg 10.19 abcd

SHH × AOR 69.03 a 56.98 efg 80.87 a 63.17 abcd 9.13 b 11.05 abcde 7.89 h 9.99 bcd

SHH × BAH 60.03 ab 55.99 defg 71.6 abcdefgh 60.04 abcd 10.59 ab 11.05 abcde 8.86 bcdefgh 10.55 abcd

SHH × IGS 56.69 b 68.5 abc 68.31 cdefgh 68.76 abc 11.09 a 9.5 efg 9.16 abcdefg 9.2 cd

SHH × IZM 63.98 ab 70.6 a 61.99 h 69.39 abc 9.81 ab 9.11 fg 10.22 a 9.23 cd

SHH ×MST 60.32 ab 67.63 abcd 64.47 fgh 61.89 abcd 10.38 ab 9.56 efg 9.74 abcd 10.32 abcd
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Table 5. Cont.

NUtE (kg/kg) PC (%)

Water Stress Well Water Water Stress Well Water

Populations Without N With N Without N With N c Without N With N Without N With N

Checks

EPS20 - 60.06 abcdefg 72.81 abcdefg 64.06 abcd - 10.36 bcdefg 8.62 cdefgh 9.95 bcd

EPS20 × EPS21 65.08 ab 59.65 bcdefg 67.29 efgh 57.34 cd 9.79 ab 10.56 bcdefg 9.39 abcdef 11.38 ab

EPS21 - 61.69 abcdefg 77.51 abcd 69.48 abc - 10.31 bcdefg 8.07 gh 9.18 cd

EP17 × EP42 61.57 ab - 79.06 abc 72.2 a 10.19 ab - 7.93 gh 8.72 d

Means 60.70 60.82 69.69 64.29 10.41 10.53 9.13 9.94

LSD(0.05) 10.82 15.31 12.78 13.23 1.79 2.36 1.64 2.18
a For each trait, means followed by the same letter in the row are not significantly different; c Nitrogen.
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General means of partial factor productivity (PFP) varied from 7.35 kg/kg under water
stress conditions to 31.04 kg/kg under well-watered conditions (Table 6). The reduction
of PFP caused by drought was variable across genotypes, being more drastic for the flint
hybrid EP17× EP42 and milder for AOR× IZM, followed by IGS× BAH, AOR× IGS, and
the Reid check EPS20. Under water stress conditions, AOR× IGS (14.11 kg/kg) followed by
AOR × IZM (11.53 kg/kg) had the highest PFP values. AOR (8.68 kg/kg) had the highest
PFP value, while IZM (3.61 kg/kg) had the lowest value, which was not significantly
different from the values of the checks. Under well-watered conditions, EP17 × EP42
(49.52 kg/kg) followed by SHH × IGS (42.41 kg/kg) and AOR × IGS (40.77 kg/kg) had
the highest PFP values, while the lowest PFP value was for EP2S0. BAH (29.53 kg/kg) and
IGS (29.23 kg/kg) had the highest PFP value, and they were not significantly different.

Table 6. Means a of agronomic efficiency (AE) and partial factor productivity (PFP) analyzed in
the diallel systems with six Algerian maize populations evaluated along with four checks in two
environments in Algiers under drought and nitrogen deficiency.

AE (kg of Grain/kg of N) PFP (kg of Grain/kg of N)

Populations Water Stress Well Water Water Stress Well Water

Algerian populations

AOR 4.36 abc 9.81 bcdef 8.68 bcdef 26.32 ghijk

BAH 2.05 abc 8.25 bcdef 8.67 bcdef 29.53 efghij

IGS −0.37 bcd 3.38 cdef 5.22 efg 29.23 efghij

IZM −0.62 bcd 9.25 bcdef 3.61 fg 23.42 ijk

MST −0.14 abcd 1.49 def 3.9 fg 18.68 k

SHH 0.38 abcd 0.74 ef 5.29 defg 22.54 jk

Population crosses

AOR × BAH 0.68 abcd 8.36 bcdef 9.33 abcde 31.28 defghi

AOR × IGS 6.18 a 8.98 bcdef 14.11 a 40.77 bc

AOR × IZM 5.64 ab 3.48 cdef 11.53 ab 31.67 defgh

AOR ×MST −0.06 abcd 6.03 bcdef 5.33 defg 31.75 defgh

IGS × BAH 5.34 ab 12.78 abc 12.26 ab 35.24 bcdef

IGS ×MST 2.07 abc 8.02 bcdef 8.34 bcdef 33.8 cdefg

IZM × BAH −1.95 cd 14.94 ab 6.39 cdefg 38.51 bcd

IZM × IGS −0.02 abcd 8.92 bcdef 6.6 cdefg 35.2 bcdef

IZM ×MST 1.09 abcd 2.36 def 7.88 bcdef 28.7 fghij

MST × BAH 2.58 abc 4.87 bcdef 8.09 bcdef 25.73 hijk

SHH × AOR −4.8 de 7.6 bcdef 6.08 cdefg 33.42 cdefgh

SHH × BAH 1.76 abc 11.36 abcd 9.5 abcde 36.85 bcde

SHH × IGS 2.94 abc 11.25 abcd 10.23 abcd 42.41 ab

SHH × IZM 1.07 abcd 9.31 bcdef 10.37 abc 35.81 bcdef

SHH ×MST 4.43 abc 10.35 abcde 10.34 abc 34.47 cdef

Checks

EPS20 - −0.24 f 2.08 g 5.85 l

EPS20 × EPS21 1.2 abcd 13.34 abc 5.45 cdefg 32.69 defgh

EPS21 1.9 abcd 13.43 abc 2.35 g 22.52 jk

EP17 × EP42 −10.92 e 20.95 a 2.00 g 49.52 a

Means 1.03 8.36 7.35 31.04

LSD(0.05) 7.06 12.12 6.01 8.10
a For each trait, means followed by the same letter in the row are not significantly different.
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For AE, general means decreased under water stress (Table 6). The reduction of AE
caused by drought followed similar patterns as for PFP, being more drastic for EP17 × EP42;
on the other side, AE was negative for AOR × IZM because the yield was lower with
nitrogen fertilization than without it. Other genotypes with mild effect of drought on AE
were AOR × IGS, MST × BAH, IZM × MST, SHH × MST, and IGS × BAH. AOR was
the population with the highest AE values under both water regimes. Under water stress
conditions, AOR× IGS (6.18 kg/kg) followed by AOR× IZM (5.64 kg/kg) and IGS × BAH
(5.34 kg/kg) were the crosses with the highest AE. EP17 × EP42 was the worst check under
water stress (−10.92 kg/kg) and the best under well-watered conditions (20.95 kg/kg).
The negative values were because yields with nitrogen fertilizer were lower than those
with no-nitrogen fertilizer. The highest AE values for the crosses under well-watered
conditions were found for IZM × BAH followed by IGS × BAH. Therefore, the effects
of fertilization on productivity were variable among genotypes and were significantly
affected by irrigation, some Algerian populations being particularly promising as sources
of stress tolerance.

3.2. Varietal and Heterosis Effects among Algerian Maize Populations

Analysis of diallel crosses was made separately for each treatment (Tables 7 and 8).
Combined analyses over environments for grain protein content (PC) and grain NUtE
revealed significant differences among environments under all the treatments for the two
traits (Table 7). Entries were significantly different for both traits under water stress with
nitrogen supply and under well-watered conditions with no-nitrogen supply. Under well-
watered conditions, specific heterosis was significant for PC and grain NUtE with nitrogen
supply. With no-nitrogen fertilizer, variety heterosis was significant for PC, and average
heterosis was significant for grain NUtE. Under water stress, variety heterosis × ENV
interaction was significant for both traits with nitrogen supply. In the absence of nitrogen
supply, specific heterosis was significant for PC and variety × ENV for grain NUtE.

Table 7. Mean squares for grain protein content (PC) and nutrient utilization efficiency (NUtE) from
analysis II of Gardner and Eberhart [77] of the diallel made with six Algerian maize populations
evaluated along with four checks in two years in Algiers under drought and nitrogen deficiency.

Well-Watered

Sources of Variation df
With Nitrogen Without Nitrogen

PC (%) NUtE (kg/kg) PC (%) NUtE (kg/kg)

Environment (ENV) 1 35.95 *** 1456.00 *** 33.54 *** 1952.49 ***

Rep (ENV) 2 3.2 96.28 6.5 ** 464.66 ***

Entry 20 2.09 72.05 1.6 * 101.33 *

ENV × Entry 20 1.34 48.18 0.75 46.41

Variety 5 1.70 53.26 1.84 99.47

Heterosis 15 2.22 78.32 1.52 101.95

Average heterosis 1 0.63 43.60 0.77 79.92 *

Variety heterosis 5 0.77 34.06 1.83 * 134.06

Specific heterosis 9 3.21 ** 106.76 * 1.43 86.56

Variety × ENV 5 0.78 24.76 0.54 33.32

Heterosis × ENV 15 1.52 55.99 0.83 50.77

Average heterosis × ENV 1 2.92 108.16 0.15 0.26

Variety heterosis × ENV 5 3.01 109.81 0.31 45.37

Specific heterosis × ENV 9 0.54 20.29 1.18 59.38

Error

Df 40 40 40 40

MS 1.81 64.75 0.82 47.03
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Table 7. Cont.

Water Stress

Sources of Variation df
With Nitrogen Without Nitrogen

PC (%) NUtE (kg/kg) PC (%) NUtE (kg/kg)

Environment (ENV) 1 36.13 *** 1343.12 *** 5.36 * 231.70 *

Rep (ENV) 2 24.03 *** 1222.67 *** 7.99 ** 304.38 **

Entry 20 3.08 * 118.78 * 1.2 41.69

ENV × ENTRY 20 1.89 61.26 1.67 61.08

Variety 5 3.68 136.09 0.93 35.49

Heterosis 15 2.82 107.29 1.29 43.76

Average heterosis 1 2.54 43.97 0.04 0.62

Variety heterosis 5 4.56 155.09 0.87 19.51

Specific heterosis 9 1.89 89.00 1.67 * 62.03

Variety × ENV 5 1.07 40.50 2.75 94.54 *

Heterosis × ENV 15 2.4 84.25 1.31 49.92

Average heterosis × ENV 1 1.36 29.66 3.56 90.14

Variety heterosis × ENV 5 5.44 ** 181.88 * 2.27 88.85

Specific heterosis × ENV 9 0.82 37.09 0.52 23.83

Error

Df 38 37 40 40

MS 1.37 55.10 1.24 42.15
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.

Table 8. Mean squares for agronomic efficiency (AE) and partial factor productivity (PFP) from
analysis II of Gardner and Eberhart [77] of the diallel made with six Algerian maize populations
evaluated along with four checks in two years in Algiers under drought and nitrogen deficiency.

Water Stress Well-Watered

Sources of Variation df AE (kg of
Grain/kg of N)

PFP (kg of
Grain/kg of N)

AE (kg of
Grain/kg of N)

PFP (kg of
Grain/kg of N)

Environment (ENV) 1 0 17.13 8.18 268.14 *

Rep (ENV) 4 276.35 *** 330.11 *** 322.74 ** 54.68

Entry 20 42.64 44.25 ** 86.14 219.86 ***

ENV × ENTRY 20 22.34 16.18 83.28 33.13

Variety 5 14.82 27.47 * 89.32 234.96 *

Heterosis 15 50.88 47.73 * 85.09 214.83 ***

Average heterosis 1 11.99 229.58 232.24 2281.66 *

Variety heterosis 5 28.82 17.06 130.78 80.96

Specific heterosis 9 67.51 44.4 43.18 59.55

Variety × ENV 5 8.22 4.66 90.79 29.09

Heterosis ×ENV 15 27.17 21.13 85.35 34.48

Average heterosis × ENV 1 7.75 20.84 103.47 2.03

Variety heterosis × ENV 5 10.67 11.43 73.82 30.21

Specific heterosis × ENV 9 38.44 26.45 89.64 40.45

Error

Df 78 78 79 80

MS 33.29 19.92 76.62 40.36
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.
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Combined analyses over environments for AE and PFP revealed significant differences
among environments only for PFP under well-watered conditions (Table 8). The effect of
entries, variety, and heterosis were significantly different only for PFP under both water
regimes. Finally, average heterosis was significant for PFP under well-watered conditions.

Average heterosis was significant and positive only for PFP under both water regimes,
indicating the existence of heterosis in this set of diallel crosses (Table 9). Furthermore,
drought reduced heterosis for PFP, being one third of the heterosis found under well-
watered conditions. Similarly, for AE, the average heterosis under drought conditions
was about one third of that under well-watered conditions. However, the other genetic
parameters, namely, varietal effect and varietal and specific heterosis, did not follow
a consistent trend, as the values under drought conditions were lower or higher than
under well-watered conditions, depending on the genotype. Therefore, heterosis and its
components were more important than variety and environmental effects, indicating that
dominance was more important than additive genetic effects.

Table 9. Genetic parameters for agronomic efficiency (AE) and partial factor productivity (PFP) from
the analyses of [61,77] (varietal effect, varietal heterosis, specific heterosis, and average heterosis)
for two traits in the diallel made among six Algerian maize populations evaluated in two years in
Algiers under both managed drought and nitrogen deficiency.

AE (kg of Grain/kg of N) PFP (kg of Grain/kg of N)

Populations Water Stress Well-Watered Water Stress Well-Watered

Varietal effect

AOR 3.26 4.32 2.65 1.37

BAH 0.95 2.77 2.63 4.58 *

IGS −1.47 −2.11 −0.81 4.28

IZM −1.02 3.76 −1.71 −1.54

MST −1.01 −4.00 −2.01 −6.27 *

SHH −0.72 −4.75 −0.74 −2.42

Varietal heterosis

AOR −1.96 −4.45 −1.09 ** −1.43

BAH −0.62 0.79 −1.28 −3.35 *

IGS 2.62 2.92 1.92 1.75

IZM −0.28 −2.75 0.19 0.28

MST 0.79 −0.71 −0.37 −1.22

SHH −0.54 4.22 0.64 3.98 *

Specific heterosis

AOR × BAH −0.64 −1.15 −0.02 −1.29

AOR × IGS 2.84 0.91 3.27 * 3.25

AOR × IZM 4.97 * −1.86 2.88 −1.47

AOR ×MST −1.80 2.54 −2.63 2.48

IGS × BAH 1.80 0.25 1.62 −1.95

IGS ×MST −1.89 0.37 −0.9 −0.11

IZM × BAH 2.81 −5.14 2.06 −5.70 **

IZM × IGS −2.91 −0.57 −3.34 * −2.56

IZM ×MST −0.20 −2.55 0.83 −0.82

MST × BAH 0.65 −3.08 0.34 −3.22

SHH × AOR −5.36 ** −0.45 −3.51 * −2.98

SHH × BAH 1.00 −1.16 0.12 0.76

SHH × IGS 0.16 −0.96 −0.65 1.38
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Table 9. Cont.

AE (kg of Grain/kg of N) PFP (kg of Grain/kg of N)

Populations Water Stress Well-Watered Water Stress Well-Watered

SHH × IZM 0.96 −0.16 1.68 −0.84

SHH ×MST 3.25 2.73 2.36 1.68

Average heterosis 0.70 3.01 3.06 ** 9.42 ***
*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.

For AE, under water stress, significant and positive specific heterosis (4.97 kg/kg) was
found in AOR× IZM and negative (−5.36 kg/kg) in SHH× AOR. None of the populations
had significant varietal effects or varietal heterosis for agronomic efficiency.

For PFP, under water stress, specific heterosis was significant and positive (3.27 kg/kg)
for AOR× IGS and negative for IZM× IGS (−3.34 kg/kg) and SHH×AOR (−3.51 kg/kg).
Varietal heterosis was significant and negative (−1.09 kg/kg) for AOR. Under well-watered
conditions, a significant and positive varietal effect (4.58 kg/kg) was found in BAH and
negative (−6.27 kg/kg) for MST. Furthermore, varietal heterosis was significant and pos-
itive (3.98 kg/kg) for SHH and negative (−3.35 kg/kg) for BAH. Specific heterosis was
significant and negative (−5.70 kg/kg) for IZM × BAH.

Average heterosis was not significant for grain protein content and grain NUtE
(Table 10). For grain protein content, under water stress, BAH had a significant and
negative varietal effect (−1.75%), while MST had a positive value (1.55%), with nitro-
gen fertilizer. BAH recorded a significant and positive (1.44%) varietal heterosis. Under
well-watered conditions, with no-nitrogen fertilizer, varietal heterosis was significant and
positive (0.80%) for MST and specific heterosis was significant and negative (−1.09%) for
SHH × AOR. Under a well-watered regime with nitrogen fertilizer, significant and positive
specific heterosis for AOR × IGS (1.57%) was observed, whilst AOR × BAH (−1.41%) had
a negative value.

Table 10. Genetic parameters for grain protein content (PC) and nutrient utilization efficiency (NUtE)
from the analyses of Gardner and Eberhart [61] (1966) (varietal effect, heterosis effect, specific heterosis,
and average heterosis) for two traits in the diallel made among six Algerian maize populations
evaluated in two years in Algiers under both managed drought and nitrogen deficiency.

PC (%) NUtE (kg/kg)

Water Stress Well-Watered Water Stress Well-Watered

Populations Without N b With N Without N With N Without N With N Without N With N

Varietal effect

AOR 0.05 1.15 0.94 0.68 −0.18 −5.88 −6.93 −3.22

BAH −0.77 −1.75 * −0.67 −0.49 3.98 9.78 * 4.92 2.99

IGS 0.49 −0.53 0.45 −0.36 −3.46 4.77 −4.49 2.47

IZM 0.05 0.1 0.75 −0.37 −0.60 −2.72 −5.52 1.42

MST 0.14 1.55 * −0.94 0.42 1.22 −8.48 8.77 * −2.56

SHH 0.03 −0.52 −0.52 0.12 −0.96 2.53 3.24 −1.10

Varietal heterosis

AOR −0.25 −0.42 −0.64 0.05 1.13 1.25 5.37 −0.68

BAH 0.50 1.44 * 0.09 0.32 −2.29 −8.27 * −1.13 −1.79

IGS 0.06 −0.01 −0.29 0.40 0.05 −0.76 2.48 −2.68

IZM 0.25 0.04 −0.05 −0.32 −1.23 0.67 0.24 2.57

MST −0.26 −0.76 0.80 * −0.31 0.31 4.59 −6.89 * 1.79
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Table 10. Cont.

PC (%) NUtE (kg/kg)

Water Stress Well-Watered Water Stress Well-Watered

Populations Without N b With N Without N With N Without N With N Without N With N

SHH −0.30 −0.29 0.09 −0.13 2.02 2.51 −0.08 0.79

Specific heterosis

AOR × BAH −0.45 −0.55 0.15 −1.41 * 2.21 2.92 −1.71 8.31 *

AOR × IGS −0.25 −0.44 0.44 1.57 ** 0.97 3.07 −2.3 −8.16 *

AOR × IZM 0.73 0.08 0.01 0.13 −4.4 −0.31 −1.52 −1.04

AOR ×MST 0.75 −0.09 0.49 −0.05 −4.46 0.83 −3.68 0.13

IGS × BAH 0.27 −0.6 0.46 0.40 −0.29 4.71 −3.02 −2.89

IGS ×MST −0.46 0.26 −0.6 −0.93 2.44 −3.33 4.43 5.41

IZM × BAH −0.32 −0.27 0.39 −0.06 2.25 2.16 −3.19 −0.33

IZM × IGS −0.20 0.90 −0.39 −0.17 0.83 −6.14 2.56 0.13

IZM ×MST −0.24 −0.38 0.02 0.09 2.62 2.50 1.01 −0.84

MST × BAH −0.47 0.56 −0.19 0.31 2.32 −2.09 1.03 −1.39

SHH × AOR −0.78 1.01 −1.09 * −0.24 5.67 * −6.51 9.21 * 0.76

SHH × BAH 0.33 0.32 −0.03 0.64 −1.99 −3.38 0.51 −4.36

SHH × IGS 0.65 −0.12 0.09 −0.87 −3.95 1.69 −1.68 5.51

SHH × IZM −0.61 −0.87 0.75 −0.11 3.19 6.11 −5.25 1.41

SHH ×MST 0.42 −0.34 0.27 0.58 −2.92 2.09 −2.79 −3.32

Average
heterosis −0.05 −0.39 0.21 −0.19 0.19 1.67 −2.16 1.59

*, ** Significant at the 0.05 or 0.01 probability levels respectively. b N = Nitrogen.

For grain NUtE, under water stress conditions, SHH × AOR exhibited significant and
positive specific heterosis (5.67 kg/kg) with no-nitrogen fertilizer. With nitrogen supply,
BAH showed a significant and positive varietal effect (9.78 kg/kg) and significant and
negative varietal heterosis (−8.27 kg/kg). Under well-watered conditions, with no-nitrogen
fertilizer, a significant and positive value of varietal effect (8.77 kg/kg) was observed for
MST and of specific heterosis (9.21 kg/kg) for SHH×AOR, whilst MST exhibited significant
and negative varietal heterosis (−6.89 kg/kg). Under the same water regime, significant
specific heterosis was found with a negative value (−8.16 kg/kg) for AOR × IGS and
positive value (8.31 kg/kg) for AOR × BAH. Therefore, some Algerian populations have
promising varietal and heterosis effects for grain protein content and nutrient utilization
efficiency, and some crosses were valuable for their specific heterosis effects, mainly with
fertilization, and they varied with irrigation.

4. Discussion

The significant variation observed among genotypes for most traits revealed the
existence of adequate genetic variability for nitrogen use efficiency (NUE) and protein
content among Algerian maize populations per se and their crosses under drought and
low nitrogen conditions. The potential for genetic improvement in nitrogen use efficiency
depends on the magnitude and nature of differences among varieties as stated by previous
researchers [79]. Identification of sources of stress tolerance are the basic task for releas-
ing stress-tolerant lines and their utilization in the development of productive hybrids
is a sustainable means of developing climate-resilient maize varieties, as previously re-
ported [80]. In accordance with our results, the Algerian maize populations per se and
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their crosses had a large amount of variability in the studies of Cherchali et al. [70] and
Riache et al. [71]. Naggar et al. [81] reported that such high variability suggested that
the germplasm was adapted to a wide range of environmental conditions. As reported
by Abu et al. [82], the wide genetic variability observed suggested that the inbred lines
could be important sources of beneficial alleles for low nitrogen breeding programs in
sub-Saharan Africa. However, in order to release inbred lines, sources of tolerance have to
be identified among adapted populations, and Algerian maize has a wide adaptability to
temperate regions and a high degree of genetic diversity and could provide valuable alleles
for maize improvement in temperate environments [63,67]. In addition, the magnitude and
type of genetic variability are of prime importance to breeders in determining whether or
not to improve a breeding population and the most efficient method [61]. The amount of
genetic variability determines the limits of selection for improvement, while the type of
variability helps the breeder to determine the most appropriate breeding method to use for
the genetic improvement of a population [61]. However, diversity exploitation in maize
hybrid breeding allows breeders to develop cultivars with high heterosis, specific, and/or
general adaptation to prevailing biotic and abiotic conditions [83].

Genetic diversity provides the capacity for plants to meet changing environments. It
is fundamentally important in crop improvement [84]. As Tefera [85] reported, genetic
diversity is the foundation for the sustainable development of new varieties for present
and future challenges which arise due to the various biotic and abiotic stresses. The
Mediterranean region, especially the Middle East and North Africa, ran out of renewable
freshwater decades ago. The region is characterized by an extremely variable climate and
considered as one of the driest agricultural regions on Earth, containing only 1% of the
world’s freshwater resources [86].

Moreover, there is huge yet unexploited genetic diversity in maize landraces as a
product of thousands of years of evolution under domestication and hybridization [87].
Landraces adapted to local growth conditions could play a significant role in this pro-
cess [88] and even the smallest participation of local germplasm can have a great impact
on the final result [89]. Landraces are a potential source of original traits and new vari-
ability [90] desirable to be used in plant breeding programs. There is no doubt that the
landraces are adapted to a specific environment and region [91]. Furthermore, the main
reason to use landraces is to bring novel favorable alleles to a breeding population [92].
The local landraces are rich in diverse genetic materials and are a good source of important
genes such as resistance to biotic and abiotic stresses and quality traits [91] and have a
better capacity to absorb and utilize N under low N fertilization conditions [93].

The effects of irrigation and fertilization on protein content were not consistent across
genotypes, as the proportion of proteins under water stress or without nitrogen compared
with that under control conditions was higher or lower depending on the genotypes.
Protein content was higher under drought conditions with nitrogen fertilization compared
with no nitrogen for half of the genotypes and lower for the other half. Nevertheless,
some general trends were shown, as protein content decreased without nitrogen compared
to with nitrogen fertilization under control conditions. Furthermore, without nitrogen
fertilization, protein content was higher for all genotypes under drought, compared with
well-watered conditions. Similarly, with nitrogen fertilization, protein content was higher
for most genotypes under drought, compared with well-watered conditions.

The ranges of variability increased among populations under water stress, as the
partial factor productivity (PFP) values of AOR and BAH duplicated that of IZM under
water stress and were even larger for the crosses (Table 5). However, PFP values decreased
under water stress. As reported by Wang et al. [94], the nitrogen PFP and nitrogen AE
decreased when subjected to drought stress. In the same way, in the study of Qiu et al. [95],
all three sites of each N rate had lower PFP in one year than in the two other years as the
result of drought condition. As reported also Wang et al. [94], drought stress inhibited
the uptake of N in plants, while reducing PFP for the maize under the same N conditions.
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As a consequence of lower N use efficiencies, additional N is retained in the soil; thus, N
fertilizer levels could likely be reduced for the next crop season.

The negative values of nitrogen agronomic efficiency could be explained by the fact
that, on average, yields under water stress with no-nitrogen fertilizer had higher values than
those with nitrogen fertilizer. As reported by Wang et al. [96], maize plants in treatment
under moderate water stress with low nitrogen showed an optimal root distribution,
characterized by a larger and deeper penetration scale with higher root length density
throughout the soil layers, and thus showed fewer drought responses and obtained the
higher NUE.

Maize kernels of current commercial varieties contain 70–75% starch, 8–10% protein,
and 4–5% oil [97]. The general means performance of grain protein content increased under
water stress and when nitrogen supply was applied. Das et al. [32] reported that protein
content was also significantly reduced by 25% under low N. However, protein content
of the grain endosperm increased markedly as available N in the soil increased [98–100].
This is because N plays a key role in metabolism, notably in protein synthesis, and thus
strongly influences both grain production and grain protein content [101]. Worku et al. [102]
reported the favorable effect of nitrogen fertilizer in the synthesis and storage of cereal
chemical compound grains as protein, lipids, and carbohydrate concentrations during
the course of maize. Furthermore, drought accelerates leaf senescence and reduces the
photosynthetic area and period, often limiting the amount of assimilate, which results in
lower grain yields but higher grain protein content [103–105].

Mean squares of the genetic variability observed in nitrogen utilization efficiency
(NUtE) increased under no-nitrogen fertilizer and decreased under water stress conditions.
NUtE followed patterns opposite to those of the protein content. Indeed, under drought
conditions, NUtE was lower without than with nitrogen fertilization for those genotypes
showing the opposite trend for PC; under well-watered conditions, NUtE was lower
without than with nitrogen fertilization for most genotypes.

Elvio and Rinaldi [106] reported that sufficient available soil water led to better uptake
and utilization of N in cell metabolic processes and increased crop biomass and yield.
Omoigui et al. [107] observed a higher NUtE and NUE under low nitrogen and suggested
that the good adaptation to these conditions was attributed to improved N utilization
efficiency. Moll et al. [53] also found that N utilization efficiency played a dominant role
in determining grain yield at low N. According to Arisede et al. [108], at low N input,
variation in NUtE was more important than at high N input, because when nitrogen is
not limiting uptake, efficient utilization is not as critical as when N is limiting. Dhugga
and Waines [109] argued that decreased NUE at high N to higher volatilization losses was
because the plant was unable to assimilate all N taken up. It is well accepted that NUE is
high at low N rates and decreases with increasing N rates [110].

Nitrogen use efficiency (NUE) is generally defined as the ability of a genotype to
produce superior grain yield under low soil N conditions in comparison with other geno-
types [111]. Understanding the mechanisms regulating NUE processes is crucial for the
improvement of NUE in crop plants [30]. However, the improvement of NUE in maize
cultivars is a great challenge due to the genetic complexity and strong interaction with
the environment. Thus, information on the genetic control governing the inheritance of
traits would be useful for crop researchers to choose the breeding method for obtaining
NUE efficient cultivars [20] and to develop breeding program strategies for traits related
to drought tolerance [92]. Therefore, assessment of combining ability and heterosis is
of utmost importance for breeding hybrid maize [112], so that the genotypes could be
successfully used to develop hybrids with superior NUE under diverse environmental
conditions.

Increasing heterosis is the preferred choice for maximizing gains in crop plants and
largely depends on the level of genetic diversity of the germplasm base [113]. For grain
protein content, non-additive genetic action was important in the inheritance under well-
watered conditions with nitrogen supply and under water stress with no-nitrogen fertilizer
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(Table 6). However, under well-watered conditions with no-nitrogen fertilizer, the mean
squares of variety heterosis were significant, which suggests that additive genetic effects
are also important for this trait. The genetic regulation of protein content depends on the
varieties studied, for example, Machida et al. [114] reported that there was a preponderance
of GCA effects for protein content under well-watered conditions with nitrogen supply.
Previous reports have shown that the partitioning of the sum of squares for general (GCA)
and specific (SCA) combining ability indicated that both additive and non-additive effects
were involved in the genetic control [115], and GCA (additive) variance was higher than
SCA (non-additive) variance for grain protein content under water stress [116].

For grain NUtE, specific heterosis was significant under well-watered conditions
with nitrogen supply, which suggested that non-additive gene action controlled this trait
(Table 6). For PFF, under both water conditions, a variety and heterosis effects were
significant, which suggested the importance of both additive and non-additive genetic
effects (Table 7). Average heterosis was significant and positive for PFP indicating that the
crosses had, on average, higher PFP than the populations per se for all traits (Table 5). For
AE, there was no significant results about the type of inheritance in this study.

Absence of significant estimates of varietal effects or varietal heterosis for AE, indicates
the lack of potential parents for increasing the frequency of favorable alleles for AE under
both water regimes. BAH and MST showed positive significant additive effects for PFP,
PC, and/or NUtE (Table 8), indicating that these populations are desirable parents for
maize hybrid development and involvement in the maize breeding program, as they could
be potential sources of favorable alleles for breeding programs. Identification of superior
parents could be used by breeders to make and select better crosses for direct use or for
further breeding. A successful recurrent selection program is expected to increase the mean
performance of individuals and also maintain the genetic variability within the population
to facilitate continuous improvement in advanced cycles of selection [117].

AOR × IZM, AOR × IGS, SHH × AOR, and AOR × BAH crosses were good specific
combiners for developing hybrids with high values of AE, PFP, grain NutE, and/or grain
protein content, which implied that it could be promising for developing drought-tolerant
or/and low nitrogen hybrids through reciprocal recurrent selection to improve the previous
characteristics.

As we hypothesized, differences among Algerian populations were significant for
stress tolerance, and this genetic diversity affected the efficient use of nitrogen and the
production of proteins, particularly under drought conditions. Furthermore, the genetic
diversity for yield per unit of fertilizer applied has significant genotype × environment
interaction and is affected by irrigation. Even though there is genotypic diversity for
nutrient utilization and protein content, efficiency increases with irrigation, especially
without N fertilization, while protein content increases with water stress and N fertilization
as a low effect. There were significant differences among populations for the effects of
fertilization on productivity, which were significantly affected by irrigation; furthermore,
some Algerian populations were particularly promising as sources of stress tolerance.
Finally, these results also show that heterosis and its components were more important
than variety and environmental effects, indicating that dominance was more important
than additive genetic effects. Some Algerian populations have promising varietal and
heterosis effects for grain protein content and nutrient utilization efficiency, and some
crosses were valuable for their specific heterosis effects, mainly with fertilization, and they
varied with irrigation.

5. Conclusions

Our results revealed significant genetic variability in the populations per se and their
crosses under stress. Reciprocal recurrent selection could be used to take advantage of
additive and non-additive gene effects found based on estimations of genetic parameters.
Additive genetic effects could be capitalized on using the population BAH under water
stress with nitrogen supply for grain nitrogen utilization efficiency, and under well-watered
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conditions for partial fertilizer productivity, and MST under well-watered conditions
with no-nitrogen supply for grain NUtE, and under water stress with nitrogen fertilizer
for protein content. Dominance genetic effects could be exploited for protein content
using BAH with significant heterotic effects under water stress with nitrogen supply, MST
under well-watered conditions with no-nitrogen supply, and SHH under well-watered
conditions. The most promising crosses were SHH × AOR with no-nitrogen supply under
both water regimes for grain NUtE, AOR × IGS (under water stress for PFP and well-
watered conditions with nitrogen supply for protein content), AOR × IZM for AE under
water stress, and AOR× BAH for grain NUtE under well-watered conditions with nitrogen.
These parents could be promising for developing drought-tolerant or/and low nitrogen
hybrids to improve these traits.

The genetic effects of these genotypes will allow breeding programs to obtain high
values of nitrogen efficiency indices (AE, PFP, and grain NUtE) and grain yield with
more protein content. To conclude, maximum heterosis could be exploited using those
populations and crosses after selection and classification into useful heterotic groups.
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